Geography

Document Type

Article

Abstract

Accurate landcover maps are fundamental to understanding socio-economic and environmental patterns and processes, but existing datasets contain substantial errors. Crowdsourcing map creation may substantially improve accuracy, particularly for discrete cover types, but the quality and representativeness of crowdsourced data is hard to verify. We present an open-sourced platform, DIYlandcover, that serves representative samples of high resolution imagery to an online job market, where workers delineate individual landcover features of interest. Worker mapping skill is frequently assessed, providing estimates of overall map accuracy and a basis for performance-based payments. A trial of DIYlandcover showed that novice workers delineated South African cropland with 91% accuracy, exceeding the accuracy of current generation global landcover products, while capturing important geometric data. A scaling-up assessment suggests the possibility of developing an Africa-wide vector-based dataset of croplands for $2-3 million within 1.2-3.8 years. DIYlandcover can be readily adapted to map other discrete cover types.

Publication Title

Environmental Modelling and Software

Publication Date

6-1-2016

Volume

80

First Page

41

Last Page

53

ISSN

1364-8152

DOI

10.1016/j.envsoft.2016.01.011

Keywords

accuracy assessment, crowd-sourcing, landcover, object extraction, remote sensing, representative sampling

Included in

Geography Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.