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C L I M A T O L O G Y

Climate impacts of U.S. forest loss span net warming 
to net cooling
Christopher A. Williams*, Huan Gu, Tong Jiao

Storing carbon in forests is a leading land-based strategy to curb anthropogenic climate change, but its planetary 
cooling effect is opposed by warming from low albedo. Using detailed geospatial data from Earth-observing satellites 
and the national forest inventory, we quantify the net climate effect of losing forest across the conterminous 
United States. We find that forest loss in the intermountain and Rocky Mountain West causes net planetary cool-
ing but losses east of the Mississippi River and in Pacific Coast states tend toward net warming.  Actual U.S. forest 
conversions from 1986 to 2000 cause net cooling for a decade but then transition to a large net warming over a 
century. Avoiding these forest conversions could have yielded a 100-year average annual global cooling of 0.00088°C. 
This would offset 17% of the 100-year climate warming effect from a single year of U.S. fossil fuel emissions, under-
scoring the scale of the mitigation challenge.

INTRODUCTION
Protecting and expanding forest is promoted as a leading nature-
based solution to help mitigate climate change (1–3), but there are 
several distinct mechanisms by which forests influence the climate 
system, with a range of effects that span cooling to warming (4–6). 
Most of the attention has focused on avoiding carbon release from 
deforestation (7, 8), with some consideration of lost carbon seques-
tration typical in maturing, intact forests (9). Less attention is paid 
to the way forest loss increases surface albedo, reflecting more solar 
radiation out to space and cooling the planet (10–20). Furthermore, 
reduced evapotranspiration from conversion of forest to nonforest 
can cause warming through decreased cloud cover, particularly in 
the tropics, while carbon and surface albedo effects tend to domi-
nate in temperate and boreal regions (14–16, 20, 21). Taking all of 
these factors into account, the Intergovernmental Panel on Climate 
Change (IPCC) in its synthesis concluded that historical forest losses 
have yielded a modest net planetary cooling (19), suggesting that 
reforestation of these locations would tend to cause warming (22, 23), 
although some individual studies come to different conclusions (18, 24).

Nonetheless, modeling studies reveal widespread geographic 
variation in the strength of these opposing climate effects (14–18, 25, 26), 
with forests in some locations causing net planetary cooling but forests 
in other locations causing net warming. Resolving these patterns is 
paramount to designing and implementing effective policies aiming 
to mitigate climate change with forest protection and expansion. The 
coarse spatial resolution and generic parameterization in climate models 
limit their utility in decision-making and motivates detailed, data-
driven analyses as a needed alternative. In this study, we use detailed, 
geospatially explicit datasets on forest carbon stocks, forest carbon 
uptake, and the surface albedo changes caused by forest conversion 
to provide a thorough examination of their separate and combined 
effects on global climate as they vary across forestlands of the con-
terminous United States.

RESULTS
Forest loss initially causes net planetary cooling, averaging −8 W m−2 
and ranging from −24 to 0 W m−2 across the United States (Table 1). 

Warming from the emission of forest carbon opposes cooling from 
albedo change; however, the albedo effect remains dominant even 
after 100 years for 27% (23 to 31%) of the country. Lost net ecosystem 
productivity (NEP) contributes substantially to the gross warming 
effect of forest loss, comprising about 46% (37 to 55%) of the gross 
warming by 50 years after conversion but with large spatial variability 
ranging from 22 to 73% for the 5th and 95th percentiles. Forest losses 
in West Coast states and east of the Mississippi River typically yield 
net warming after the first decade and a half, with a continued 
increase in net warming as the radiative forcing (RF) effects from 
carbon emissions and lost NEP accumulate over time (Fig. 1). In 
contrast, extensive snow cover and highly reflective post-conversion 
land cover types cause much of the western United States to exhibit 
persistent net cooling from forest loss. Thus, protecting Intermountain 
West and Rocky Mountain forests or expanding forest cover in these 
regions to combat climate change is likely to be counterproductive.

