School of Professional Studies

Document Type

Article

Abstract

This paper presents a systematic bibliometric analysis of the artificial intelligence (AI) domain to explore privacy protection research as AI technologies integrate and data privacy concerns rise. Understanding evolutionary patterns and current trends in this research is crucial. Leveraging bibliometric techniques, the authors analyze 8,322 papers from the Web of Science (WoS) database, spanning 1990 to 2023. The analysis highlights IEEE Transactions on Knowledge and Data Engineering and IEEE Access journals as highly influential, the former being an early contributor and the latter emerging as a pivotal source. The study demonstrates substantial disparities in scientific productivity across countries. Specifically, the top 10 countries collectively accounted for 74.8% of the articles, with China and the USA making up nearly half of the total contribution (46.1%). In contrast, regions in Africa and South America exhibited lower scientific production. The evolution of privacy preservation research is reflected, shifting from an algorithm-oriented approach to a focus on data orientation, and subsequently, to privacy solutions centered around Cloud Computing. In recent years, there has been a shift towards embracing Federated Learning and Differential Privacy. The analysis brings to light emerging themes and identifies research gaps, notably a global disparity in research output and a lag in ethical and legal inquiry. It asserts that enhanced interdisciplinary collaboration is imperative to formulate comprehensive privacy solutions for AI. Specifically, the paper imparts invaluable insights that are pivotal for effectively addressing the evolving privacy concerns in the era of AI and big data.

Publication Title

IEEE Access

Publication Date

3-18-2024

Volume

12

First Page

41704

Last Page

41726

ISSN

2169-3536

DOI

10.1109/ACCESS.2024.3378126

Keywords

Artificial intelligence, Privacy, Data privacy, Bibliometrics, Systematics, Search problems, Market research, Homomorphic encryption, Privacy

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

Business Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.