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1.  Introduction
Carbon dioxide (CO2) surface fluxes from the terrestrial biosphere produce a large and variable signal in the 
atmosphere during the growing season due to photosynthesis and ecosystem respiration, especially in biologically 
productive areas like croplands and forests (Shiga et al., 2014), but also in heavily populated areas containing 
parks, lawns, gardens, street trees and urban agriculture (Buyantuyev & Wu, 2009; Golubiewski, 2006; Nowak & 
Crane, 2002; Raciti et al., 2014). Even in the winter (i.e., December to February in the northern hemisphere), CO2 

Abstract  Atmospheric CO2 measurements from a dense surface network can help to evaluate terrestrial 
biosphere model (TBM) simulations of Net Ecosystem Exchange (NEE) with two key benefits. First, gridded 
CO2 flux estimates can be evaluated over regional scales, not possible using flux tower observations at 
discrete locations for model evaluation. Second, TBM ability to explain atmospheric CO2 fluctuations due 
to the biosphere can be directly tested, an important objective for anthropogenic emissions monitoring using 
atmospheric observations. Here, we customize the Vegetation Photosynthesis and Respiration Model (VPRM) 
for an eastern North American domain with strong biological activity upwind of urban areas. Parameters are 
optimized using flux tower observations from a historical database with sites in (and near) the domain. In 
addition, the respiration model (originally a linear function of temperature) is modified to account for impacts 
of changing foliage, non-linear temperature, and water stress. Flux estimates from VPRM, the Carnegie-Ames-
Stanford Approach (CASA) model and the Simple Biosphere Model v4 (SiB4), are convolved with footprints 
from atmospheric transport models for evaluation with CO2 observations at 21 towers in the domain, with 
roughly half of the towers used here for the first time. Results show that the new respiration model in VPRM 
helps to correct a growing season sink bias in the atmosphere associated with underestimated summertime 
respiration using the original model with annual parameters. The new VPRM also better explains fine-scale 
atmospheric CO2 variability compared to other TBMs, due to higher resolution diagnostic phenology, the new 
respiration model, domain-specific parameters, and high-quality input data sets.

Plain Language Summary  Photosynthesis and respiration from vegetation and soils contribute to 
large CO2 fluctuations in the atmosphere, which mix with CO2 sources from fossil fuel combustion. Terrestrial 
biosphere models simulate biological carbon exchange with the atmosphere, which can then be evaluated with 
atmospheric CO2 measurements. In this study, we customize a high resolution, data-driven biospheric model, 
the Vegetation Photosynthesis and Respiration Model (VPRM), for eastern North America, a region with strong 
biological activity from crops and forests as well as large emission sources. The model equation describing 
sources to the atmosphere from respiration (i.e., “breathing” from plants and decaying organic matter) is 
modified to account for increases in foliage and crop biomass during the growing season. Comparisons with 
other process-based biospheric models and atmospheric CO2 observations show that the new VPRM model is 
relatively unbiased and better explains small-scale biospheric CO2 fluctuations in the atmosphere in this domain 
compared to other more complex models.
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sources from ecosystem respiration can have an atmospheric signal as large as that from fossil fuel emissions, 
especially when integrated over large areas. Therefore, to monitor fossil fuel emissions using atmospheric data, 
fluctuations in atmospheric CO2 due to the biosphere must be appropriately modeled and subtracted out from 
total observed CO2 mole fractions.

The eastern half of North America, upwind of the heavily populated Northeast Corridor (NEC) of the United 
States (from Washington D.C. to Boston, MA), is a biologically productive region containing Appalachian decid-
uous forests, northern mixed forests and southern pine plantations, croplands in the Midwestern Corn Belt and 
Mississippi river valley, grasslands in Kentucky and Tennessee and coastal and northern wetlands (Figure 1). 
Each of these ecosystems has strong seasonal signals with varying timing, such that this region provides a valu-
able case study for testing the ability of terrestrial biosphere models (TBMs) to explain atmospheric CO2 varia-
bility. This region is also particularly data-rich, given a large historical database of flux towers operating in the 
region with direct observations of Net Ecosystem Exchange (NEE, in ∼1 km 2 footprints around each tower) that 
can be used to parameterize models, as well as an increasingly dense network of surface towers measuring in situ 
atmospheric CO2 mole fractions, which can be used for model evaluation.

In this study, we first customize and improve a relatively simple empirical model with a standard light-use effi-
ciency formulation for photosynthesis, that is, the Vegetation Photosynthesis and Respiration Model (VPRM; 
Mahadevan et al., 2008), for a domain in the eastern United States and Canada (−92°W to −68°W, 33°N to 47°N, 
Figure 1). Parameters in VPRM are optimized using flux tower observations of NEE collected in and near the 
domain, thus making it well suited to take advantage of a large amount of data from historical flux towers (i.e., 69 
in this study) operating in the region. In the original Mahadevan et al. (2008) formulation, VPRM has a relatively 
simplistic respiration equation, expressed as a baseline value and linear dependence on temperature. Therefore, 
we also introduce here a modified VPRM respiration model that includes additional variables: (a) a non-linear 
temperature response, (b) a vegetation index to better capture seasonality in autotrophic respiration, and (c) a 
water stress scaling factor and its interactions with temperature to capture drought and soil moisture effects.

VPRM is first run historically using site-specific meteorological data at the flux tower locations, evaluating flux 
estimates with observations reserved from the parameter optimization. In this manner, we distinguish between 
various model setups, choosing the best ones for further evaluation. For three chosen setups, VPRM is then run in 
a gridded implementation at a 0.02°, hourly resolution from November 2016 to October 2017. Gridded flux esti-
mates are evaluated by comparison with output from two other TBMs, as well as with comparison to near-surface 
atmospheric CO2 mole fraction observations at 21 surface towers in the domain (Figure 2).

Unlike flux tower observations, atmospheric CO2 measurements can help evaluate regional-scale gridded CO2 
flux estimates integrated in time and space across the landscape. In fact, despite decades of research into physio-
logical leaf and canopy scale carbon cycling, regional-scale estimates of CO2 flux have remained highly uncertain 
in part due to the lack of validation data to date at these scales (e.g., Huntzinger et al., 2012). The dense atmos-
pheric CO2 observing network currently available for this domain can thus help to close this gap in process-based 
understanding of landscape-level CO2 fluxes, as called for in the 2021 North American Carbon Program Science 
Implementation Plan (Sections 3.2–3.4 in Williams et al., 2021), that is, the need for “studies that bridge under-
standing of surface CO2 fluxes across scales, due to the varying importance of ecosystem processes operating at 
different scales.”

Two TBMs used for intercomparison here are commonly used in North America, especially as priors in atmos-
pheric inversion studies (e.g., L. Hu et  al.,  2019). These are the Carnegie-Ames Stanford Approach (CASA) 
model (Potter et al., 1993; Randerson et al., 1996; Zhou, Williams, Lauvaux, Davis, et al., 2020) and the Simple 
Biosphere model, version 4 (SiB4; Haynes, Baker, Denning, Stöckli, et al., 2019; Haynes, Baker, Denning, Wolf, 
et  al.,  2019; Sellers et  al.,  1986,  1996). VPRM, CASA, and SiB4 represent a range of biospheric modeling 
approaches that vary from the most empirical (VPRM) to the most mechanistic (SiB4), allowing for an investi-
gation of the relative impact of model complexity versus other factors in explaining atmospheric CO2 variability. 
Thus, this comparison also addresses another component of the NACP Science Implementation Plan, that is, the 
need for improved statistical methods and evaluation data sets for assessing increased model complexity (includ-
ing the assessment of “trade-offs between increasing model complexity and measurable improvement of model 
reliability,” Williams et al., 2021).
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CO2 fluxes from each of the TBMs are multiplied by footprints from an atmospheric transport and dispersion 
model to simulate atmospheric CO2 enhancements due to the biosphere (using mean enhancements from two 
transport models to help reduce transport model uncertainty). Simulated and observed CO2 enhancements are 
then compared across towers and throughout the year to assess the TBMs' ability to reproduce spatial gradients 
across towers, seasonality, and finer-scale (diurnal and synoptic) temporal variability in the atmosphere.

