Biology
The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes
Document Type
Article
Abstract
Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.
Publication Title
Science
Publication Date
6-29-2012
Volume
336
Issue
6089
First Page
1715
Last Page
1719
ISSN
0036-8075
DOI
10.1126/science.1221748
Keywords
wood, fungi, molecular clock
Repository Citation
Floudas, Dimitrios; Binder, Manfred; Riley, Robert; Barry, Kerrie; Blanchette, Robert A.; Henrissat, Bernard; Martínez, Angel T.; Otillar, Robert; Spatafora, Joseph W.; Yadav, Jagjit S.; Aerts, Andrea; Benoit, Isabelle; Boyd, Alex; Carlson, Alexis; Copeland, Alex; Coutinho, Pedro M.; De Vries, Ronald P.; Ferreira, Patricia; Findley, Keisha; Foster, Brian; Gaskell, Jill; Glotzer, Dylan; Górecki, Paweł; Heitman, Joseph; Hesse, Cedar; Hori, Chiaki; Igarashi, Kiyohiko; Jurgens, Joel A.; Kallen, Nathan; Kersten, Phil; Kohler, Annegret; Kües, Ursula; and Hibbett, David, "The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes" (2012). Biology. 225.
https://commons.clarku.edu/faculty_biology/225
Cross Post Location
Student Publications