Clark University
Clark Digital Commons

Undergraduate Student Academic Festivals ClarkFEST Fall 2022

Oct 1st, 12:00 AM

The Effects of tRNA Methylation on Protein Synthesis in
Dictyostelium discoideum

Chau Minh Duong
Clark University, cduong@clarku.edu

Follow this and additional works at: https://commons.clarku.edu/asdff

(2022). The Effects of tRNA Methylation on Protein Synthesis in Dictyostelium discoideum. Retrieved
from https://commons.clarku.edu/asdff/clarkfestfall2022/Posters/32

This Open Access Event is brought to you for free and open access by the Student Works at Clark Digital
Commons. It has been accepted for inclusion in Undergraduate Student Academic Festivals by an authorized
administrator of Clark Digital Commons. For more information, please contact larobinson@clarku.edu,
cstebbins@clarku.edu.


https://commons.clarku.edu/
https://commons.clarku.edu/asdff
https://commons.clarku.edu/asdff/clarkfestfall2022
https://commons.clarku.edu/asdff?utm_source=commons.clarku.edu%2Fasdff%2Fclarkfestfall2022%2FPosters%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.clarku.edu/asdff/clarkfestfall2022/Posters/32?utm_source=commons.clarku.edu%2Fasdff%2Fclarkfestfall2022%2FPosters%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:larobinson@clarku.edu,%20cstebbins@clarku.edu
mailto:larobinson@clarku.edu,%20cstebbins@clarku.edu

Epitranscriptomics describes RNA modifications leading to changes in gene expression. This 1s a
potential research avenue in studying therapeutic targets for cancer. In this research project, we focus
on studying how methylating transfer RNA (tRNA - which delivers amino acids during translation)
will affect protein synthesis.

¢ Dnmt2/Trdmtl (tRNA aspartic acid methyltransferase) in humans and DnmA in Dictyostelium
discoideum (D.discoideum) are highly conserved, homologous enzymes that perform tRNA
methylation (1,2). Structural analysis of human Dnmt2 reveals a binding site for SAM- a cofactor
in the methyltransferase reaction.

* DnmA mutant cells (DnmA KO) showed abnormal cell morphologies: multiple sori, larger cell
size, multiple centrosomes (3). Gene ontology revealed that this enzyme 1s also linked with other
components regulating various cellular processes.

*¢ Codon usage bias 1s the preference among synonymous codons in protein synthesis. This 1s a
highly conserved phenomenon across eukaryotes. Codon usage bias can also affect gene
expression by controlling translation efficiency.
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Figure 3: a) 3D Structure of human Dnmt2- (generated using MOE Program 2020, PDB-ID:1G55); b) Reaction
mechanism of methylation of cytosine by Dnmt2 with SAM cofactor (generated with ChemDraw Program)
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** Does tRNA methylation by DnmA affect protein synthesis? If so, what are
the molecular targets?

** What is the relationship between DnmA tRNA methylation activity and
codon usage bias?
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Figure 4: Gene ontology predictions of potential interactors of dnmA and their associated molecular functions.
Data were obtained from STRING Database ver. 11.5

1. Generate 3 vector DNA constructs, each with a stretch of 8 glycine repeats of one of the 3
glycine codons (GGT, GGC, GGA)

% D-TOPO Reaction: Insert 8 glycine repeats of GGT/GGC/GGA codons into pENTR™/ D-
TOPO vector
¢ LR Reaction: Insert D-TOPO vector contained glycine repeats into destination vectors to fuse

the repeat with a Green Fluorescence Protein (GFP) tag or a Red Fluorescence Protein
(mRFP) tag

2. Confirm the vector cloning by restriction digest, PCR, and Sanger gene sequencing

¢ Restriction digest with a single-cutter enzyme: EcoRV or Apal.

¢ PCR with M13 primer and the insert primer to amplify the inserted sequence. The expected
band on gel electrophoresis 1s 156bp.

¢ Positive clones expressing the inserted band will be confirmed with gene sequencing.
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Protein Expression & Molecular Target Identification

1. Express DNA constructs in wild-type (AX4 Wild-type (AX4)
strain) and DnmA-KO D.discoideum cell GFP  mRFP
lines. Normal protein synthesis of the
constructs will express GFP/mRFP. Cells
will be observed under fluorescence
microscopy and measured for fluorescence
intensity using FACS (Fluorescence-
activated cell sorting flow cytometry).
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2. Using R programming to screen for glycine-
rich protein targets from D.discoideum (GGC)s
coding sequence database. If the effects of -

tRNA methylation are confirmed, we will

investigate the potential molecular targets, Figure 6: Predictions of protein expression in wild-type
including glycine-rich proteins. (AX4) and DnmA KO D.discoideum cells (Image was

created using Biorender.com)

Order Number of 10xG stretch Sequence/Gene ID
561 1 DDB0307627|DDB_G0277479
646 1 DDB0214814|DDB_G0281545
1348 1 DDB0349171|DDB_G0288827
1627 1 DDB0220438|DDB_G0271870
2078 1 DDB0215358|DDB_G0277845
2344 1 DDB0238210|DDB_G0287951
2493 1 DDB0233625|DDB_G0284725
2534 1 DDB0305479|DDB_G0285487
2806 1 DDB0347280|DDB_G0294004
2873 1 DDB0233920|DDB_G0279657

Figure 7: Example of 10/34 results of glycine-rich proteins containing a stretch of 10X glycine obtained
with R. The search includes a number order for the sequence, number of 10xG stretch and the sequence/gene
ID.

¢ Successfully generated the designed DNA reporter constructs, each with 8 repeats of

GGT/GGC/GGA and a fluorescent tag (Figure 9,10,11).

¢ The PCR results alone could not distinguish the orientation of the insert (Figure 8). The
constructs were confirmed with Sanger sequencing.

¢ The first transfection showed no fluorescent signal in both the control and DnmA - KO cells.
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Figure 9: Gene sequencing chromatogram for GGT-repeat DNA fused with GFP tag.
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Figure 10: Gene sequencing chromatogram for GGC-repeat DNA fused with GFP tag.
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Figure 11: Gene sequencing chromatogram for GGA-repeat DNA fused with GFP tag.
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s Optimize the transfection protocols.

» Observe the transfected cells with fluorescence microscopy and confirm the GFP expression
with Western Blotting.

¢ Track the morphological and phenotypical differences (size, shape, growth rate) between AX4

and DnmA-KO cells.
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L)

¢ Assess the potential protein targets based on their genetic conservation and gene ontology .
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