The United States annually experienced a gross loss of 380,417 ha 
of forest, averaged over 1986 to 2000 (see the Supplementary Mate-
rials). Losses were concentrated around urban centers, as well as 
some hot spots of rapid exurban development, and scattered clear-
ings in semiarid Western regions and in some agricultural regions 
such as the Central Valley of California (figs. S1 and S2). The land 
cover types replacing lost forests vary geographically (fig. S3). Urban 
gain dominates near cities and across much of the upper Midwest, 
Northeast, and coastal Southeast. Outside of urban areas, shrubland 
gains dominated in the Pacific Coast states and in much of the inter-
mountain and mountain west. Grassland gains, including pasture-
lands, dominated in much of the nonurban, central to southeastern 
United States, and cropland gains were widely scattered but with 
some hot spots in the Central Valley and along the Mississippi River.

Forest conversion in the United States over this 15-year period 
emitted 260 (208 to 312) Tg C in total, with a cumulative loss of 362 
(274 to 465) Tg C that these forests would have removed from the 
atmosphere by the year 2100 (section S2.5). Together, these elevate 
globally averaged atmospheric CO2 concentrations by 0.16 (0.19 to 
0.23) parts per million in 2100, after accounting for ocean and land 
uptake of CO2 (see the Supplementary Materials), which mitigates 
37% (31 to 43%) of the total atmospheric loading from emissions 
and lost net uptake (section S2.5).

U.S. forest losses from 1986 to 2000 collectively cause local, mean 
annual RFs of 1.7 (−0.3 to 3.8) W m−2 10 years after conversion, 
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11.3 (7.6 to 15.1) W m−2 after 50 years, and 15.4 (10.4 to 20.5) W m−2 
after 100 years (Fig. 2). The global, mean annual RF for the century 
after forest conversion is 0.0011 W m−2 (0.0007 to 0.0015 W m−2), 
constituting a small net planetary warming. Adopting an equilibrium 
climate sensitivity centered on 0.81°C per watt per square meter 
(see the Supplementary Materials), this global RF translates to 0.00088°C 
(0.00079° to 0.00099°C) of warming that could have been avoided 

by permanently preventing U.S. forest conversions from 1986 to 2000. 
The atmospheric CO2 burden from 15 years of U.S. forest conver-
sion amounts to 41% (31 to 52%) of 1 year’s worth of U.S. fossil 
carbon emissions. However, the net warming, including albedo change, 
from 15 years of U.S. forest conversion amounts to only 17% (11 to 
23%) of the RF (0.00574 W m−2) caused by 1 year’s worth of U.S. 
fossil carbon emissions.

DISCUSSION
These findings raise several important considerations for policy and 
management activities that aim to promote forests to mitigate 
climate change. First, forests can cause a net planetary warming 
compared to the climate effect of alternative land cover types, and 
this effect can reduce or even overwhelm the climate cooling effect 
of forest carbon storage. Thus, forestation and avoided deforesta-
tion should not be assumed to mitigate global warming. Land 
management policies aimed at climate mitigation, as well as car-
bon offset markets that pay for climate mitigation services pro-
vided by forests or forest expansion, would more effectively reach 
their goals by accounting for the climate impacts of changes in 
albedo. Datasets and methods are now readily available to identify 
where forest protection and forestation activities are best aligned 
with climate goals and where they are not. The approach demon-
strated here can readily be adapted for formal, quantitative assess-
ments worldwide.

Second, the climate effect of deforestation varies with time since 
conversion and, in many cases, changes sign from initial cooling to 
long-term warming. This indicates that the time scale chosen for a 
particular analysis strongly influences conclusions regarding net 
climate impacts. Adopting a 10- to 20-year time frame systematically 
biases interpretations toward net cooling effects of forest loss, while 
the medium- to long-term effect can remain a net cooling, or may 
become a sizeable net warming.

Third, the climate impact of forest conversion depends on the 
fate of the biomass cleared from forests. In this analysis, biomass 
removed from forests during conversion is assumed to have a fate 
that resembles national patterns of wood product uses, with three-
quarters of the forest biomass carbon being emitted to the atmosphere 
within 100 years of conversion and assumed here to be emitted as 
CO2 (see the Supplementary Materials). If biomass removals were 
actively directed toward long-lived wood products, particularly to 
substitute more greenhouse gas–intensive building materials, then 
the warming effect of forest loss would be directly reduced by 30 to 
75% with some additional reduction due to the indirect effect of 

Table 1. Spatial statistics of potential instantaneous mean annual, local top-of-atmosphere radiative forcing caused by forest conversion across the 
United States with contributions from albedo, carbon emissions, lost NEP, and their combined net effect as they evolve over time (1, 10, 20, 50, and 
100 years after conversion). Results correspond to the ensemble member with a stand age of 70 years, the middle biomass stock, the median Earth system 
uptake, and the Community Atmosphere Model CAM-5.0 (CAM5) radiative kernel. 

