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E N V I R O N M E N T A L  S T U D I E S

Natural climate solutions for the United States
Joseph E. Fargione1*, Steven Bassett2, Timothy Boucher3, Scott D. Bridgham4, Richard T. Conant5, 
Susan C. Cook-Patton3,6, Peter W. Ellis3, Alessandra Falcucci7, James W. Fourqurean8, 
Trisha Gopalakrishna3, Huan Gu9, Benjamin Henderson10, Matthew D. Hurteau11,  
Kevin D. Kroeger12, Timm Kroeger3, Tyler J. Lark13, Sara M. Leavitt3, Guy Lomax14,  
Robert I. McDonald3, J. Patrick Megonigal6, Daniela A. Miteva15, Curtis J. Richardson16, 
Jonathan Sanderman17, David Shoch18, Seth A. Spawn13, Joseph W. Veldman19,  
Christopher A. Williams9, Peter B. Woodbury20, Chris Zganjar3, Marci Baranski21, Patricia Elias3, 
Richard A. Houghton17, Emily Landis3, Emily McGlynn22, William H. Schlesinger23,  
Juha V. Siikamaki24, Ariana E. Sutton-Grier25,26, Bronson W. Griscom3

Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose poten-
tial in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)—21 
conservation, restoration, and improved land management interventions on natural and agricultural lands—to 
increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential 
of 1.2 (0.9 to 1.6) Pg CO2e year−1, the equivalent of 21% of current net annual emissions of the United States. At 
current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year−1 could be achieved. NCS would also pro-
vide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.

INTRODUCTION
Limiting global warming below the 2°C threshold set by the Paris 
Climate Agreement is contingent upon both reducing emissions and 
removing greenhouse gases (GHGs) from the atmosphere (1, 2). 
Natural climate solutions (NCS), a portfolio of discrete land steward-
ship options (3), are the most mature approaches available for car-
bon conservation and uptake compared to nascent carbon capture 
technologies (4) and could complement increases in zero-carbon 
energy production and energy efficiency to achieve needed climate 
change mitigation. Within the United States, the maximum and 
economically viable mitigation potentials from NCS are unclear.

Here, we quantify the maximum potential for NCS in the United 
States and the portion of this maximum that could be achieved at 

several price points. We consider 21 distinct NCS to provide a con-
sistent and comprehensive exploration of the mitigation potential 
of conservation, restoration, and improved management in forests, 
grasslands, agricultural lands, and wetlands (Fig. 1), carefully defined 
to avoid double counting (details in the Supplementary Materials). 
We estimate the potential for NCS in the year 2025, which is the 
target year for the United States’ Nationally Determined Contribution 
(NDC) under the Paris Agreement to reduce GHG emissions by 26 
to 28% from 2005 levels. Our work refines a coarser-resolution 
global analysis (3) and updates and expands the range of options 
considered in previous analyses for the United States (5–8).

For each NCS opportunity (Fig. 1 and the Supplementary Materials), 
we estimate the maximum mitigation potential of GHGs measured 
in CO2 equivalents (CO2e), given the below constraints. We then 
estimate the reductions obtainable for less than USD 10, 50, and 100 
per Mg CO2e. Current carbon markets pay around USD 10 (9). The 
social cost of carbon in 2025 is approximately USD 50, using a 3% 
discount rate (10). However, a price of at least USD 100 is thought 
to be needed to keep the 100-year average temperature from warm-
ing more than 2.5°C (11), and an even higher price may be needed 
to meet the Paris Agreement <2°C target. Many NCS also generate 
co-benefits, which, even without a price on carbon, provide incen-
tives to invest in NCS implementation. We identified co-benefits 
generated by each NCS in four categories of ecosystem services: air, 
biodiversity, water, and soil (Fig. 1 and table S2).

