Clark University
Clark Digital Commons

Academic Spree Day and Fall Fest Academic Spree Day 2020

May 17th, 12:00 AM - 11:00 PM

Lobster Programming Language

Skyler Brivic
Clark University, SkBrivic@clarku.edu

Follow this and additional works at: https://commons.clarku.edu/asdff

Brivic, Skyler, "Lobster Programming Language" (2020). Academic Spree Day and Fall Fest. 5.
https://commons.clarku.edu/asdff/ASD2020/Posters/5

This Open Access Event is brought to you for free and open access by the Conference Proceedings at Clark Digital
Commons. It has been accepted for inclusion in Academic Spree Day and Fall Fest by an authorized administrator
of Clark Digital Commons. For more information, please contact mkrikonis@clarku.edu, jodolan@clarku.edu,
dlutz@clarku.edu.

https://commons.clarku.edu/
https://commons.clarku.edu/asdff
https://commons.clarku.edu/asdff/ASD2020
https://commons.clarku.edu/asdff?utm_source=commons.clarku.edu%2Fasdff%2FASD2020%2FPosters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.clarku.edu/asdff/ASD2020/Posters/5?utm_source=commons.clarku.edu%2Fasdff%2FASD2020%2FPosters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mkrikonis@clarku.edu,%20jodolan@clarku.edu,%20dlutz@clarku.edu
mailto:mkrikonis@clarku.edu,%20jodolan@clarku.edu,%20dlutz@clarku.edu

Skyler Brivic ‘20 — (Sponsor: Professor Frederic Green)

Main Purpose:

Most programming languages treat computers as single processor
entities, even though the vast majority of computers produced today
have 2 or more processors. Imagine driving a car that used only half
its engine! Such is the fate of most programming languages... But
what if a language could be designed with multi-threading as a core
component of its design? That is where the new programming
language that I've developed comes into play: Lobster. As the name
suggests, this language is intended to be resilient, hard to crack,
and to be able to last for a long time!

Language Structure:

Lobster code is syntactically very similar to Java or C++. In order to
create a running program, the code typed in by a user must first be
compiled into a special bytecode, which can then be run on the
Lobster Virtual Machine (the language is an interpreted
programming language).

First, a preprocessor reads through the code written by the user,
and combines files with include statements appropriately. Then, a
parser uses a lexical analyzer to extract tokens from the file and
build complete parse trees and symbol tables for the program. The
parse tree and symbol table are then fed as input into the code
generator, which outputs a bytecode representation of this code that
can be interpreted by the Lobster Virtual Machine

Each instruction in Lobster is represented as a 15-byte sequence,
where the first byte contains the Opcode that specifies what type of
instruction it is. If the instruction takes up less than 15 bytes, then
the remainder of the 15 bytes is padded with Os.

Built-in Types:

In Lobster, there are 3 built-in classes: Arrays, Lists and Queues.
Each structure makes use of locks to ensure that multiple threads
can access an object of the built-in class without causing any data
races. Queues use a version of the Michael and Scott Queue, which
allows for simultaneous insertion and deletion into a queue without
causing data races by initializing the queue with an empty dummy
node and using 2 locks to control the head and tail ends of the
queue. Both Arrays and Lists use one big lock which is acquired on
entry to each built-in function and released at the end of each built-
in function.

Lobster Programming Language

0.008

Comparison of Standard C++ Sort and Lobster Sort
0007
0006

0.005
0.004 2
0.003 b t
0.002 d |
0.001
0 i
1 2 3 4 5 6 7 8 9 10

Trial Number
Fig 1: Results of sorting a randomized array of 100,000 integers using
the C++ standard sort and using my Lobster Sort. Note that each trial
consists of sorting 1,000 arrays, with the average time per sort recorded
as the result for each trial.

Seconds

mLobster Sort m Standard C++ Sort

Lobster Sort

In Lobster arrays, there is a built-in sort function | have written, which |
have named Lobster Sort. This sort is a variant of mergesort/timsort which
proceeds as follows: create a second thread, and then call the sort helper
method on each half of the array. In the sort helper method, if the size of
the subarray that is about to be sorted is less than 60, then insertion sort is
performed on the array. Otherwise, the sort helper method is recursively
called again on the first and second halves of the array. Once each half is
sorted, the merge algorithm used by merge sort is used to combine each
half into a fully sorted array. Once both threads finish, the merge algorithm
is used on the two halves of the array to produce one final, fully sorted
array. This sorting algorithm is stable, has a space complexity of O(N), and
has a time complexity of O(N * LogN).

As can be seen from the results of the tests displayed in fig. 1, Lobster Sort
was able to sort an array of 100,000 random integers at an average time
which was approximately 20 % shorter than the average time it took the
C++ standard sort to sort an array of 100,000 random integers. Through
the power of multi-threading, massive time-saves are possible!

UNIVERSITY

Future Development

One feature which I am planning to add to Lobster is pipeline structures. In
a pipeline, several functions will work simultaneously in separate threads,
with the input of one function being sent to a queue which acts as input to
the next function in the pipeline. A function in the pipeline will dequeue an
entry from its input queue, process the value, and then jump back to the
beginning of the function when it's done to wait for more input. When a
function in the pipeline pushes a TERMINATE signal onto an input queue,
the thread containing the function will end, and any function in the pipeline
which dequeues the TERMINATE symbol will push a TERMINATE symbol
onto the next input queue, and will finish execution as well. This structure
has the potential to save a lot of time in cases where many
computationally intensive calculations need to be done in parallel, where
the input of one calculation is only needed at a small number of points in
later calculations in the list.

I would also like to include an Event-Dispatch structure, in which one
central thread would continually push arguments onto the input queues for
many other functions, and all of those functions would execute in parallel
in separate threads until the central thread sends out a TERMINATE signal
to each thread.

void sort()

if(size == 0)
return;

if(size < SINGLE_THREAD_LIMIT)

writeLock->lock();
LobsterSort(, size - 1);
writeLock->unlock();
return;

writeLock->lock();
std::thread otherThread(&UserArray::LobsterSort, this,

. size /7 2);
LobsterSort(size/” +
otherThread. join();
merge(o, size / 7, size - 1);
writeLock->unlock();

return;

. size = 1);

Fig 2: The sort code for built-in arrays in Lobster. If the array is smaller than

300 elements, then a single-thread merge sort is done . Otherwise, two threads
sort each half of the array simultaneously, and merge their subarrays into a final
sorted array when finished. It is this sorting algorithm which | have named
Lobster Sort.

	Lobster Programming Language
	

	Lobster Programming Language

