
Clark University Clark University 

Clark Digital Commons Clark Digital Commons 

Academic Spree Day and Fall Fest Academic Spree Day 2020 

May 17th, 12:00 AM - 11:00 PM 

Voronoi Decomposition of Aperiodic Sets Closed Under Fixed-Voronoi Decomposition of Aperiodic Sets Closed Under Fixed-

Parameter Extrapolation Parameter Extrapolation 

Ngu Dang 
Clark University, nadang@clarku.edu 

Follow this and additional works at: https://commons.clarku.edu/asdff 

Dang, Ngu, "Voronoi Decomposition of Aperiodic Sets Closed Under Fixed-Parameter Extrapolation" 
(2020). Academic Spree Day and Fall Fest. 3. 
https://commons.clarku.edu/asdff/ASD2020/Posters/3 

This Open Access Event is brought to you for free and open access by the Conference Proceedings at Clark Digital 
Commons. It has been accepted for inclusion in Academic Spree Day and Fall Fest by an authorized administrator 
of Clark Digital Commons. For more information, please contact mkrikonis@clarku.edu, jodolan@clarku.edu, 
dlutz@clarku.edu. 

https://commons.clarku.edu/
https://commons.clarku.edu/asdff
https://commons.clarku.edu/asdff/ASD2020
https://commons.clarku.edu/asdff?utm_source=commons.clarku.edu%2Fasdff%2FASD2020%2FPosters%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.clarku.edu/asdff/ASD2020/Posters/3?utm_source=commons.clarku.edu%2Fasdff%2FASD2020%2FPosters%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mkrikonis@clarku.edu,%20jodolan@clarku.edu,%20dlutz@clarku.edu
mailto:mkrikonis@clarku.edu,%20jodolan@clarku.edu,%20dlutz@clarku.edu


Voronoi Decomposition of Aperiodic Sets Closed Under Fixed-Parameter Extrapolation
Nathan Dang 20’ – Sponsor: Prof. Frederic Green 

Department of Computer Science & Mathematics, Clark University, Worcester, MA 01610

ABSTRACT

FIXED-PARAMETER EXTRAPOLATION

This work explores one facet of an ongoing investigation of the geometric and

algebraic properties of a family of discrete sets of points in Euclidean space generated

by a simple binary operation: pairwise affine combination by a fixed parameter,

which is called fixed-parameter extrapolation. These sets display aperiodic order and

share properties with so-called “quasicrystals” or “quasilattices.” Such sets display

some ordered crystal-like properties but are “aperiodic” in the sense that they have

no translational symmetry. There are many ways of constructing aperiodic sets and

among the most notable of these is via aperiodic tiling of the plane. However, nothing

has yet been done to understand how these discrete aperiodic sets correspond to

aperiodic tiling. The purpose of the present research is to make the first exploratory,

computational steps in this direction.

Definition 1: Fix a number λ ∈ ℂ. For any a, b ∈ ℂ, define a⋆λb := (1 – λ)a + λb. Then for
any set S ⊆ ℂ

1. we say that S is λ-convex iff for every a, b ∈ S, the point a⋆λb is in S, and
2. we say that S is λ-convex closed (or λ-clonvex for short) iff S is λ-convex

and (topologically) closed.
where we refer to the operation ⋆λ as fixed-parameter extrapolation [1].

Definition 2: We define the λ-clonvex closure of S, denoted Rλ(S), to be the ⊆-
minimum λ-clonvex superset of S. We let Rλ be shorthand for Rλ{0, 1}, the λ-clonvex
closure of {0, 1} [1].

Proposition: If 2 < λ < 3 and λ ≠ 1 + φ, then Rλ is convex, where φ =
1+ 5

2
is the golden

ratio [1].

VORONOI DECOMPOSITION & FORTUNE’S ALGORITHM
Given a set P := {p1, ..., pn} of sites, a Voronoi decomposition is a subdivision of the
space into n cells, one for each site in P, with the property that a point q lies in the
cell corresponding to a site pi iff d(pi, q) < d(pj, q) for i distinct from j.

CONCLUSION
The purpose of the present research is to make the first exploratory, computational
steps in understanding how discrete λ-closed sets correspond to aperiodic tiling.
From the Voronoi decomposition of these sets, we want to compute a finite set of
tiles that correspond to the Voronoi cells of the decomposition. The primary
challenge is then modifying Fortune’s algorithm to identify the distinct Voronoi
cells that arise, and thereby obtain at least a lower bound on the number of tiles
necessary. Ultimately, it is our hope that these computational experiments will
deepen our understanding of the relationship between fixed-parameter
extrapolation and aperiodic tiles.

RELATION WITH QUASICRYSTALS
When λ = 1 + φ ≈ 2.618, Rλ is not convex, but discrete and aperiodic.

In particular, except for 0 and 1, any two adjacent points of R1+φ differ either by φ or
by (1 + φ) [1].

The figure illustrates the fact that R1+φ contains no infinite arithmetic progressions
and has no translational symmetry. Thus, R1+φ is a one-dimensional quasiperiodic
crystal (quasicrystal).

R1+φ is a typical example of an aperiodic model set obtained by a cut-and-project
scheme, an example of which is given in Figure 1.

Figure 2: the orthogonal projection of a subset of the lattice points (Figure 1) on the
one-dimensional space.

Figure 3: the construction of Rλ given a pentagon (n = 5) as the base, where λ = 1 + φ

Quasicrystals are related to aperiodic tiling of the plane and Rλ is a subset of cut-and-
project set, by the theorem above, where λ is a sPV. To further explore how Rλ relate
to inflation tiling, we compute the Voronoi decomposition of the calculated set and
our key tool is Fortune’s Algorithm.

Figure 4: an example of the Voronoi composition of a given set of sites.

Figure 5: illustration of Fortune’s Algorithm. Site event (top) and Circle event (bottom)

Figure 6: (top) Rλ given a pentagon (n = 5) as the base, where λ = 1 + φ and its Voronoi diagram
(bottom) Rλ given a heptagon (n = 7) as the base, where λ = 5.04892 and its Voronoi diagram

RELATION WITH INFLATION TILING 
Definition 3: A strong PV number (sPV) is an algebraic integer α whose Galois

conjugates (other than α and α*) are all in the unit interval [0, 1].

Theorem: if λ is a sPV, then Rλ is discrete.

Given an n-sided polygon where n > 3 and odd. The λ-convex closure of the polygon is
sometimes discrete (e.g., when n = 5, 7, 9, 13).

Fortune's algorithm is a sweep line algorithm for generating a Voronoi diagram
from a set of points in a plane using O(n log n) time and O(n) space. There are two
types of event that occur, the site event, and the circle event. The site event happens
when the sweep line (i.e. a horizontal line that moves from top to bottom) reaches a
site, a new parabola will be added to the so-called beach line made of arcs of
parabolas. The circle event happens when an arc disappears, that is, two neighbor
arcs "squeeze" it and a new edge between neighbors is traced out [2].

[1] S. Fenner, F. Green, and S. Homer. Fixed-parameter extrapolation and aperiodic order, 2018.arXiv:1212.2889, version 4, October

2018.

Figure 1: The points (b, a) ∈ ℤ x ℤ such that a + bφ ∈ R1+φ are shown. They are all the
lattice points lying in the closed strip bounded by the lines y = x/φ and y = x/φ + 1.
Except for 0 and 1 (green), distance between neighboring points in R1+φ is either φ

(red) or 1 + φ (blue)

[2] S. Fortune. A sweepline algorithm for voronoi diargams. Algorithmica, 2:153-174, 1987.
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