By improving a single relatively data-driven biospheric model (i.e., VPRM) and evaluating flux estimates from 
multiple TBMs using a large atmospheric CO2 data set from multiple towers in this domain, this study aims to 
provide a prototype framework for continuous model evaluation and improvement. From such a feedback loop, 
we begin initial steps toward outlining the key features of a TBM in eastern North America that will operate well 
across spatial and temporal scales to explain fine-scale atmospheric CO2 variability due to the biosphere for the 
ultimate purpose of emissions monitoring.

Figure 1.  Map of dominant land cover at 0.02° resolution for eight plant functional types (PFTs), with a rectangle around the flux simulation domain (left panel). (The 
shrubland PFT is not shown here because it is not the dominant land cover for any pixel at this spatial resolution.) Also shown are the locations of the 69 flux towers 
included in the parameter optimization (Table S1 in Supporting Information S1). Deciduous broadleaf forest and cropland pixels used for spatial aggregation of gridded 
fluxes are shown in the panel on the right at 0.1°, where these pixels contain more than 50% coverage in the underlying land cover maps for VPRM and CASA, and 
25% coverage for SiB4 at 0.5°.
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2.  Methods
In this section, we first describe the original VPRM model, and then its specific implementation and modifica-
tions for this study. We also briefly describe the CASA and SiB4 models used to assess uncertainty across rela-
tively independent TBMs. Finally, we describe the flux tower observations, atmospheric CO2, and ancillary data 
sets used for model evaluation and outline overall analyses for assessing model performance.

2.1.  Vegetation Photosynthesis and Respiration Model

TBMs typically estimate carbon sources to the atmosphere from ecosystem respiration (Re, or the sum of auto-
trophic, Ra, and heterotrophic, Rh, respiration) and carbon uptake from photosynthesis (also known as Gross 
Ecosystem Exchange, or GEE), with NEE defined as their sum (i.e., Re + GEE). Most TBMs (including VPRM) 
also differentiate flux dynamics across land cover categories, referred to as plant functional types (PFTs), and 
then merge PFT-specific fluxes into a set of total flux estimates across the landscape. Where TBMs differ, they 
do so in their physiological representations of GEE and Re, spatial and temporal resolutions, input data sets, PFT 
classifications, and phenology schemes.

The VPRM implemented here is a diagnostic light-use efficiency model that calculates GEE and Re using 
remote-sensing and meteorological model inputs, along with parameters optimized using flux tower observations 
for each of the PFTs shown in Figure 1. Thus, it is a relatively empirical, data-driven model compared to more 
process-based TBMs developed for the purpose of simulating long-term carbon balance or coupling with global 
climate models (Fisher et al., 2014). The original model from Mahadevan et al. (2008) was deliberately simplistic, 

Figure 2.  Map of CO2 observational towers and mean July 2017 afternoon integrated footprints (summed across towers 
and all hours back from observation time and then averaged across observation times and WRF-STILT and NAMS-STILT 
footprints). The inner nests for the WRF simulation are shown in purple. SNJ and SMT had no CO2 observations in July 
2017; therefore, their footprints are not included in the map for this month.
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with the assumption that parameters and/or fluxes would be optimized in atmospheric inverse models. In particu-
lar, the respiration equation is a simple linear function of temperature, which does not account for seasonal or 
spatial variability in biomass and litter inputs to soil carbon pools.

2.1.1.  VPRM Model Equations

The VPRM photosynthesis algorithm has a standard light-use efficiency formulation, with GEE defined as:

𝐺𝐺𝐺𝐺𝐺𝐺 = 𝜆𝜆 ∗ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1

1
(

1 +
𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃𝑃𝑃𝑃𝑃0

) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝐸𝐸𝐸𝐸 𝐸𝐸

� (1)

where λ is a potential light-use efficiency factor, Tscale, Pscale, and Wscale1 are temperature, phenology, and water 
stress scaling factors, as defined in Mahadevan et al. (2008), PAR is Photosynthetically Active Radiation, PAR0 
is the half-saturation constant of PAR, and EVI is the remotely sensed Enhanced Vegetation Index. The term 

𝐴𝐴
1

(

1+
𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃𝑃𝑃𝑃𝑃0

) is a scaling factor describing the efficiency of photosynthesis at high light levels (which relates to 

canopy structure). Overall, PAR*EVI represents the amount of absorbed radiation, with GEE modeled as poten-
tial uptake (i.e., λ*PAR*EVI) downregulated by each of the scaling factors (which vary from 0 to 1). Parameters 
optimized with flux tower data for each PFT include λ and PAR0, as well as the optimal temperature (Topt) in the 
Tscale equation:

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑇𝑇 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)(𝑇𝑇 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)

[(𝑇𝑇 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)(𝑇𝑇 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) − (𝑇𝑇 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜)
2
]

� (2)

Tmin and Tmax are set equal to 0 and 45°C respectively in this study (i.e., temperatures below or above which 
photosynthesis shuts down).

Wscale1 is defined for all PFTs as:

𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1 =
1 + 𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿

1 + 𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
� (3)

where LSWI is the remotely sensed Land Surface Water Index (Chandrasekar et al., 2010) calculated using bands 
2 and 6 from MODIS reflectance data, and LSWImax is the site-specific maximum daily LSWI from May to Octo-
ber (derived from a multi-year mean; X. Xiao et al., 2004).

The original VPRM model formulation estimates Re as a baseline value plus a linear function of temperature:

𝑅𝑅𝑒𝑒 = 𝛽𝛽 + 𝛼𝛼 ∗ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎� (4)

where Tair is the surface air temperature (in °C), β is the baseline respiration (in μmol*m −2*s −1), α is the temper-
ature sensitivity of respiration (in μmol*m −2*s −1/°C), and α and β are optimized parameters. In Mahadevan 
et al. (2008), Tair below a threshold (Tlow) is set equal to Tlow to account for continued Re in winter, when soils 
remain warmer than air temperatures. Here, we just set predicted negative Re values to 0.

To help improve the respiration model beyond this simple linear formulation, we developed a new Re equation that 
incorporates additional predictor variables. To define this new respiration model (Equation 5), various multivari-
ate regressions were run against observed nighttime mean NEE at the flux towers to determine a single equation 
that is consistent with physiologic understanding of autotrophic and heterotrophic respiration and improves model 
fit across PFTs. Candidate models were evaluated by comparing adjusted R 2s across different sets of potential 
covariates, which, like other model selection algorithms, penalizes the addition of spurious predictor variables. 
Biases in monthly mean seasonal and diurnal cycles were also assessed to distinguish between candidate models.

Following this procedure, the equation for Re is updated as follows:

𝑅𝑅𝑒𝑒 = 𝛽𝛽 + 𝛼𝛼1 ∗ 𝑇𝑇
′ + 𝛼𝛼2 ∗ 𝑇𝑇

′2 + 𝛾𝛾 ∗ 𝐸𝐸𝐸𝐸 𝐸𝐸 + 𝜃𝜃1 ∗ 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 + 𝜃𝜃2 ∗ 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 ∗ 𝑇𝑇
′ + 𝜃𝜃3 ∗ 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 ∗ 𝑇𝑇

′2� (5)

where α1, α2, γ, θ1, θ2, and θ3 are optimized parameters, and T’ is a modified air temperature variable intended to 
capture soil temperatures that remain warmer than air temperatures in winter:

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 < 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∶ 𝑇𝑇
′ = 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 - 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 - 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)� (6)
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𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∶ 𝑇𝑇
′ = 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎� (7)

where Tcrit is a low-temperature threshold (in °C) and Tmult is a scalar from 0 to 1 which is multiplied by air temper-
atures below Tcrit. This modification of low air temperatures for Re is like the fixed Tlow threshold in Mahadevan 
et al. (2008), but here T’ can still slope downward at low temperatures.

In the new respiration model, a slightly different water stress scaling factor was used than in the GEE equation, 
with Wscale2 defined as a normalized LSWI:

𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 =
𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿 − 𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
� (8)

where LSWImax is as defined previously and LSWImin is the site-specific minimum LSWI across a full year 
(from a multi-year mean). Wscale2 gave a slightly better model fit than Wscale1 for grasslands, soybean/other crops, 
and shrubland, and equivalent fits for other PFTs; hence this definition of Wscale was chosen for the respiration 
equation.

