Geography

Document Type

Article

Abstract

Gravitational natural hazards such as snow avalanches, rockfalls, shallow landslides and volcanic activity represent a risk to mountain communities around the world. In particular, where documentary records about these processes are rare, decisions on risk management and land-use planning have to be based on a variety of other sources including vegetation, tree-ring data and natural hazard process models. We used a combination of these methods in order to evaluate dynamics of natural hazards with a focus on snow avalanches at Valle Las Trancas, in the Biobío region in Chile. Along this valley, natural hazards threaten not only the local human population, but also the numerous tourists attracted by outdoor recreational activities. Given the regional scarcity of documentary records, tree-ring methods were applied in order to reconstruct the local history of snow avalanches and debris flow events, which are the most important weather-related processes at respective tracks. A recent version of the model Rapid Mass MovementS (RAMMS), which includes influences of forest structure, was used to calculate different avalanche parameters such as runout distances and maximum pressures, taking into consideration the presence or absence of forest along the tracks as well as different modeled return periods. Our results show that local Nothofagus broadleaf forests contribute to a reduction of avalanche runout distances as well as impact pressure on present infrastructure, thus constituting a valuable ecosystem disaster risk reduction measure that can substitute or complement other traditional measures such as snow sheds.

Publication Title

Natural Hazards and Earth System Sciences

Publication Date

2018

Volume

18

Issue

4

First Page

1173

Last Page

1186

ISSN

1561-8633

DOI

10.5194/nhess-18-1173-2018

Keywords

assessment method, disaster management, documentary source, montane forest, natural hazard, risk assessment, snow avalanche

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.