Biology

Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis

Authors

Elena Fernandez-Fueyo, CSIC - Centro de Investigaciones Biológicas Margarita Salas (CIB)
Francisco J. Ruiz-Dueñas, CSIC - Centro de Investigaciones Biológicas Margarita Salas (CIB)
Patricia Ferreira, Universidad de Zaragoza
Dimitrios Floudas, Clark University
David S. Hibbett, Clark UniversityFollow
Paulo Canessa, Pontificia Universidad Católica de Chile
Luis F. Larrondo, Pontificia Universidad Católica de Chile
Tim Y. James, University of Michigan, Ann Arbor
Daniela Seelenfreund, Universidad de Chile
Sergio Lobos, Universidad de Chile
Rubeń Polanco, Universidad Andrés Bello
Mario Tello, Universidad de Santiago de Chile
Yoichi Honda, Research Institute for Sustainable Humanosphere
Takahito Watanabe, Research Institute for Sustainable Humanosphere
Takashi Watanabe, Research Institute for Sustainable Humanosphere
Ryu Jae San, Gyeongsangnam-do Agricultural Research & Extension Services
Christian P. Kubicek, Technische Universität Wien
Monika Schmoll, Technische Universität Wien
Jill Gaskell, USDA Forest Products Laboratory
Kenneth E. Hammel, USDA Forest Products Laboratory
Franz J. St John, USDA Forest Products Laboratory
Amber Vanden Wymelenberg, University of Wisconsin-Madison
Grzegorz Sabat, University of Wisconsin-Madison
Sandra Splinter BonDurant, University of Wisconsin-Madison
Khajamohiddin Syed, University of Cincinnati College of Medicine
Jagjit S. Yadav, University of Cincinnati College of Medicine
Harshavardhan Doddapaneni, University of Iowa
Venkataramanan Subramanian, Colorado School of Mines
José L. Laviń, Universidad Pública de Navarra
José A. Oguiza, Universidad Pública de Navarra
Gumer Perez, Universidad Pública de Navarra
Antonio G. Pisabarro, Universidad Pública de Navarra

Document Type

Article

Abstract

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial upregulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn 2+. Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.

Publication Title

Proceedings of the National Academy of Sciences of the United States of America

Publication Date

4-3-2012

Volume

109

Issue

14

First Page

5458

Last Page

5463

ISSN

0027-8424

DOI

10.1073/pnas.1119912109

Cross Post Location

Student Publications

Share

COinS