In the final Re equation, the squared temperature term introduces a non-linear temperature response, while EVI 
introduces realistic seasonality and spatial patterns. The Wscale2 parameter and its interactions with temperature 
help to account for water stress, especially at high temperatures when soils tend to dry out. Literature supports 
the use of these additional factors to help explain Re fluxes, given that autotrophic respiration has large seasonal 
increases associated with canopy development (Jassal et al., 2007), and current photosynthetic uptake is known 
to account for a large portion of above and below-ground respiration during the growing season (Amthor, 2000; 
Högberg et al., 2001). Furthermore, soil moisture limits both autotrophic and heterotrophic respiration during 
drought periods (Flexas et al., 2006; Meir et al., 2008; Molchanov, 2009), and respiration response to temperature 
is typically described with a Q10, non-linear relationship (e.g., N. Meyer et al., 2018). These additional factors 
have also previously been suggested as needed improvements to the VPRM Re equation in X. Li et al. (2020).

2.1.2.  VPRM Parameter Optimization and PFT Classification

VPRM parameters are optimized using hourly NEE observations from flux towers in and near the domain, with 
parameters optimized separately for each PFT using only towers associated with each land cover classifica-
tion. Flux data is included from 69 towers operational at any time from 2001 to the present (Figure 1; Table 
S1 in Supporting  Information  S1), which allows for the inclusion of many more locations than relying only 
on towers currently collecting data. In fact, 46 of the 69 flux towers used in this study were not included in 
either Mahadevan et al. (2008) or Hilton et al. (2013, 2014), although some areas of the domain (e.g., urban/
suburban lawns, parks and gardens, and Appalachian deciduous forests and northern mixed forests in Canada) 
remain under-represented, potentially leading to spatial biases in optimized parameters. (Additional uncertainty 
is associated with the PFT classification and the extent to which variation across the landscape can be explained 
by PFTs in general, as discussed in more detail below.) In addition, u-star filtering of flux tower data to remove 
observations with insufficient turbulence results in disproportionate filtering out of nighttime relative to daytime 
data. To address this concern, we perform bootstrapping on data from under-sampled hours to create a more 
even distribution across the diurnal cycle (Chernick, 2007). More details on the flux tower data processing are 
included in the supplemental material.

All parameters with the original GEE and Re models (i.e., λ, PAR0, β, and α in Equations 1 and 4) are optimized 
simultaneously minimizing least squares between modeled fluxes and flux tower observations (using the DEop-
tim package in R). It should be noted that this optimization procedure ensures zero bias on an average basis across 
all hours and months in the observational data set but does not guarantee that optimized parameters will capture 
the peaks of either the diurnal or seasonal cycles. Therefore, we first optimize a set of annual (i.e., time-invariant) 
parameters, and then four sets of seasonally varying parameters (for December to February, March to May, June 
to August and September to November; Table S2 in Supporting Information S1), which should help to better 
account for flux seasonality.

For the modified Re model (Equation 5), all Re parameters (α1, α2, γ, θ1, θ2, and θ3) are estimated as coefficients 
from regressions using nighttime NEE observations, while Tcrit and Tmult are optimized by maximizing R 2 values 
in multiple regressions across a range of realistic values. "Observed" daytime hourly GEE is then derived as 
observed daytime NEE minus predicted daytime respiration, and GEE parameters are separately optimized by 
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again minimizing least squares between model and observations (using the DEoptim package in R, Table S3 in 
Supporting Information S1). The optimization of GEE and Re parameters separately here should help to better 
capture diurnal cycle amplitude by ensuring zero bias for daytime and nighttime fluxes respectively, compared to 
optimizing all parameters simultaneously, which only ensures zero bias on a 24-h basis. Only one set of time-in-
variant parameters are optimized with the new Re model, given that EVI and LSWI already help to account for 
seasonal changes.

PFTs are used here to classify flux towers and then spatially scale optimized parameters across the landscape, 
as in Mahadevan et al. (2008). PFTs are known to be imperfect, if useful, ecological classification tools (e.g., 
Atkin et al., 2015; Bonan et al., 2002; Wullschleger et al., 2014; J. Xiao et al., 2011). Therefore, the original 
PFT classification from the AmeriFlux database was re-examined for this study to identify how tower-specific 
optimized parameters cluster across and between PFTs using the original VPRM model (Figure S1 in Support-
ing Information S1, with similar results for VPRMnew). Based on an initial analysis, evergreen needleleaf and 
mixed forests were merged and then separated between regions north and south of 40°N, where fast-growing 
young pine plantations in the south behave differently from older-growth forests in boreal areas. This is consistent 
with previous work (Hilton et al., 2013; J. Xiao et al., 2011), showing that stand age and disturbance history may 
be as equally important as climate and PFTs for understanding NEE variations at large regional scales. Also, as 
in previous work, corn was separated from other crops given differences in C4 versus C3 photosynthesis. While 
there remains some overlap between site-specific optimized parameters across PFTs, the PFT classification used 
in this study still has ecological relevance, for example, crops clearly behave differently from other unmanaged 
ecosystems in terms of GEE parameters, with clear differences between corn and other crops in terms of PAR0 
and optimal temperature for photosynthesis. One topic for future research may be an improved classification 
scheme for grasslands, which have a relatively larger spread in optimized parameters across sites compared to 
other PFTs, likely due to a mix of C3 and C4 grasses as well as differences in management and land use (e.g., 
mowing and grazing) across sites.

An urban PFT was also defined for purposes of modifying respiration fluxes in areas with large impervious 
surface coverage. However, given that there are no specifically “urban” flux towers in the database, parameters 
for the urban PFT are assumed to be the same as for deciduous broadleaf forests (as in Hardiman et al., 2017), 
presumably the native vegetation of most cities in this domain. As in Hardiman et al. (2017), a correction was 
made in the urban PFT to reduce heterotrophic respiration (assumed as 0.5 * Re) by the fraction of impervious 
surfaces, although the autotrophic respiration correction was not applied given the difficulty in identifying refer-
ence pixels outside of every city in the domain. However, for the GEE and modified respiration model (Equation 
5), fluxes are also suppressed in urban areas due to lower EVI values.

The urban PFT is defined from the underlying land cover maps to include developed land with low, medium and 
high intensity in the National Land Cover Database (NLCD; Jin et al., 2019; Yang et al., 2018) in the USA, and 
“urban/developed” in the Canadian land cover product. The “developed-open” category in the NLCD (i.e., ceme-
teries, gardens, lawns, and parks) is instead classified as grasslands, with the assumption (in the absence of other 
information) that these areas behave like grassland sites in the flux tower database. This hypothesis deserves to 
be tested further in future work, particularly given the large variation in optimized grassland parameters across 
sites discussed above (Figure S1 in Supporting Information S1).

2.1.3.  VPRM Implementation and Evaluation

Using the model equations in Section 2.1.1 and optimized parameters, VPRM is run hourly at two different 
spatial scales for model evaluation: (a) site-specific runs at flux towers from 2001 to the present (for those years 
containing observational data for comparison) using tower-specific meteorological and high-resolution MODIS 
data and (b) gridded runs across the full domain at a 0.02° spatial resolution for a single year from November 
1, 2016 to October 31, 2017. Each site-specific run is defined for the flux tower PFT, whereas for the gridded 
runs, fluxes are derived as weighted averages across PFTs using gridded fractional land cover maps to define the 
weights (Figure 1). Input data sets for the gridded runs include hourly air temperature and radiation from the High 
Resolution Rapid Refresh model (HRRR; Benjamin et al., 2016), and EVI and LSWI from the MODIS Terra and 
Aqua satellites, which are interpolated between satellite overpass dates in overlapping 16-day and 8-day compos-
ite periods. VPRM inputs are described in more detail in the Supporting Information.
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Site-specific VPRM is run for five different cases (described in Table 1), including four cases using the original 
Re model (VPRMann.org, VPRMann, VPRMann.ND, and VPRMseas) and one with the modified Re model (VPRMnew). 
With the original Re model, we test the impact of bootstrapping nighttime data in the flux tower database using 
the original (VPRMann.orig) versus resampled database (VPRMann), annual (VPRMann) versus seasonal parameters 
(VPRMseas), and optimizing GEE and Re parameters simultaneously (VPRMann) versus separately (VPRMann.ND). 
We additionally isolate the impact of the new respiration model by comparing the old (VPRMann.ND) and new 
(VPRMnew) respiration equations using a consistent night/day optimization method. For model evaluation, a frac-
tion of observations in the historical flux tower database is reserved from the parameter optimization. Given the 
relative sparsity of tower locations, we did not reserve entire sites to be used for model evaluation, but instead 
randomly sampled data across existing sites in the database (as explained in more detail in the Supporting Infor-
mation). We acknowledge that this practice will likely over-estimate model performance in simulating spatial 
variability (Joiner & Yoshida, 2020; Reitz et al., 2021), but it should still be sufficient to distinguish between the 
quality of different model setups.