To avoid conflicts with other important societal goals for land use, 
we constrain our maximum estimate to be compatible with human 
needs for food and fiber (Supplementary Materials). Within these 
constraints, 5.1 Mha of cropland can be restored to grasslands, for-
ests, and wetlands, equal to the area that has left the Conservation 
Reserve Program (CRP) since 2007 (8) and less than half the land 
currently dedicated to corn ethanol. We also estimate that 1.3 Mha 
of pasture could be reforested without affecting livestock produc-
tion, assuming recent improvements in efficiency continue (see the 
Supplementary Materials). We assume that timber production can 
temporarily decrease by 10%, which maintains timber production 

1The Nature Conservancy, Minneapolis, MN 55415, USA. 2The Nature Conservancy, 
Santa Fe, NM 87501, USA. 3The Nature Conservancy, Arlington, VA 22203, USA. 4In-
stitute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA. 
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Florida International University, North Miami, FL 33181, USA. 9Graduate School of 
Geography, Clark University, Worcester, MA 01610, USA. 10Trade and Agriculture 
Directorate, Organization for Economic Cooperation and Development, Paris 75016, 
France. 11Department of Biology, University of New Mexico, Albuquerque, NM 87131, 
USA. 12Woods Hole Coastal and Marine Science Center, United States Geological 
Survey, Woods Hole, MA 02543, USA. 13Center for Sustainability and the Global En-
vironment, University of Wisconsin-Madison, Madison, WI 53726, USA. 14The Nature 
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ment, Texas A&M University, College Station, TX 77843, USA. 20College of Agricul-
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levels within the historic range of variation and enables managed 
forests and plantations to transition to longer harvest rotations (see 
the Supplementary Materials). We assume that extensive natural 
forests on private lands can all undergo harvest extension, with 
the temporary loss of timber supply replaced by reforestation and 
thinning for fire risk reduction (12) or with thinning or select har-
vest practices that still provide timber but maintain carbon levels 
(Supplementary Materials) (13, 14). We further constrain our analy-
sis to avoid impacts on biodiversity. This biodiversity constraint pre-
cludes both the conversion of natural habitat to energy crops and 
the afforestation of native grasslands.

RESULTS
We find a maximum additional NCS mitigation potential of 1.2 Pg 
CO2e year−1 [95% confidence interval (CI), 0.9 to 1.6 Pg CO2e year−1] 
in the year 2025 (Fig. 1 and table S1). This is 21% of the 5794.5 Tg 
CO2e of net emissions in 2016 (15). The majority (63%) of this po-
tential comes from increased carbon sequestration in plant bio-
mass, with 29% coming from increased carbon sequestration in soil 
and 7% coming from avoided emissions of CH4 and N2O. At the 
USD 10, 50, and 100 price points, 25, 76, and 91%, respectively, of 

the maximum mitigation would be achieved. This means that 1.1 Pg 
CO2e year−1 are available at USD 100 per Mg CO2e, which equals 
the emission reductions needed to meet the U.S. NDC under the 
Paris Agreement (see the Supplementary Materials). If NCS were 
pursued in combination with additional mitigation in the energy 
sector, then it would therefore enable the United States to exceed its 
current NDC ambition. This is important because, globally, current 
NDCs (7 to 9 Pg CO2e year−1) would need to be dramatically in-
creased (by an additional 10 to 16 Pg CO2e year−1) to limit warming 
below 2°C (16).

This estimate of maximum NCS potential is similar to or higher 
than several previous syntheses of mitigation opportunities in the 
land sector. For example, the United States Mid-Century Strategy 
for Deep Decarbonization estimated a potential land sink of 912 Tg 
CO2e year−1, 30% lower than our estimate (5). While other efforts 
have focused on the forest sector (7) or the agricultural sector (6), 
this analysis presents a comprehensive and up-to-date synthesis of 
NCS opportunities in the United States. For example, this analysis 
considers potential additional mitigation from tidal wetlands and 
seagrass (“blue carbon”), which has been comprehensively analyzed 
for its current status in the United States (17), but not its potential 
for additional mitigation.

