Geography
Object-based classification with features extracted by a semi-automatic feature extraction algorithm-SEaTH
Document Type
Article
Abstract
Object-based image analysis (OBIA) uses object features (or attributes) that relate to the pixels contained by the image object to assist in image classification. These object features include spectral, shape, texture and context features. With hundreds of available features, the identification of those that can improve separability between classes is critical for OBIA. The Separability and Thresholds (SEaTH) algorithm calculates the SEaTH of object-classes for the given features. The SEaTH algorithm avoids time-consuming trial-and-error practice for seeking important features and thresholds. This article tests the SEaTH algorithm on Landsat-7 Enhanced Thematic Mapper (ETM+) imagery in a heterogeneous landscape with multiple land cover classes. The results suggest SEaTH is a strong alternative to other automated approaches, yielding an agreement of 79% with reference data. In comparison, an object-based nearest neighbour classifier yielded 66% agreement and a pixel-based maximum likelihood classifier yielded 69% agreement. © 2011 Taylor & Francis.
Publication Title
Geocarto International
Publication Date
6-1-2011
Volume
26
Issue
3
First Page
211
Last Page
226
ISSN
1010-6049
DOI
10.1080/10106049.2011.556754
Keywords
feature extraction, object-based classification, separability
Repository Citation
Gao, Yan; Marpu, Prashanth; Niemeyer, Imgard; Runfola, Daniel Miller; Giner, Nicholas M.; Hamill, Thomas; and Pontius, Robert Gilmore, "Object-based classification with features extracted by a semi-automatic feature extraction algorithm-SEaTH" (2011). Geography. 758.
https://commons.clarku.edu/faculty_geography/758