"The Adjunction Inequality for Weyl-Harmonic Maps" by Robert Ream
 

Mathematics

Document Type

Article

Abstract

In this paper we study an analog of minimal surfaces called Weyl-minimal surfaces in conformal manifolds with a Weyl connection (M4, c, D). We show that there is an Eells-Salamon type correspondence between nonvertical '1-holomorphic curves in the weightless twistor space and branched Weyl-minimal surfaces. When (M, c, J) is conformally almost-Hermitian, there is a canonical Weyl connection. We show that for the canonical Weyl connection, branched Weyl-minimal surfaces satisfy the adjunction inequality. The ±J-holomorphic curves are automatically Weyl-minimal and satisfy the corresponding equality. These results generalize results of Eells-Salamon and Webster for minimal surfaces in Kähler 4-manifolds as well as their extension to almost-Kähler 4-manifolds by Chen-Tian, Ville, and Ma. © 2020 Robert Ream, published by De Gruyter 2020.

Publication Title

Complex Manifolds

Publication Date

2020

Volume

7

Issue

1

First Page

129

Last Page

140

ISSN

2300-7443

DOI

10.1515/coma-2020-0007

Keywords

almost-complex manifolds, twistor space, Weyl geometry

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.