Fig. 1. Climate mitigation potential of 21 NCS in the United States. Black lines indicate the 95% CI or reported range (see table S1). Ecosystem service benefits linked 
with each NCS are indicated by colored bars for air (filtration), biodiversity (habitat protection or restoration), soil (enrichment), and water (filtration and flood control). 
See the Supplementary Materials for detailed findings and sources.
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Reforestation has the single largest maximum mitigation poten-
tial (307 Tg CO2e year−1). The majority of this potential occurs in 
the northeast (35%) and south central (31%) areas of the United States 
(fig. S1). This mitigation potential increases to 381 Tg CO2e year−1 
if all pastures in historically forested areas are reforested. Previous 
estimates of reforestation potential range widely from 208 to 1290 
Tg CO2e year−1 (7). Higher estimates than ours can be obtained by 
reforesting or afforesting areas that we excluded (e.g., productive 
crop and pasture lands and natural grasslands) and/or by using rates 
of carbon sequestration from plantation systems rather than from 
natural regenerating forests [e.g., (7)].

Natural forest management of privately held forests has the sec-
ond largest maximum mitigation potential (267 Tg CO2e year−1). 
This maximum mitigation is achieved by extending harvest cycles. 
Mitigation can also be achieved through forest management prac-
tices such as reduced impact logging and improved silvicultural prac-
tices that release suppressed forest growth (18–20), although often 
at lower sequestration rates than extending harvest cycles. These 
management practices can be implemented at low or no net cost 
(21, 22) and do not require a change in business-as-usual (BAU) 
land use or ownership rights.

Another promising opportunity associated with forests is fire 
management (18 Tg CO2e year−1; fig. S6). Fire management entails 
restoring frequent, low-intensity, understory fires in fire-prone forest 
ecosystems to reduce the potential for high-severity wildfires (23). 
The primary carbon benefit from fire management is avoiding de-
creased net ecosystem production from tree-killing wildfire. In the 
absence of improved fire management, climate change is expected 
to continue to increase the frequency of high-severity fires and com-
promise the ability of forests to regenerate following these fires (24). 
The high uncertainty associated with the climate mitigation bene-
fits of fire management would be reduced by additional research to 
quantify the carbon storage benefits of prescribed fire across a di-
versity of forest types, including the length of time that prescribed 
fire reduces the risk of subsequent high-severity fires.

Avoided conversion protects carbon stored in extant forests and 
grasslands from ongoing losses. More than two-thirds of the avoided 
forest conversion potential (38 Tg CO2e year−1) occurs in the Southern 
and Pacific Northwest regions (table S14 and fig. S9). Many of the 
most intensive areas of rapid forest conversion were located near 
urban zones, with additional hot spots in recent agricultural expan-
sion zones (such as California’s Central Valley) and semi-arid re-
gions of the West. Avoided conversion of grassland to cropland 
prevents emissions from soils and root biomass (107 Tg CO2e year−1; 
fig. S12). The emissions from grassland conversion exceed the emis-
sions from forest conversion because both the rate of conversion 
and the per hectare emissions are higher (table S1). Cropland ex-
pansion is a major cause of conversion that affects grasslands much 
more than forests (25). The higher rate of emissions occurs because 
the conversion of grasslands to croplands results in a 28% loss of 
soil carbon from the top meter of soil (26). This generates 125 Mg 
CO2e ha−1 in emissions, comprising 81% of the emissions from grass-
land conversion (see the Supplementary Materials). Because research 
shows conflicting conclusions regarding the impact of forest con-
version in the United States on soil carbon, we do not include the 
soil carbon pool in our estimate of emissions from forest conversion 
(see the Supplementary Materials).

Carbon sequestration opportunities in croplands include the use of 
cover crops and improved cropland nutrient management. Cover 

crops, grown when fields are normally bare, provide additional car-
bon inputs to soils. Growing cover crops on the 88 Mha of the five 
primary crops in United States not already using cover crops presents 
a substantial opportunity for mitigation (103 Tg CO2e year−1). Cover 
crops are increasingly used by U.S. farmers to improve soil health, 
yields, and yield consistency (27). Improved management of nitro-
gen fertilizers reduces N2O emissions and avoids fossil fuel emis-
sions associated with fertilizer production (52 Tg CO2e year−1). 
Fertilizer rates can be reduced while maintaining yields by using 
precision agriculture to apply only the amount required in each part 
of the field and by splitting fertilizer applications to match the timing 
and supply of fertilizer with crop demand (see the Supplementary 
Materials). Emissions can also be reduced by switching from anhy-
drous fertilizer to urea, which has lower N2O emission (6).

