Biology

Document Type

Article

Abstract

DNA methylation, the addition of a methyl (CH3) group to a cytosine residue, is an evolutionarily conserved epigenetic mark involved in a number of different biological functions in eukaryotes, including transcriptional regulation, chromatin structural organization, cellular differentiation and development. In the social amoeba Dictyostelium, previous studies have shown the existence of a DNA methyltransferase (DNMA) belonging to the DNMT2 family, but the extent and function of 5-methylcytosine in the genome are unclear. Here, we present the whole genome DNA methylation profile of Dictyostelium discoideum using deep coverage replicate sequencing of bisulfite-converted gDNA extracted from post-starvation cells. We find an overall very low number of sites with any detectable level of DNA methylation, occurring at significant levels in only 303-3432 cytosines out of the ∼7.5 million total cytosines in the genome depending on the replicate. Furthermore, a knockout of the DNMA enzyme leads to no overall decrease in DNA methylation. Of the identified sites, significant methylation is only detected at 11 sites in all four of the methylomes analyzed. Targeted bisulfite PCR sequencing and computational analysis demonstrate that the methylation profile does not change during development and that these 11 cytosines are most likely false positives generated by protection from bisulfite conversion due to their location in hairpin-forming palindromic DNA sequences. Our data therefore provide evidence that there is no significant DNA methylation in Dictyostelium before fruiting body formation and identify a reproducible experimental artifact from bisulfite sequencing. © 2023 The Author(s). Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.

Publication Title

NAR Genomics and BioInformatics

Publication Date

6-1-2023

Volume

5

Issue

2

ISSN

2631-9268

DOI

10.1093/nargab/lqad035

Keywords

DNA methylation, Dictyostelium, Dictyostelium discoideum, genomes, bisulfite sequencing

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

Biology Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.