International Development, Community and Environment (IDCE)

Date of Award


Degree Type

Research Paper

Degree Name

Master of Science in Environmental Science and Policy (ES&P)


International Development, Community and Environment

Chief Instructor

Charles Agosta


Electricity production must shift towards carbon neutral sources such as wind power to mitigate the impacts of climate change. The wind resource in urban environments is challenging to predict but technologies, including computational fluid dynamics software, are making it possible. This software pinpoints suitable placement for wind turbines through models that show wind acceleration patterns over a building. Horizontal axis wind turbines (HAWTs) have dominated the wind industry but vertical axis wind turbines (VAWTs) offer potential to outperform HAWTs in urban environments. VAWTs can handle turbulent and unconventional wind and generate energy at slower speeds, which is beneficial for these areas. A case study at Clark University in Worcester, Massachusetts analyzes the functionality of a HAWT and a VAWT. The machines are compared by their efficiencies due to an imbalance of rated power outputs. The machines’ average maximum power coefficients are similar. However, when the R2 values of the turbine’s power curves are compared the VAWT demonstrates greater capacity to track changes in the wind. This research is the first step in redefining the power systems employed at Clark University and the data will be utilized to find better locations for the wind turbines.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.