Geography
Document Type
Article
Abstract
Understanding the sensitivity of transpiration to stomatal conductance is critical to simulating the water cycle. This sensitivity is a function of the degree of coupling between the vegetation and the atmosphere and is commonly expressed by the decoupling factor. The degree of coupling assumed by models varies considerably and has previously been shown to be a major cause of model disagreement when simulating changes in transpiration in response to elevated CO2. The degree of coupling also offers us insight into how different vegetation types control transpiration fluxes, which is fundamental to our understanding of land-atmosphere interactions. To explore this issue, we combined an extensive literature summary from 41 studies with estimates of the decoupling coefficient estimated from FLUXNET data. We found some notable departures from the values previously reported in single-site studies. There was large variability in estimated decoupling coefficients (range 0.05-0.51) for evergreen needleleaf forests. This is a result that was broadly supported by our literature review but contrasts with the early literature which suggests that evergreen needleleaf forests are generally well coupled. Estimates from FLUXNET indicated that evergreen broadleaved forests were the most tightly coupled, differing from our literature review and instead suggesting that it was evergreen needleleaf forests. We also found that the assumption that grasses would be strongly decoupled (due to vegetation stature) was only true for high precipitation sites. These results were robust to assumptions about aerodynamic conductance and, to a lesser extent, energy balance closure. Thus, these data form a benchmarking metric against which to test model assumptions about coupling. Our results identify a clear need to improve the quantification of the processes involved in scaling from the leaf to the whole ecosystem. Progress could be made with targeted measurement campaigns at flux sites and greater site characteristic information across the FLUXNET network.
Publication Title
Biogeosciences
Publication Date
2017
Volume
14
Issue
19
First Page
4435
Last Page
4453
ISSN
1726-4170
DOI
10.5194/bg-14-4435-2017
Keywords
aerodynamics, atmosphere-biosphere interaction, benchmarking, boundary layer, carbon cycle, energy balance, evergreen forest, hydrological cycle, literature review, stomatal conductance, transpiration
Repository Citation
De Kauwe, Martin G.; Medlyn, Belinda E.; Knauer, Jürgen; and Williams, Christopher A., "Ideas and perspectives: How coupled is the vegetation to the boundary layer?" (2017). Geography. 878.
https://commons.clarku.edu/faculty_geography/878
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Conditions
Published source must be acknowledged with citation: De Kauwe, Martin G., et al. "Ideas and perspectives: how coupled is the vegetation to the boundary layer?." Biogeosciences 14.19 (2017): 4435-4453.