The agronomic practices of biochar incorporation (95 Tg CO2e 
year−1) and alley cropping (planting widely spaced trees interspersed 
with a row crop; 82 Tg CO2e year−1) also have high maximum poten-
tial. However, current adoption is negligible due to a variety of cul-
tural, technological, and cost barriers that would need to be overcome 
if these practices were to achieve their mitigation potential (28, 29).

Tidal wetland restoration is the largest wetland NCS (12 Tg CO2e 
year−1). Roughly 27% of U.S. salt marshes are disconnected from the 
ocean and subject to freshwater inundation. This results in a large 
increase in CH4 emissions from these “freshened” salt marshes. Re-
connecting salt marshes with the ocean, such as via culverts under 
roads or other barriers, can avoid these CH4 emissions (30).

The 10 opportunities described above account for 90% (1082 Tg 
CO2e year−1) of the maximum NCS mitigation potential across all 
21 opportunities. An additional 11 opportunities, which sum to 122 
Tg CO2e year−1, account for just 10% of the maximum potential. 
However, these NCS may offer optimal ecological and economic 
opportunities at local scales (Fig. 1 and Supplementary Materials). 
For example, peatland restoration offers a high per hectare mitiga-
tion benefit, especially in regions of the United States with warm 
temperate climates (8.2 Mg CO2e ha−1 year−1).

Lower-cost opportunities represent particularly promising areas 
for increased near-term investment. We identified 299 Tg CO2e year−1 
of NCS opportunities that could be realized for USD 10 Mg CO2e−1 
or less (table S1), a price that is in line with many current carbon 
markets (9). The two largest lower-cost opportunities are improved 
management practices: cover crops (100 Tg CO2e year−1) and im-
proved natural forest management (64 Tg CO2e year−1). Both of 
these practices, along with planting windbreaks (5 Tg CO2e year−1) 
and legumes in pastures (3 Tg CO2e year−1), have the potential to 
increase yields (21, 22, 27) and therefore to generate additional rev-
enue for landowners. Improved manure management can also provide 
low-cost mitigation (12 Tg CO2e year−1) (8). In addition, lower- cost 
NCS include increased efficiencies (cropland nutrient management, 
28 Tg CO2e year−1; grazing optimization, 6 Tg CO2e year−1) and 
avoided conversion (avoided forest conversion, 37 Tg CO2e year−1; 
avoided grassland conversion, 24 Tg CO2e year−1).

By itself, the marginal abatement cost gives an incomplete pic-
ture of the potential for implementation of NCS, in part because NCS 
provide a variety of co-benefits (Fig. 1 and table S2). The values of 
these co-benefits are not captured in our marginal abatement costs 
yet may drive NCS implementation. For example, investments in fire 
management are needed to avoid impacts on air quality and drink-
ing water provision; urban forestry provides human health, aesthetic, 
and direct temperature reduction benefits; nutrient management is 
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needed to improve water quality and avoid toxic algal blooms (table S2). 
Further, NCS can help provide resilience to climate change impacts 
on nature and people. For example, building soil carbon increases 
the resilience of cropland (31); protecting coastal wetlands can pro-
vide coastal defense against storms (32); and fire management can 
help avoid damaging wildfires (23).

We have restricted our analysis to those opportunities where the 
literature conclusively demonstrates the potential for mitigation. 
This suggests that new research may reveal additional opportunities 
for NCS, which would increase the potential identified here. At the 
same time, substantial uncertainties exist in some NCS opportuni-
ties (Fig. 1 and table S1), highlighting the need for implementation 
to be coupled with monitoring and assessment of NCS.

DISCUSSION
The United States is the largest cumulative emitter of carbon dioxide 
from fossil fuels (33). Despite the immense size of U.S. GHG emissions 
from fossil fuel use, we find that NCS have the potential to generate 
mitigation equivalent to 21% of net annual emissions. This reveals 
the important contribution to climate mitigation that the land sec-
tor can make, even in developed countries such as the United States.