For simplicity, only VPRMann, VPRMseas, and VPRMnew were chosen for further analysis in the gridded runs, as 
these setups are the most realistic and consistent with previous VPRM publications (e.g., Hilton et al., 2013, 2014; 
Mahadevan et al., 2008), while demonstrating advances made in this study. Because there is no direct set of obser-
vations for validating gridded flux estimates across a landscape, here we rely on atmospheric CO2 observations 
and TBM intercomparison to elucidate model performance at regional scales. The availability of simulations from 
two transport models (WRF-STILT and NAMS-STILT, as further described in Section 2.3) for the atmospheric 
CO2 comparisons limited the study to this single year; however, weather patterns in 2016–2017 were within the 
range of 20 years of interannual variability in most parts of the domain (Figure S2 in Supporting Information S1).

2.2.  Other Biospheric Models

We also compare gridded VPRM flux estimates with model output from CASA and SiB4, two process-based 
TBMs which are commonly used to understand the carbon cycle and as priors in atmospheric inversion studies 
over the North American continent (e.g., CarbonTracker from NOAA-ESRL, https://www.esrl.noaa.gov/gmd/
ccgg/carbontracker/). The CASA and SiB4 flux estimates used here for comparison with VPRM were not run 
specifically for this study; therefore, driver data and model resolutions were not standardized. However, the 
spread across models of plausible flux estimates should still provide a measure of VPRM model uncertainty. The 
principal components and differences between the VPRM, CASA, and SiB4 implementations compared here are 
described briefly below and also summarized in Table S4 in Supporting Information S1.

VPRMann.orig VPRMann VPRMann.ND VPRMseas VPRMnew

Respiration model Original model: 
linear function of 
temperature

Original model: 
linear function of 
temperature

Original model: 
linear function of 
temperature

Original model: 
linear function of 
temperature

Expanded model 
including EVI, 
non-linear 
temperature, and 
interactions with 
water stress

Parameter seasonality No No No Yes (winter, spring, 
summer, fall)

No

Optimization technique GPP and Re parameters 
optimized 
simultaneously

GPP and Re parameters 
optimized 
simultaneously

Re parameters optimized 
with night-time 
NEE data; GPP 
parameters optimized 
with daytime NEE - 
predicted Re

GPP and Re parameters 
optimized 
simultaneously

Re parameters optimized 
with night-time 
NEE data; GPP 
parameters optimized 
with daytime NEE - 
predicted Re

Flux tower data set 
gap-filled and 
resampled?

No Yes Yes Yes Yes

Note. Model setups shaded in light gray were implemented for the gridded runs.

Table 1 
Comparison of Features Across Multiple VPRM Setups Evaluated in This Study
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The CASA model was first developed in the 1990s to take advantage of remote-sensing data from NASA satellites 
(Potter et al., 1993; Randerson et al., 1996) and like VPRM, it is a diagnostic light-use efficiency model, incor-
porating remotely sensed data, meteorological inputs, and light-use efficiency factors to estimate GEE. It uses a 
diagnostic phenology scheme based on remotely sensed monthly fPAR (fraction of photosynthetically active radi-
ation, Figure S3 in Supporting Information S1). The CASA implementation included here is the ensemble mean 
from the Level 2 pruned ensemble generated for the ACT-America project (Zhou, Williams, Lauvaux, Davis, 
et al., 2020; Zhou, Williams, Lauvaux, Feng, et al., 2020), with ensemble members varying across PFT-specific 
parameter ranges and maximum light-use efficiency parameters calibrated with North American flux tower data. 
Zhou, Williams, Lauvaux, Davis, et al. (2020) previously demonstrated that this CASA ensemble mean agrees 
well with flux tower observations compared to other TBMs.

The Simple Biosphere Model (SiB), despite its name, is a complex process-based model that simulates both the 
carbon and energy cycles and can be used to predict future carbon cycle dynamics (Sellers et al., 1986, 1996). 
GEE is estimated in SiB using the mechanistic Farquhar et al. (1980) enzyme-kinetic photosynthesis algorithm. 
This study uses output from SiB4 (Haynes, Baker, Denning, Stöckli, et al., 2019; Haynes, Baker, Denning, Wolf, 
et al., 2019), which has a prognostic (predictive) phenology scheme specifically developed to account for grass-
land and crop calendars. The SiB4 phenology scheme has been shown to perform well for distinct crop types 
(corn, soybeans, and winter wheat; Lokupitiya et al., 2009) and grasslands (Haynes, Baker, Denning, Stöckli, 
et al., 2019; Haynes, Baker, Denning, Wolf, et al., 2019) at discrete flux tower locations; however, it may fail 
to represent actual phenology across a landscape due to unmodeled management effects (e.g., fertilization, irri-
gation, equipment availability for planting and harvest), and disturbance events like storms or insect outbreaks.

CASA and SiB4 both have process-based respiration models, which track flows across carbon pools (albeit with 
a varying number of live and dead pools, Table S4 in Supporting Information S1). Respiration fluxes are then 
similarly determined from each pool as a function of photosynthetic supply, pool-specific turnover and decay-rate 
constants, and environmental stress factors.

CASA and SiB4 have varying spatial and temporal resolutions for model structure as well as in their specific 
implementations here. First, CASA has a native monthly temporal resolution, whereas SiB4 outputs hourly fluxes 
(like VPRM), with a sub-hourly calculation of photosynthesis, and daily updates to an internally calculated Leaf 
Area Index. An algorithm was introduced by Fisher et al. (2016) to downscale monthly CASA fluxes to 3-hourly 
using temperature and radiation data (further interpolated to hourly for this study); however even with this down-
scaling, phenology is still tracked monthly in CASA.

In terms of spatial resolution, the CASA implementation used here was run at 500 m for the coterminous USA 
and at 5 km for North America (with 500 m fluxes in the USA merged with 5 km fluxes in Canada for this study). 
Only the dominant land cover in each pixel is represented in CASA. In contrast, SiB4 fluxes are estimated here 
at the relatively coarse spatial resolution of 0.5° but using a weighted land-cover approach (like VPRM) to repre-
sent sub-pixel variability. This weighting approach has been shown to make land surface model performance 
less sensitive to spatial resolution (D. Li et al., 2013). The dominant land cover approach in CASA is partially 
compensated for by its high spatial resolution in the USA but could be potentially problematic in representing 
fragmented land covers in Canada at the 5 km resolution.

Gridded flux estimates from all three TBMs (VPRM, CASA, and SiB4) are aggregated/disaggregated to 0.1° 
resolution for further analysis, a computationally tractable scale that also allows for comparison of spatial 
patterns. However, to test the relative impact of varying spatial resolution across the TBMs, a sensitivity test is 
performed aggregating VPRM and CASA flux estimates to 0.5° from May to October (to match the resolution of 
SiB4) and simulating atmospheric CO2 with the original (0.1°) versus coarsened (0.5°) fluxes.

2.3.  Atmospheric CO2 Evaluation of Gridded Fluxes

Gridded flux estimates are evaluated by convolving them with footprints from an atmospheric transport model 
and then comparing simulated with observed atmospheric CO2 mole fractions sampled continuously at multiple 
towers throughout the domain. The footprints (or sensitivity to fluxes in space and time) of atmospheric observa-
tions vary by tower location, inlet height, and weather patterns, although the towers generally see the influence 
of high-resolution surface fluxes (in space and time) near the tower, and a more diffuse integrated signal coming 
from farther away. Thus, atmospheric CO2 data can help to evaluate biospheric CO2 flux estimates at coarser 
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spatial and temporal scales over more parts of the domain compared to the limited spatial footprints (∼1 km 2) 
sampled by the flux towers.