Year 1 Year 10 Year 20 Year 50 Year 100

5th Mean 95th 5th Mean 95th 5th Mean 95th 5th Mean 95th 5th Mean 95th

Albedo −24.1 −9.2 −1.5 −24.1 −9.2 −1.5 −24.1 −9.2 −1.5 −24.1 −9.2 −1.5 −24.1 −9.2 −1.5

C emission 0.4 1.0 1.9 2.2 6.1 11.3 2.9 7.9 14.8 3.0 8.5 15.7 2.8 7.9 14.6

Lost NEP 0.0 0.3 0.5 0.4 2.2 4.1 0.7 4.0 7.4 1.5 8.0 14.8 2.6 11.9 23.2

Net total −23.9 −8.2 −0.3 −19.7 −1.1 10.9 −17.4 2.7 16.5 −15.3 7.2 23.6 −13.7 10.5 29.9

Fig. 1. Potential local, net RF from forest conversion considering albedo 
change, carbon emissions, and lost NEP. Results correspond to the ensemble 
member with a stand age of 70 years, the middle biomass stock, the median Earth 
system uptake, and the CAM5 radiative kernel.
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carbon emissions avoided by substitution of building materials 
(27, 28). Together, this tilts the climate impacts of forest conversion 
toward cooling, but determining precisely how much would require 
detailed analysis.

Additional climate impacts of forest conversion warrant further 
study and could alter the summary conclusions presented here. While 
the soil carbon emissions from dead tree roots have been included 
in this study, it is unknown to what degree forest conversion pro-
duces additional carbon emissions from the organic and mineral soil 
that have not been included here. Recent studies report large spread 
and remain largely inconclusive (29–31). Long-term sequestration 
of atmospheric carbon in biomass or soils might resume in some 
post-conversion land cover types, potentially reducing the loss of NEP 
represented in this study. However, among global lands, forests 
represent the largest, most lasting sinks for atmospheric carbon (9), 
and thus, it is unlikely that postconversion sequestration would off-
set the loss of forest NEP. Emissions of volatile organic compounds 
(VOCs) by trees can warm or cool the planet via several unique 
mechanisms that have individual effects that can be as large as those 
of carbon emissions or surface albedo alone (32–34), and effects of 
VOCs have not been included here. Studies disagree about the mag-
nitude of individual and combined effects of VOCs on climate and 
show large variation by region and forest type (34, 35). This high-
lights an area in need of further study to reduce uncertainty and 
improve scientific understanding. Last, forest loss may decrease 
landscape-level evaporation, cloud formation, and planetary albedo, 
which have been shown to be particularly important in tropical 
regions but only a secondary factor in temperate and boreal zones 
(14, 25, 26). This may appear to be at odds with the conclusions 
from a number of recent observation-based studies (36, 37), which 
suggest that nonradiative processes have a major influence even in 
temperate regions and that these processes can outweigh the albedo 
impact, for instance, by making trees cooler in summer compared 
to open land (despite the albedo-induced warming effect). However, 
the approach taken in those studies, of analyzing land surface tempera-

ture and the surface energy balance, does not quantify the global-
scale climate change impact that can be equated to the effect of 
greenhouse gases in the atmosphere. Surface and planetary [top-of-
atmosphere (TOA)] energy balance responses may oppose one 
another, and what matters most for the global mean climate is the 
radiative response at TOA.