Globally, current NCS efforts receive only 0.8% of public and 
private climate financing (34), despite offering roughly 37% of po-
tential mitigation needed through 2030 (3). One concern that may 
have limited the adoption of NCS to date includes competition with 
other land uses such as food and bioenergy production. A growing 
body of literature suggests that future global food demand can be 
met via investments in yield increases, closing yield gaps, diet shifts, 
aquaculture, and biofuel policy, without the need to further expand 
cropland into natural areas (35, 36). In the United States, marginal 
cropland, much of which is unprofitable (37), could be restored to 
grassland or forests with net societal benefits (38). Similarly, NCS 
may compete with bioenergy production. However, this conflict can 
be reduced or avoided depending on the form of bioenergy produc-
tion or NCS. Some forms of biomass production, such as residues 
and wastes, or high-yielding methods, such as algae, do not require 
productive land (39). Our grassland restoration pathway could pro-
duce a limited amount of additional biomass while maintaining carbon 
sequestration in soils if low-productivity croplands are converted to 
perennial energy grasses (40). Further, NCS based on improved 
management of existing land uses do not create land use conflict and 
can even increase productivity within that land use (e.g., fire manage-
ment or cover crops). However, aggressive expansion of dedicated 
bioenergy crops, given the large land requirement of both first- and 
second-generation bioenergy crops (41), would be likely to reduce the 
mitigation potential available through NCS, notably via reforesta-
tion, avoided grassland conversion, and natural forest management.

A second concern is that ecosystems have a limited ability to store 
additional carbon. For each pathway, we quantified the duration of 
time for which mitigation is expected to occur at the rates we esti-
mate, before saturation effects decrease this rate (table S1). We note 
that carbon can continue to accumulate in forests for hundreds 
of years and in soils for centuries or millennia (table S1 and the 
Supplementary Materials). Further, four of our NCS opportunities 
(cropland nutrient management, tidal wetland restoration, manure 
management, and improved rice management) are based on avoided 
emissions of CH4 and N2O, which are benefits that do not saturate. 
The mitigation potential of avoided conversion of habitat is limited 

by the total carbon contained in the habitat. Our analysis assumes 
that rates of conversion persist at current levels in a BAU scenario, 
which would represent a continuing source of emissions for at least 
67 years for each habitat considered here before reaching “saturation” 
when the total area has been lost. However, the long-term benefit of 
avoided conversion depends on assumed future BAU conversion rates.

The permanence of the ~2270 Pg C currently stored globally in 
biomass (42) and soils to 1 m (26) is a significant concern, because 
unmitigated climate change is likely to cause feedbacks that may 
increase disturbances such as fire or pest outbreaks (43) or limit net 
ecosystem productivity or forest regeneration (24). While NCS would 
marginally increase this large carbon pool, putting some additional 
carbon at risk, rapid and widespread implementation of NCS would 
reduce the overall risk of impermanence to the terrestrial biosphere 
that unmitigated climate change is likely to cause.

Another challenge is that avoiding conversion in one area can 
cause conversion to shift to other areas, often referred to as “leakage.” 
Large-scale sectoral and landscape approaches to land use planning 
and policies will be needed to realize the NCS opportunities identi-
fied here. These approaches can and should be designed to buffer 
risks of leakage associated with individual projects (44).

Reducing carbon-intensive energy consumption is necessary but 
insufficient to meet the ambitious goals of the Paris Agreement. 
Comprehensive mitigation efforts that include fossil fuel emission 
reductions coupled with NCS hold promise for keeping warming 
below 2°C. Beyond providing meaningful climate mitigation, NCS 
investment can increase other important ecosystem services. The 
conservation, restoration, and improved management of lands in 
the United States represent a necessary and urgent component of 
efforts to stabilize the climate.

MATERIALS AND METHODS
Below, we provide a brief overview of methods for each of the 21 NCS 
that we quantified. Full methodological details are provided in the 
Supplementary Materials.

Reforestation: Additional carbon sequestration in above- and 
belowground biomass and soils gained by converting nonforest (<25% 
tree cover) to forest [>25% tree cover (45)] in areas of the contermi-
nous United States where forests are the native cover type. We ex-
cluded areas with intensive human development, including all major 
roads (46), impervious surfaces (47), and urban areas (48). To elimi-
nate double counting with the peatland restoration pathway, we re-
moved Histosol soils (49). To safeguard food production, we removed 
most cropland and pasture. We discounted the carbon sequestra-
tion mitigation benefit in conifer-dominated forests to account for 
albedo effects.