2.3.1.  Atmospheric CO2 Tower Network

Afternoon hourly average atmospheric CO2 observations from 21 surface towers are used to evaluate gridded 
NEE fluxes (Figures 2 and 3; Table S5; Section S2 in Supporting Information S1). The towers, maintained by a 
variety of data providers (Karion et al., 2020; Miles et al., 2018; Mitchell et al., 2019; NOAA ESRL, 2019; Rich-
ardson et al., 2017), were chosen among potential towers as those primarily sited in non-urban areas, excluding 
locations with challenging topography (for modeling transport) or large fossil fuel emission influence. Although 
many of these towers have been previously used in atmospheric inversion studies (especially those denoted as 
NOAA and EC in Table S5 in Supporting Information S1, e.g., L. Hu et al., 2019), roughly half of them (operated 
by Earth Networks, denoted as EN-NIST in Table S5 in Supporting Information S1) have not been used before in 

Figure 3.  Atmospheric CO2 observations across towers compared in four different ways: (a) total afternoon average CO2 mole fractions across full year for each tower 
(gray), mean across towers (red) and modeled "optimal" background contribution (blue), (b) afternoon average biospheric enhancements across full year for each tower 
(gray), mean across towers (red) and difference in CT19 B versus CTE background conditions (orange), (c) mean hourly diurnal cycle of biospheric enhancements in 
January for each tower (gray), mean biospheric enhancement across towers (green) and mean FF contribution across towers (gold), and (d) the same as (c) but in July. 
For (c) and (d), afternoon hours have a thicker line width, with “afternoon” defined as described in the supplemental material. Convolutions and background conditions 
are as described in the text for all sub-plots unless otherwise indicated.
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a comprehensive analysis of upwind CO2 fluxes. Thus, the combination of CO2 mole fraction data from new and 
existing towers provides a unique opportunity to evaluate regional-scale CO2 fluxes in this domain.

To simulate atmospheric CO2 enhancements due to the biosphere, modeled NEE fluxes are multiplied by foot-
prints from an atmospheric transport model (Lin et al., 2003), also known as a convolution where flux units of 

𝐴𝐴 𝐴𝐴mol ∗ m−2 ∗ s−1 are converted to 𝐴𝐴
𝜇𝜇mol

mol
 , or the mole fraction enhancement of CO2 at the observation location and 

time occurring due to upwind modeled fluxes inside the domain. However, total atmospheric CO2 measurements 
are also influenced by fossil fuel and fire emissions and atmospheric CO2 in air masses advecting into the domain 
(i.e., background conditions), all of which must be subtracted from observed CO2 mole fractions for comparison 
with simulated biospheric enhancements. Thus, convolved NEE fluxes (or simulated biospheric CO2 enhance-
ments) are compared with “observed” enhancements, defined as total observed CO2 mole fractions—simulated 
fossil fuel influence—background conditions, with enhancements having positive or negative signs due to the 
influence of biospheric sources and sinks. (Fire emissions were also considered, but ultimately not included 
due to their marginal influence on CO2 mole fractions in this domain and time period.) The term “observed 
enhancements” is henceforth used throughout the paper (in comparison to the simulated enhancements from NEE 
convolutions), although these pseudo-observations are also subject to errors in the transport model, fossil fuel 
inventories, and background conditions, as discussed below.

Both observed total CO2 mole fractions (Figure 3a) and biospheric enhancements (Figure 3b) show a strong 
seasonal cycle and spatial variability across towers, reflecting the influence of seasonality and spatial patterns in 
the underlying CO2 fluxes, but also atmospheric mixing. With changes in wind direction and synoptic weather 
conditions, what towers “see” in the domain at any given moment may be sparse and variable, but mean inte-
grated footprints summed across towers (shown for July in Figure 2) show that most of the domain is observed 
on average over time by this network of towers, with slightly less sensitivity along the edges of the domain, 
and stronger sensitivities in summer compared to winter (when wind speeds are higher). Some towers have a 
stronger influence from croplands, wetlands, forests, or urban areas, although almost all towers have some sensi-
tivity to deciduous broadleaf forests, crops, and grassland/pasture (including developed-open space), showing 
the broad influence of these land covers throughout the domain (Figure 1 and Table S5 in Supporting Informa-
tion S1). The tower network is also sensitive to both day and nighttime fluxes on average, with afternoon obser-
vations typically most sensitive to nearby fluxes in the morning of the same day and previous night (Figure S4 in 
Supporting Information S1).

2.3.2.  Atmospheric Transport Models

Footprints corresponding to each hourly atmospheric observation were generated from two different trans-
port models: WRF-STILT and NAMS-STILT. WRF (Weather Research and Forecasting model; Skamarock 
et al., 2008)) was run with a 1-, 3-, and 9-km nest, with the finer scale nests centered around the Washington DC/
Baltimore area (Figure 2). NAMS (North American Mesoscale System; NCEI et al., 2020) is a meteorological 
product with a spatial resolution of 12 km made publicly available by NOAA/ARL ((ftp://arlftp.arlhq.noaa.gov/
nams). The Stochastic Time-Inverted Lagrangian Transport model (STILT, Lin et al., 2003) was used in combi-
nation with winds from the two meteorological products (WRF and NAMS) to generate footprints on a 0.1° grid 
across the domain by releasing virtual particles from each observation point and tracing them back in time and 
space to their source locations and times. Further details of the custom WRF runs and footprint generation is 
included in Section 3 of the supplemental material.

WRF-STILT with its custom setup and higher spatial resolution may help to better model transport in the Appa-
lachian mountain range that crosses most of the domain (Pillai et  al.,  2011) and within the two inner nests 
from Washington D.C. to Philadelphia, as compared to NAMS-STILT. However, without a more in-depth study 
evaluating the two transport models against observations, it is difficult to know which set of footprints is more 
accurate in different parts of the domain throughout the year. Therefore, convolutions using WRF-STILT and 
NAMS-STILT footprints are averaged for this study, as averaging across process-based models is known to help 
reduce the influence of systematic and random errors (Elder, 2018). Results from atmospheric CO2 comparisons 
are also highlighted only if they are robust across each individual transport model (with corresponding analyses 
using WRF-STILT or NAMS-STILT footprints alone included in the Supporting Information).
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2.3.3.  Background Conditions

To determine background conditions (Karion et al., 2021; Mueller et al., 2018), STILT virtual particles corre-
sponding to each atmospheric CO2 observation are traced backwards to their exit locations from the domain, and 
then a four-dimensional CO2 mole fraction field is sampled and averaged at exit locations and time periods to 
determine the background contribution. Modeled four-dimensional CO2 mole fractions at exit points are taken 
from two optimized data assimilation products: CarbonTracker CT2019 B (CT19 B; Jacobson et al., 2020) and 
CarbonTracker Europe 2018 (CTE18; Peters et al., 2010). Background conditions at the towers differ between the 
two products (CT19 B and CTE18) throughout the year, with mean monthly differences ranging from 0.5 μmol/
mol (or parts per million, ppm) in November and December to 1.4 μmol/mol in August and 1.8 μmol/mol in 
September (Figure 3b), in part due to differences in the underlying biospheric models used as priors in each opti-
mization system. In fact, the difference between background conditions is larger than the “observed” biospheric 
enhancements for about 26% of observations in winter months (November to April) and 12% of observations 
from May to October, with even higher percentages in early spring (e.g., 47% in March and 32% in April) as 
ecosystems transition from CO2 sources to sinks.

Given that there are limited datasets to evaluate which background product is most accurate at different times of 
the year, we used the following procedure to choose an "optimal" product in each month. Monthly mean biases 
across towers are compared between simulated and observed CO2 enhancements using each potential background 
condition (CT19 B, CTE18, and their mean) and for each TBM. If one background product has consistently 
smaller biases across towers for all the TBMs, then we assume that this product is the “better” model in that 
month for our purposes. This analysis resulted in selecting the mean background in November, February, March, 
April, August, and September, and the CTE18 product in the remaining months.

