"Encoding a categorical independent variable for input to terrset’s mul" by Emily Evenden and Robert Gilmore Pontius
 

Geography

Document Type

Article

Abstract

The profession debates how to encode a categorical variable for input to machine learning algorithms, such as neural networks. A conventional approach is to convert a categorical variable into a collection of binary variables, which causes a burdensome number of correlated variables. TerrSet’s Land Change Modeler proposes encoding a categorical variable onto the continuous closed interval from 0 to 1 based on each category’s Population Evidence Likelihood (PEL) for input to the Multi-Layer Perceptron, which is a type of neural network. We designed examples to test the wisdom of these encodings. The results show that encoding a categorical variable based on each category’s Sample Empirical Probability (SEP) produces results similar to binary encoding and su-perior to PEL encoding. The Multi-Layer Perceptron’s sigmoidal smoothing function can cause PEL encoding to produce nonsensical results, while SEP encoding produces straightforward results. We reveal the encoding methods by illustrating how a dependent variable gains across an independent variable that has four categories. The results show that PEL can differ substantially from SEP in ways that have important implications for practical extrapolations. If users must encode a categorical variable for input to a neural network, then we recommend SEP encoding, because SEP effi-ciently produces outputs that make sense.

Publication Title

ISPRS International Journal of Geo-Information

Publication Date

2021

Volume

10

Issue

10

ISSN

2220-9964

DOI

10.3390/ijgi10100686

Keywords

categorical variable, encoding, land change modeler, multi-layer perceptron, neural network, population evidence likelihood, sample empirical probability, transition potentials

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 1
  • Usage
    • Downloads: 18
    • Abstract Views: 3
  • Captures
    • Readers: 16
  • Social Media
    • Shares, Likes & Comments: 78
see details

Included in

Geography Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.