Natural forest management: Additional carbon sequestration in 
above- and belowground biomass gained through improved manage-
ment in forests on private lands under nonintensive timber manage-
ment. The maximum mitigation potential was quantified on the basis 
of a “harvest hiatus” scenario starting in 2025, in which natural for-
ests are shifted to longer harvest rotations. This could be accom-
plished with less than 10% reduction in timber supply with new 
timber supply from thinning treatments for fuel risk reduction until 
new timber from reforestation is available in 2030.

Fire management: Use of prescribed fire to reduce the risk of 
high-intensity wildfire. We considered fire-prone forests in the west-
ern United States. We assume that treatment eliminates the risk of 
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subsequent wildfire for 20 years, but only on the land that was di-
rectly treated. We assume that 5% of lands are treated each year, and we 
calculated the benefits that accrue over 20 years, finding that the ini-
tial increase in emissions associated with prescribed fire treatment 
is more than offset over time by the avoided impacts of wildfires. We 
report the average annual benefit across these 20 years. The impact 
of wildfires includes both direct emissions from combustion and 
suppression of net ecosystem productivity following wildfires.

Avoided forest conversion: Emissions of CO2 avoided by avoiding 
anthropogenic forest conversion. Most forest clearing is followed by 
forest regeneration rather than conversion to another land use. To 
estimate the rate of persistent conversion (i.e., to another land use), 
we first calculated forest clearing in the conterminous United States 
from 2000 to 2010 and then used the proportion of forest clearing 
that historically was converted to another land use to estimate con-
version rates in 2000 to 2010. We used estimates of avoided carbon 
emissions from above- and belowground biomass that are specific 
to each region and forest type. We did not count forest loss due to 
fire to avoid double counting with the improved fire management 
opportunity. We did not count forest loss due to pests because it 
is unclear whether this loss can be avoided. We reduced the benefit 
of avoided conversion in conifer-dominated forests to account for 
their albedo effects.

Urban reforestation: Additional carbon sequestration in above- 
and belowground biomass gained by increasing urban tree cover. 
We considered the potential to increase urban tree cover in 3535 
cities in the conterminous United States. We considered the poten-
tial for additional street trees, and for those cities not in deserts, we 
also considered the potential for park and yard tree plantings. The 
potential percent increase in tree cover was estimated on the basis of 
high-resolution analysis of 27 cities, which excluded sports fields, 
golf courses, and lawns (50).

Improved plantations: Additional carbon sequestration gained in 
above- and belowground tree biomass by extending rotation lengths 
for a limited time in even-aged, intensively managed wood production 
forests. Rotation lengths were extended from current economic opti-
mal rotation length to a biological optimal rotation length in which 
harvest occurs when stands reach their maximum annual growth.

Cover crops: Additional soil carbon sequestration gained by 
growing a cover crop in the fallow season between main crops. We 
quantified the benefit of using cover crops on all of the five major 
crops in the United States (corn, soy, wheat, rice, and cotton) that 
are not already growing cover crops (27), using the mean sequestra-
tion rate quantified in a recent meta-analysis (51).

Avoided conversion of grassland: Emissions of CO2 avoided by 
avoiding conversion of grassland and shrubland to cropland. We 
quantified avoided emissions from soil and roots (for shrubs, we also 
considered aboveground biomass) based on the spatial pattern of 
conversion from 2008 to 2012. We used spatial information on lo-
cation of recent conversion and variation in soil carbon and root 
biomass to estimate mean annual emission rate from historic con-
version. We estimated a 28% loss of soil carbon down to 1 m (26). 
We modeled spatial variation in root biomass based on mean annual 
temperature and mean annual precipitation using data from (52).

Biochar: Increased soil carbon sequestration by amending agri-
cultural soils with biochar, which converts nonrecalcitrant carbon 
(crop residue biomass) to recalcitrant carbon (charcoal) through 
pyrolysis. We limited the source of biochar production to crop resi-
due that can be sustainably harvested. We assumed that 79.6% of 

biochar carbon persists on a time scale of >100 years (53, 54) and that 
there are no effects of biochar on emissions of N2O or CH4 (55, 56).