2.3.4.  Fossil Fuel Emissions

To remove the influence of fossil fuel emissions on atmospheric CO2 observations, we use fossil fuel flux esti-
mates from the Vulcan 3.0 product (Gurney et al., 2020) in the United States merged with the FFDAS product 
(Asefi-Najafabady et al., 2014) in Canada. Both products are defined hourly, with FFDAS at 0.1° and Vulcan 
3.0 at 1 km spatial resolution but merged to have a consistent 0.1° resolution. Unfortunately, neither product was 
available specifically for our year of interest (2016/ 2017); therefore, the merged fossil fuel product for 2015 is 
adjusted to match the days of week in 2016/ 2017, given that fossil fuel emissions are known to behave differently 
on weekdays versus weekends (Gurney et al., 2020).

Uncertainty associated with fossil fuel emission estimates is generally considered to be lower than that from 
biospheric flux estimates (Lauvaux et al., 2021), especially during the growing season; however, emission magni-
tudes and their fine spatiotemporal patterns are not perfectly known, especially if the emission product was 
developed for a year other than the one of interest, as in this study. In fact, in winter, fossil fuel and biospheric 
enhancements for towers in the domain are similar in magnitude and have the same positive sign (Figure 3c); 
thus, small errors in emissions estimates could have a larger relative impact on atmospheric CO2 comparisons in 
winter compared to summer months (Figure 3d). Regardless, we consider the fossil fuel emission product used 
here sufficient for the purposes of evaluating biospheric model performance, which is supported by minimal 
differences between convolutions using different emission products (e.g., FFDAS in the USA rather than Vulcan 
3.0) compared to the spread associated with varying transport, biospheric model and background conditions (as 
also seen in other studies over eastern North America, e.g., Martin et al., 2019).

2.4.  Model-Data and Model-Model Intercomparisons

Figure 4 shows the flow of analyses used to evaluate VPRM flux estimates, including analyses with flux tower 
observations (green), intercomparison with CASA and SiB4 flux estimates (orange), and atmospheric CO2 obser-
vations (blue). Site-specific flux estimates from the five VPRM cases are compared to reserved nighttime NEE 
observations at flux tower locations (to evaluate the respiration component) and then 24-h NEE (to evaluate 
full seasonal and diurnal cycles). Then, gridded flux estimates from the three selected VPRM cases (VPRMann, 
VPRMseas, and VPRMnew), CASA and SiB4 are compared in terms of their gridded spatial patterns, as well as 
seasonal and diurnal cycles aggregated to two spatial groupings: deciduous broadleaf forest and cropland pixels 
(Figure 1, right panel). Together, these two land cover types make up about half of the land area in the domain 
and are the predominant land covers upwind of the NEC, thus disproportionately influencing atmospheric CO2  
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in urbanized areas of the East Coast. Moreover, the Corn Belt is known to be one of the most biologically produc-
tive ecosystems on Earth during the height of the growing season (Gray et al., 2014; Hilton et al., 2017; Zeng 
et al., 2014), and therefore has a strong influence on atmospheric CO2 across the domain, especially in June, July, 
and August.

Finally, NEE convolutions from the three VPRM's, CASA, and SiB4 are compared to observed atmospheric CO2 
enhancements (as described in Section 2.3) to test the TBMs' ability to capture CO2 spatial gradients, seasonal 
cycles, and hourly variability in the atmosphere. The seasonal cycles of monthly mean atmospheric enhance-
ments are first compared at four specific towers, with two predominantly influenced by croplands (S01 in Indiana 
and TPD in Ontario) and two by forests (DNH in New Hampshire and DVA in Virginia; Figure 2; Table S5 in 
Supporting Information S1). Then, monthly mean biases are examined across all 21 towers to identify general 
errors in the TBM flux estimates across the domain (in terms of phenology, flux magnitudes, and spatial patterns) 
throughout the year. Next, we compare hourly CO2 variability within each month across towers, which tests the 
TBMs' ability to match the diurnal cycle, synoptic variability, and spatial gradients seen in the observations by 
time of year.

For the analyses using flux tower and atmospheric CO2 data, simulations are compared to observations at both 
hourly and monthly timescales. At the monthly timescale, mean biases are assessed, whereas at the hourly times-
cale, the coefficient of determination (R 2) and the Nash-Sutcliffe coefficient (or NSC, Moriasi et al., 2007) are 
used to evaluate model performance, with the NSC, also known as a model efficiency factor, defined as:

��� = 1 −
∑�

�=1(����� − ����)2

∑�
�=1(���� − ���)

2
.�

The NSC is calculated using the same equation as a coefficient of determination (R 2), but instead of using a fitted 
regression model (guaranteed to have zero mean bias), the NSC metric uses actual model simulations, or in this 
case, NEE convolutions with atmospheric footprints (predi). Therefore, the NSC can vary from -𝐴𝐴 ∞ to 1, with 
values < 0 indicating that the model performs worse than the observational mean for prediction (due to biases in 
the model), and values > 0 implying a better model fit than the observational mean. Thus, this metric assesses the 

Figure 4.  Diagram of planned analyses for VPRM flux evaluation. Each color box delineates a particular type of evaluation 
(in terms of data sets and scale of analysis), with the second row of sub-boxes describing the model runs and observations, 
and the third row describing each set of analyses.
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model’s ability to capture small-scale variability, while also penalizing model fits that have particularly biased 
flux estimates.

3.  Results and Discussion
3.1.  VPRM Model Development and Evaluation With Flux Tower Data

For the new VPRM respiration model (Equation 5), EVI was seen to be the single most important factor in improv-
ing model fit to hourly nighttime NEE observations, particularly for grass and croplands (difference between 
orange and gray in Figure 5). This is consistent with the fact that canopy development during the growing season 
in the temperate, humid climate that covers most of this domain induces large seasonal increases in autotrophic 
respiration. The second most important factor was the squared temperature term, particularly for northern ever-
green & mixed forests and corn (difference between blue and orange). For crops and more water-limited ecosys-
tems (i.e., grass and shrublands), the water stress scaling factor and its interactions with temperature also margin-
ally help to improve model performance (difference between grey and yellow). Across PFTs, the new respiration 
model explains the most variability for crops (i.e., with adjusted R 2's of 0.73 for corn and 0.65 for other crops 
compared to 0.28–0.57 for other PFTs), perhaps due to sharper seasonal transitions in biomass (captured by EVI) 
or a lack of natural disturbances which have a stronger impact on other unmanaged ecosystems.

Overall, the new respiration model in VPRMnew (green points in Figure 6, top row, Figure S5 in Supporting Infor-
mation S1) substantially improves the fit of predicted Re fluxes to nighttime NEE observations, especially in 
capturing the spread at high temperatures, compared to the fit using a simple linear model with the four other 
VPRM cases (VPRMann.orig, VPRMann, VPRMseas, or VPRMann.ND). The relative increase in performance for 
VPRMnew (green dots) is particularly dramatic for corn and soybean/other crops, with more of a linear relation-
ship remaining for forested ecosystems. As expected, VPRMseas (purple lines in Figure 6, top row) has better 
performance than VPRMann (red lines) across all PFTs (but not as good as VPRMnew), due to its ability to capture 
seasonal changes in baseline respiration. Interestingly with VPRMseas, a flat or negative relationship in summer 
is inferred between air temperature and respiration for the grassland and soybean/other crop PFTs (Figure S5 
and Table S2 in Supporting Information S1), pointing to soil moisture limitations at the height of the growing 
season for these ecosystems. VPRMann also has generally better performance than VPRMann.orig, due to more even 
sampling across the diurnal cycle in the resampled flux tower observations (carried through to the other cases 
as well).