RF remains a widely used and effective tool for assessing net 
climate impacts (19, 20). However, nonadditivity of RF has been 
demonstrated and different RF agents such as local changes in sur-
face albedo versus a well-mixed greenhouse gas can impose unique 
spatial patterns of global cooling or warming (38), making it an im-
perfect indicator. Future work may want to consider adopting the 
effective RF (ERF) concept to account for stratospheric adjustment, 
changes in tropospheric cloudiness, and other rapid adjustments in 
the climate system response to a forcing (39, 40), thus reducing de-
pendency of climate sensitivity on the agent causing the forcing, 
which helps mitigate issues with forcing-specific efficacy (41–43). 
However, the method for calculating ERF remains unsettled, ERFs 
can have a large spread across models due to rapid model-dependent 
feedbacks, and ERFs have large uncertainty relative to forcing when 
quantifying small forcings (39). Also, ERF radiative kernels would 
need to be made available for studies such as this, something that 
may be enabled by activities such as the recent Radiative Forcing 
Model Intercomparison Project whose simulations show that ERFs 
for historical land use tend to be about 70% as negative as IRFs (40).

This study shows that avoiding forest conversions can provide a 
modest climate change mitigation benefit in some regions of the 
United States but would be counterproductive in other regions. The 
mitigation benefits may be viewed as small when compared to U.S.-
wide CO2 emissions; however, this speaks more to the scale of the 
challenge of avoiding or offsetting those emissions as it does to the 
climate benefits of forest conservation. Furthermore, even where 
forest cover warms the planet, these forests may make important 
contributions to air and water quality, biodiversity, livelihoods, forest 
products, and recreation. Forest loss jeopardizes this suite of eco-
system service benefits, all of which deserve consideration alongside 
assessments of climate services.

MATERIALS AND METHODS
We adopt the widely used concept of RF to assess the climate im-
pacts of forest conversion, including carbon emissions, lost carbon 
uptake, and albedo change. We compute the TOA radiative effect of 
changes in the global concentration of atmospheric CO2 resulting 
from forest conversions and from changes in surface albedo with 
methods fully described in the Supplementary Materials and similar 
to those in prior studies (44, 45). We apply these methods to consider 
the climate impact of hypothetical deforestation for any given loca-
tion across the United States. Then, by pinpointing the actual locations 
of forest conversions with Landsat-based forest disturbance and land 
cover datasets, we quantify the actual climate impact of true forest 
conversions where they occurred from 1986 to 2000. We estimate 
carbon emissions with biomass from the North American Carbon 
Program (NACP) Aboveground Biomass and Carbon Baseline Dataset 
(46), adjusted to total live biomass based on U.S. Forest Service 
component ratios (47), and adopting emitted fractions consistent 
with the U.S. Forest Service Timber Products Output (48). We esti-
mate annual NEP lost due to forest conversion based on a com-
prehensive set of published curves specific to regions and forest 

Fig. 2. Local mean annual instantaneous RFs from US forest conversions for 
the period 1986−2000 shown at local and global scales, and both annually 
and accumulated (Cum.) over years since conversion. Results correspond to 
the ensemble member with a stand age of 70 years, the middle biomass stock, 
the median Earth system uptake, and the CAM5 radiative kernel. TOA, top of 
atmosphere.
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types (49). We computed the carbon-related forcing to Earth’s TOA 
radiation budget imposed by a change in global atmospheric CO2 
concentration with the method of the IPCC (50), accounting for 
Earth system uptake of carbon emissions with CO2 impulse re-
sponse functions derived for 16 Earth system models (51). We 
estimated TOA RF from albedo changes based on blue-sky sur-
face albedos derived from spaceborne observations of surface albe-
do under distinct illumination (direct or diffuse beam) and snow 
cover conditions (52), and extended to TOA with radiative kernels 
generated from general circulation model experiments involving 
each climate model’s radiation code run off-line (53–57). We quan-
tify uncertainty with a comprehensive ensemble from a full factorial 
combination of four dominant sources of uncertainty (108 mem-
bers) reporting results for the median, 10th and 90th percentiles 
spanning the uncertainty range for (i) forest carbon stocks vulnera-
ble to emission, (ii) forest carbon uptake that would be lost because 
of conversion, (iii) the rate at which the Earth system (ocean and 
land) removes anthropogenic emissions of CO2, and (iv) the TOA 
RF resulting from a change in surface albedo. We adopted an equilib-
rium climate sensitivity (58, 59) to estimate the mean 100-year global 
warming imposed by U.S. forest conversions from 1986 to 2000.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/7/eaax8859/DC1
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