Alley cropping: Additional carbon sequestration gained by plant-
ing wide rows of trees with a companion crop grown in the alley-
ways between the rows. We estimated a maximum potential of alley 
cropping on 10% of U.S. cropland (15.4 Mha) (57).

Cropland nutrient management: Avoided N2O emissions due to 
more efficient use of nitrogen fertilizers and avoided upstream emis-
sions from fertilizer manufacture. We considered four improved 
management practices: (i) reduced whole-field application rate, (ii) 
switching from anhydrous ammonia to urea, (iii) improved timing 
of fertilizer application, and (iv) variable application rate within 
field. We projected a 4.6% BAU growth in fertilizer use in the United 
States by 2025. On the basis of these four practices, we found a maxi-
mum potential of 22% reduction in nitrogen use, which leads to 
a 33% reduction in field emissions and a 29% reduction including 
upstream emissions.

Improved manure management: Avoided CH4 emissions from 
dairy and hog manure. We estimated the potential for emission 
reductions from improved manure management on dairy farms 
with over 300 cows and hog farms with over 825 hogs. Our calcu-
lations are based on improved management practices described 
by Pape et al. (8).

Windbreaks: Additional sequestration in above- and belowground 
biomass and soils from planting windbreaks adjacent to croplands 
that would benefit from reduced wind erosion. We estimated that 
windbreaks could be planted on 0.88 Mha, based on an estimated 
17.6 Mha that would benefit from windbreaks, and that windbreaks 
would be planted on ~5% of that cropland (8).

Grazing optimization: Additional soil carbon sequestration due 
to grazing optimization on rangeland and planted pastures, derived 
directly from a recent study by Henderson et al. (58). Grazing opti-
mization prescribes a decrease in stocking rates in areas that are 
overgrazed and an increase in stocking rates in areas that are under-
grazed, but with the net result of increased forage offtake and live-
stock production.

Grassland restoration: Additional carbon sequestration in soils 
and root biomass gained by restoring 2.1 Mha of cropland to grass-
land, equivalent to returning to the 2007 peak in CRP enrollment. 
Grassland restoration does not include restoration of shrubland.

Legumes in pastures: Additional soil carbon sequestration due 
to sowing legumes in planted pastures, derived directly from a re-
cent global study by Henderson et al. (58). Restricted to planted 
pastures and to where sowing legumes would result in net seques-
tration after taking into account potential increases in N2O emis-
sions from the planted legumes.

Improved rice management: Avoided emissions of CH4 and 
N2O through improved practices in flooded rice cultivation. Prac-
tices including mid-season drainage, alternate wetting and drying, 
and residue removal can reduce these emissions. We used a U.S. En-
vironmental Protection Agency (EPA) analysis that projects the po-
tential for improvement across U.S. rice fields, in comparison with 
current agricultural practices (59).

Tidal wetland restoration: In the United States, 27% of tidal wet-
lands (salt marshes and mangroves) have limited tidal connection 
with the sea, causing their salinity to decline to the point where CH4 
emissions increase (30). We estimated the potential for reconnect-
ing these tidal wetlands to the ocean to increase salinity and reduce 
CH4 emissions.
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Peatland restoration: Avoided carbon emissions from rewetting 
and restoring drained peatlands. To estimate the extent of restor-
able peatlands, we quantified the difference between historic peat-
land extent [based on the extent of Histosols in soil maps (60)] and 
current peatland extent. Our estimate of mitigation potential ac-
counted for changes in soil carbon, biomass, and CH4 emissions, 
considering regional differences, the type of land use of the converted 
peatland, and whether the peatland was originally forested.

Avoided seagrass loss: Avoided CO2 emissions from avoiding sea-
grass loss. An estimated 1.5% of seagrass extent is lost every year (61). 
We assumed that half of the carbon contained in biomass and sedi-
ment from disappearing seagrass beds is lost to the atmosphere (62).

Seagrass restoration: Increased sequestration from restoring the 
estimated 29 to 52% of historic seagrass extent that has been lost 
and could be restored (61). We estimated the average carbon se-
questration rate in the sediment of seagrass restorations based on 
data from six seagrass restoration sites in the United States (63).
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