Figure 5.  Adjusted R 2's from regressions predicting night-time daily mean NEE with site-specific meteorological and 
remote-sensing data for each PFT. Each bar (by PFT) includes additional predictor variables into the model, with the last bar 
adding the low air temperature correction into the full model with all variables (Equation 5).
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VPRMnew also better captures the seasonal cycle in monthly mean nighttime NEE relative to the other VPRM 
cases (Figure 6, bottom row, Figure S6 in Supporting Information S1), as it is the only model to capture the 
magnitude of peak summertime respiration, especially in crop ecosystems. VPRMseas and VPRMann.ND only 
slightly underestimate peak respiration in most PFTs but have other limitations. VPRMseas (purple) has sharp 
seasonal transitions every 3 months, given how the parameters are defined, which could potentially be alleviated 
by using monthly parameters in future work. The higher respiration year-round for VPRMann.ND (blue) relative 
to VPRMann (red) shows that separately estimating GEE and Re parameters can improve the models' ability to 
match peak summertime Re; however, VPRMann.ND is shown to overestimate respiration in the spring and fall 
for all PFTs, and especially for crops. VPRMann (red) and VPRMann.orig (pink) have the lowest peak summertime 
respiration across cases, with underestimates for VPRMann of ∼20%–60% relative to observations across PFTs. 
The further ∼15%–30% less peak respiration for VPRMann.orig relative to VPRMann again shows the benefit of the 
resampling procedure for capturing peak Re fluxes.

Figure 6.  Scatter plots of observed air temperature versus night-time daily mean NEE (top row) for out-of-sample flux tower observations reserved from parameter 
optimization, and model fits for VPRMann.orig VPRMann, VPRMann.ND, VPRMseas, and VPRMnew, with four lines for VPRMseas corresponding to each season. NSC 
values are shown comparing each model to observations. Also shown are seasonal cycles of monthly mean night-time NEE (bottom row) comparing out-of-sample 
observations to model predictions from the same VPRM cases. Results are shown for two PFTs (representing ∼40% of total land cover in the domain): deciduous 
broadleaf forests (27% + 5% urban, left column) and maize crops (8%, right column). Plots for other PFTs are included in Figure S6 in Supporting Information S1.
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Across the full diurnal cycle at the height of the growing season (shown on average from June to August in 
Figure 7, top sub-plot), the VPRM cases are shown to mainly differ at night, with VPRMnew (green) the most unbi-
ased from 6:30 p.m. to 4:30 a.m. and with a smaller spread across towers compared to the other cases. However, 
all cases have similar positive daytime biases from 8:30 a.m. to 2:30 p.m. local time of ∼1–2 μmol*m −2*s −1 on 
average across towers. It is unclear what could cause this similar bias across VPRM setups using different opti-
mization procedures, but it could be related to morning venting of pooled nighttime NEE in the flux tower obser-
vations, which does not have a biophysical explanation in the model equations. This would also point to some 
amount of unobserved Re during nighttime hours in the flux tower observations due to insufficient turbulence, 
which is instead observed later the next day. These diurnal cycle biases associated with flux tower observations 
remain to be investigated (and hopefully eliminated) in future work.

Given the positive bias in daytime NEE (and unbiased nighttime NEE), VPRMnew has a small positive mean bias 
on a 24-h basis during the growing season (Figure 7, bottom sub-plot). VPRMann.orig (red) and VPRMann (pink) 
monthly mean NEE are biased low from June to September, due to their strong underestimation of nighttime Re in 
the growing season (stronger in magnitude than the weak positive daytime bias), whereas VPRMseas (purple) NEE 
is biased high in June and low in September, likely due to a static baseline respiration value across 3-monthly 
periods. VPRMann.ND (blue) is biased high in the shoulder months of March, April, May, October, and November, 
given that temperature alone is not a good predictor of the Re seasonal cycle. All cases are relatively unbiased 
compared to flux tower NEE observations (with a smaller spread across towers) in the winter months of Decem-
ber, January, and February. The large spread across towers during the growing season for all cases could point 
to difficulties in predicting spatial variation, although this topic remains to be investigated further in future work 
(H. Meyer et al., 2019).

3.2.  Gridded NEE Spatial Patterns Across TBMs

Gridded monthly mean NEE flux estimates in January, June, July, and August (at 0.1° resolution) are shown in 
Figure 8 for VPRMnew, CASA, and SiB4. Given different model structures and input data sets, CASA and SiB4 
spatial patterns are relatively independent from those of VPRMnew, thereby showing the range of uncertainty 
here across plausible TBMs. In contrast, VPRMseas and VPRMann monthly mean NEE spatial patterns are highly 
correlated with those of VPRMnew, with differences primarily in their flux magnitude; thus, their spatial patterns 
are compared in Figure S7 of the Supporting Information S1. All TBMs show net sources in winter and net sinks 
in summer months, with proportionally higher net uptake in cropping areas at the peak of the season. But spatial 
patterns also differ across TBMs due to differences in underlying land cover maps, relative strength of component 
fluxes (i.e., GEE and Re) within each PFT, and phenology.

In January, when Re dominates NEE across most parts of the domain (Figure 8, first column), VPRMnew has 
weaker sources to the atmosphere than either CASA or SiB4. Also, VPRMnew and CASA have stronger sources in 
the south of the domain compared to the north, whereas SiB4 shows the opposite north-to-south gradient, due to 
a relatively stronger GEE in the south. Wintertime fluxes for VPRMnew and SiB4 are also relatively smooth across 
the landscape compared to CASA, which estimates zero fluxes in urban areas (more noticeable in the United 
States with 500 m resolution) and anomalously low fluxes in parts of Ontario (likely related to the 5 km spatial 
resolution and dominant land cover formulation in this model).

During the growing season (i.e., June to August, second to fourth columns in Figure 8), all TBMs estimate the 
strongest net uptake in the Corn Belt relative to other parts of the domain, although the magnitude and timing 
of peak uptake differs across models. For example, in states like Illinois and Indiana, SiB4 estimates by far the 
strongest peak NEE (i.e., maximum pixel-wise July monthly mean of −9.6 μmol*m −2*s −1), followed by VPRMnew 
(−7 μmol*m −2*s −1) and then CASA (−6.2 μmol*m −2*s −1). CASA has the weakest net uptake in cropping areas, 
in part because it does not distinguish between C3 and C4 crops (Table S4 in Supporting Information S1), unlike 
SiB4 and VPRMnew. The strong differences in July NEE between VPRM and SiB4 in the Corn Belt could be 
due to the daytime NEE bias in VPRM discussed in Section 3.1, and/or differences in the underlying crop maps 
between the models and crop-specific parameterizations.

The TBMs also clearly differ in terms of crop phenology. For example, in June, SiB4 net uptake is already strong 
in the Corn Belt, whereas crop uptake is just starting for CASA or not planted yet for VPRMnew. In states like 
Illinois and Indiana, peak crop uptake occurs in August for VPRMnew, but earlier in July for CASA and SiB4. In 
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the Mississippi River Valley, which has substantial soybean production, SiB4 also shows an earlier start to the 
cropping season (in spring, results not shown) and an earlier end in July. In addition, SiB4 and CASA have more 
extensive cropping areas than in VPRM, with additional pixels in Michigan, Wisconsin, and the Carolinas (SiB4), 
and Canada (CASA; Figure S8 in Supporting Information S1).

Figure 7.  Seasonal mean biases (from June to August) compared to reserved flux tower observations for each hour in the 
diurnal cycle (in local time; top row) and 24-h monthly mean biases (bottom row), with biases defined as VPRM NEE—
observed NEE. Results are shown for each of the VPRM cases described in Table 1. Boxplots show the spread across 
individual flux towers, with each box representing the interquartile range (IQR), the median indicated as a horizontal line 
inside each box, the error bars indicating the 25th percentile—the IQR (minimum) and the 75th percentile + the IQR 
(maximum), bounded by the range of the data, and dots as outliers falling outside of the error bars.
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For deciduous broadleaf forests during the growing season, VPRMnew estimates stronger net uptake than CASA 
and SiB4, particularly in June, although CASA has a much larger spatial extent for this PFT than VPRM and 
SiB4 (Figure S8 in Supporting Information S1). For the VPRM parameter optimization, most of the deciduous 
broadleaf forest flux towers are in the north of the domain, with fewer in the Appalachian deciduous forests of 
Kentucky, West Virginia, and Pennsylvania, where most of this land cover exists (Figure 1), which could bias 
the resulting parameters and flux estimates. In July and August. VPRMnew and SiB4 also estimate near-neutral 
fluxes in the southern part of the domain (i.e., northern halves of Alabama, Mississippi, and Georgia, containing 
primarily a mix of evergreen, mixed and deciduous broadleaf forests) compared to the net sinks in CASA. This 
could be because VPRMnew and SiB4 better capture late-summer water stress (i.e., weaker GEE) in these areas at 
this time of year. Differences in phenology in forested PFTs are more apparent in spring and fall months (rather 
than June to August shown in Figure 8), as will be discussed further in Section 3.3.

