Geography

Document Type

Article

Abstract

This study assesses the performance of five Machine Learning Algorithms (MLAS) in a chronically modified mixed deciduous forest in Massachusetts (USA) in terms of their ability to detect selective timber logging and to cope with deficient reference datasets. Multitemporal Landsat Enhanced Thematic Mapper-plus (ETM+) imagery is used to assess the performance of three Anificial Neural Networks - Multi-Layer Perceptron, ARTMAP, Self-Organizing Map, and two Classification Tree splitting algorithms: gini and entropy rules, MLA performance evaluations are based on susceptibility to reduced training set size, noise, and variations in the training set, as well as the operability/transparency of the classification process. Classification trees produced the most accurate selective logging maps (gini and entropy rule decision tree mean overall map accuracy = 94 percent and mean per-class kappa of 0.59 and 0.60, respectively). Classification trees are shown to be more robust and accurate when faced with deficient training data, regardless of splitting rule. Of the neural network algorithms, self-organizing maps were least sensitive to the introduction of noise and variations in training data. Given their robust classification capabilities and transparency of the class-selection process, classification trees are preferable algorithms for mapping selective logging and have potential in other forest monitoring applications. © 2008 American Society for Photogrammetry and Remote Sensing.

Publication Title

Photogrammetric Engineering and Remote Sensing

Publication Date

2008

Volume

74

Issue

10

First Page

1201

Last Page

1211

ISSN

0099-1112

DOI

10.14358/PERS.74.10.1201

Keywords

algorithm, artificial neural network, classification, comparative study, deciduous forest, environmental monitoring, Landsat thematic mapper, learning, logging (timber), machinery, mapping method, mixed forest, performance assessment

Included in

Geography Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.