Computer Science

CRACAU: Byzantine Machine Learning Meets Industrial Edge Computing in Industry 5.0

Document Type

Article

Abstract

Industry 5.0 is emerging as a result of the advancement in networking and communication technologies, artificial intelligence, distributed computing, and beyond 5G. Among the important enabling technologies, federated learning, industrial edge computing, and Byzantine-tolerant machine learning (ML) are key accelerators in Industry 5.0. We propose a framework to integrate these key components. Recent works have designed various Byzantine-tolerant ML algorithms for a datacenter or a cluster. However, these algorithms are difficult to be applied to industrial edge computing paradigms. In this article, a novel Byzantine-tolerant federated learning algorithm, CRACAU, is designed for the popular three-level edge computing architecture. In this algorithm, edge devices jointly learn an ML model using the data collected at each device, and their private data are never shared with others. Under standard assumptions, we formally prove that CRACAU converges to the optimal point, i.e., CRACAU finds the optimal parameters of the ML model. We also implement CRACAU in the MXNet framework and evaluate it on the popular benchmark MNIST and CIFAR-10 image classification datasets. Experimental results show that CRACAU achieves satisfying accuracy.

Publication Title

IEEE Transactions on Industrial Informatics

Publication Date

2022

Volume

18

Issue

8

First Page

5435

Last Page

5445

ISSN

1551-3203

DOI

10.1109/TII.2021.3097072

Keywords

artificial intelligence (AI), byzantine fault tolerance, federated learning, industrial edge computing, industry 5.0

APA Citation

Du, A., Shen, Y., Zhang, Q., Tseng, L., & Aloqaily, M. (2021). CRACAU: Byzantine machine learning meets industrial edge computing in industry 5.0. IEEE Transactions on Industrial Informatics, 18(8), 5435-5445.

Share

COinS