Geography

Detecting subtle change from dense Landsat time series: Case studies of mountain pine beetle and spruce beetle disturbance

Document Type

Article

Abstract

In contrast to abrupt changes caused by land cover conversion, subtle changes driven by a shift in the condition, structure, or other biological attributes of land often lead to minimal and slower alterations of the terrestrial surface. Accurate mapping and monitoring of subtle change are crucial for an early warning of long-term gradual change that may eventually result in land cover conversion. Freely accessible moderate-resolution datasets such as the Landsat archive have great potential to characterize subtle change by capturing low-magnitude spectral changes in long-term observations. However, past studies have reported limited success in accurately extracting subtle changes from satellite-based time series analysis. In this study, we introduce a supervised framework named ‘PIDS’ to detect subtle forest disturbance from a comprehensive Landsat data archive by leveraging disturbance-based calibration sites. PIDS consists of four components: (1) Parameter optimization; (2) Index selection; (3) Dynamic stratified monitoring; and (4) Spatial consideration. PIDS was applied to map the early stage of bark beetle infestations (i.e., a lower per-pixel fraction of trees cover that show visual signs of infestation), which are a typical example of subtle change in conifer forests. Landsat Analysis Ready Data were used as the time series inputs for mapping mountain pine beetle and spruce beetle disturbance between 2001 and 2019 in Colorado, USA. PIDS-detection map assessment showed that the overall performance of PIDS (namely ‘F1 score’) was 0.86 for mountain pine beetle and 0.73 for spruce beetle, making a substantial improvement (> 0.3) compared to other approaches/products including COntinuous monitoring of Land Disturbance, LandTrendr, and the National Land Cover Database forest disturbance product. A sub-pixel analysis of tree canopy mortality percentage was performed by linking classified high-resolution (0.3- and 1-m) aerial imagery and 30-m PIDS-detection maps. Results show that PIDS typically detects mountain pine beetle infestation when ≥56% of a Landsat pixel is occupied by red-stage canopy mortality (one year after initial infestation), and spruce beetle infestation when ≥55% is occupied by gray-stage mortality (two years after initial infestation). This study addresses an important methodological goal pertinent to the utility of event-based reference samples for detecting subtle forest change, which could be potentially applied to other types of subtle land change.

Publication Title

Remote Sensing of Environment

Publication Date

9-2021

Volume

263

ISSN

0034-4257

DOI

10.1016/j.rse.2021.112560

Keywords

Bark beetle, change detection, early detection, subtle change, time series analysis

Share

COinS