Chemistry

The Longest Amyloid-β Precursor Protein Intracellular Domain Produced with Aβ42 Forms β-Sheet-Containing Monomers That Self-Assemble and Are Proteolyzed by Insulin-Degrading Enzyme

Document Type

Article

Abstract

Alzheimer's disease (AD) is the most common neurodegenerative disease resulting in dementia. It is characterized pathologically by extracellular amyloid plaques composed mainly of deposited Aβ42 and intracellular neurofibrillary tangles formed by hyperphosphorylated tau protein. Recent clinical trials targeting Aβ have failed, suggesting that other polypeptides produced from the amyloid-β precursor protein (APP) may be involved in AD. An attractive polypeptide is AICD57, the longest APP intracellular domain (AICD) coproduced with Aβ42. Here, we show that AICD57 forms micelle-like assemblies that are proteolyzed by insulin-degrading enzyme (IDE), indicating that AICD57 monomers are in dynamic equilibrium with AICD57 assemblies. The N-terminal part of AICD57 monomer is not degraded, but its C-terminal part is hydrolyzed, particularly in the YENPTY motif that has been associated with the hyperphosphorylation of tau. Therefore, sustaining IDE activity well into old age holds promise for regulating levels of not only Aβ but also AICD in the aging brain.

Publication Title

ACS Chemical Neuroscience

Publication Date

12-19-2018

Volume

9

Issue

12

First Page

2892

Last Page

2897

ISSN

1948-7193

DOI

10.1021/acschemneuro.8b00305

Keywords

amyloid-β precursor protein intracellular domain, Amyloid-β protein, CTF57, insulin-degrading enzyme

Cross Post Location

Student Publications

Share

COinS