3.3.  NEE Seasonal and Diurnal Cycles Across TBMs

The TBMs generally agree well in terms of timing for the monthly mean NEE seasonal cycle aggregated across 
crop and deciduous broadleaf forest pixels (Figure 9), except for SiB4 in croplands, which has a growing season 
shifted about a month earlier than for the other TBMs. During the growing season, VPRMnew, VPRMseas and 
CASA agree well in terms of flux magnitude for both ecosystems, whereas SiB4 and VPRMann have stronger 
peak net uptake in June and July. It is interesting to note that VPRMann has stronger net uptake in summer months 
than VPRMseas and VPRMnew, despite having the lowest magnitude of component GEE and Re fluxes (Figure S9 
in Supporting Information S1), which is due to having the most depressed Re relative to GEE during the growing 
season.

Figure 8.  Monthly mean gridded NEE at 0.1° for VPRMnew, CASA, and SiB4 in January, June, July, and August. Corresponding plots comparing VPRMnew, VPRMseas, 
and VPRMann are shown in Figure S7 in Supporting Information S1.
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It is interesting to note that VPRMann has stronger net uptake in summer months for both ecosystems than 
VPRMseas and VPRMnew, despite having the lowest magnitude of component GEE and Re fluxes (Figure S9 in 
Supporting Information S1); this is due to its having the most depressed Re relative to GEE during the growing 
season. In general, GEE and Re fluxes in VPRMnew are stronger than in VPRMseas, followed by VPRMann, in part 
due to separate optimization of nighttime and daytime parameters with VPRMnew.

CASA and SiB4 estimate much stronger component fluxes (i.e. GEE and Re, Figure S9 in Supporting Infor-
mation S1) than any of the VPRMs, although GEE and Re fluxes in VPRMnew are stronger than in VPRMseas, 
followed by VPRMann, in part due to separate optimization of nighttime and daytime parameters with VPRMnew. In 
addition, CASA has longer growing seasons for GEE and Re relative to both SiB4 and the VPRMs, especially for 

Figure 9.  Seasonal cycle of monthly mean NEE fluxes (top row), and mean July diurnal cycle (bottom row), from the gridded runs for each TBM, spatially aggregated 
across pixels with predominantly deciduous broadleaf forests (left column) and croplands (right column), as indicated in Figure 1. The corresponding plots with GEE 
and Re fluxes are shown in Figures S9 and S10 in Supporting Information S1.
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Re, which begins to ramp up about a month earlier in spring compared to the other TBMs. This was also seen in 
Messerschmidt et al. (2013), who showed that the timing in CASA was less consistent with atmospheric column 
CO2 and flux tower observations than that in SiB. Given the difference in component flux timing, the similarity 
between CASA and the VPRM’s in timing and flux magnitude of the NEE seasonal cycle during the growing 
season is likely due to some combination of both models using diagnostic phenology and calibration with flux 
tower NEE.

Stronger Re fluxes year-round for CASA and SiB4 are also reflected in stronger wintertime NEE, when Re domi-
nates the total flux. CASA and SiB4 are neutral biosphere models that do not account for net annual sinks, which 
could lead to overestimation of Re in forests recovering from disturbances (e.g., storms, insect attacks, or harvest) 
or in croplands where harvested products are transferred to other areas for consumption (Haynes, Baker, Denning, 
Stöckli, et al., 2019; Haynes, Baker, Denning, Wolf, et al., 2019; Zhou, Williams, Lauvaux, Davis, et al., 2020). 
(In contrast, net annual sources and sinks in VPRM primarily reflect the influence of the flux tower observations 
used in the parameter optimization, which in this case result in a domain-wide net annual sink about 4.5 times 
greater than for the other TBMs in this year.) VPRM may also underestimate Re year-round due to insufficient 
nighttime turbulence and later morning venting of nighttime NEE in the flux tower observations, as mentioned 
previously (Barr et al., 2013). In addition, drainage loss due to horizontal advection during stratified stable night-
time conditions is non-negligible and represents flux to the atmosphere that is never measured (Aubinet, 2008; 
Nicolini et al., 2018), which could also lead to underestimated VPRM Re fluxes (which are optimized with night-
time measurements).

For the mean July NEE diurnal cycle (Figure 9), the VPRM cases differ primarily at night (also seen in Figure 7), 
with similar afternoon net uptake (despite slightly stronger GEE for VPRMnew relative to VPRMseas and VPRMann, 
Figure S10). Compared to the other TBMs, CASA has by far the strongest amplitude of the NEE diurnal cycle, 
with daytime and nighttime peaks about 50% stronger than for VPRMnew in both ecosystems for this month. The 
SiB4 diurnal cycles are more similar to that of the VPRMs, with only slightly stronger net afternoon uptake and 
very similar nighttime sources as VPRMseas. The longer growing seasons in CASA for GEE and Re also lead to 
stronger diurnal cycles for CASA in shoulder seasons (spring and fall) compared to the other TBMs (results not 
shown).

3.4.  Gridded NEE Model Evaluation Using Atmospheric CO2 Observations

3.4.1.  Monthly Mean CO2 Seasonal Cycles at Four Towers

A comparison between monthly mean simulated and observed atmospheric CO2 enhancements is shown for four 
towers in Figure 10. S01, influenced by corn production, shows the strongest observational peak drawdown in 
July and August compared to the other towers, whereas DVA, in the southern part of the domain, has the longest 
growing season from May through September. Peak uptake occurs in July for DNH and S01, whereas peak uptake 
occurs earlier in June at DVA (perhaps due to late-summer water stress) and in August at TPD (perhaps due to 
crops planted later at northern latitudes compared to S01). At DVA, all the TBMs are biased low in November, 
December, and April for both transport options (Figures S11 and S12 in Supporting Information S1) pointing to a 
systematic problem with fossil fuels or background conditions at this site in these months (although all TBM flux 
estimates could also be similarly biased). At other towers and times of year, observations generally fall within the 
spread of modeled enhancements from the different TBMs.

Simulated CO2 enhancements from all the VPRMs are biased low at DNH during the growing season, whereas 
at the crop-influenced towers (TPD and S01), VPRMnew and VPRMseas are biased high in terms of peak uptake. 
VPRMann more closely matches peak uptake at the crop sites but overestimates net uptake at the forested towers 
(DNH and DVA). The better performance of VPRMann at the crop sites is likely due to compensating errors (both 
underestimated Re and GEE), rather than higher overall model skill relative to VPRMnew.

At the two cropland towers TPD and S01, SiB4 has the strongest peak drawdown in July across TBMs, with a 
negative bias relative to atmospheric observations (in particular, by ∼100% at TPD). At DNH, simulated SiB4 
July uptake is also biased low relative to observations, showing that errors in cropland fluxes likely have an 
influence on CO2 mole fractions far downwind. CASA simulated enhancements match observations well during 
the growing season at all towers except S01, where peak uptake is slightly weak in July and August. In winter  
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months (especially January to March) at DNH and TPD, both CASA and SiB4 are biased high relative to observed 
enhancements.

3.4.2.  Monthly Mean Atmospheric CO2 Biases Across Towers

Across all 21 towers in the domain, VPRMnew and VPRMseas are shown to produce relatively unbiased atmos-
pheric CO2 enhancements throughout the year (Figure 11, Table 2), whereas VPRMann is biased low on average 
from June to August. The summertime bias in VPRMann is due to not enough seasonal increase in Re in this model, 
especially for the towers farthest from cropping areas. The summertime sink bias for VPRMann is alleviated by 
using seasonal parameters in VPRMseas and the EVI covariate in the respiration model for VPRMnew, both of 
which allow for large realistic seasonal increases in Re. This result also shows the strong influence of nighttime Re 
fluxes on afternoon CO2 observations (Figure S4 in Supporting Information S1) given that the VPRM versions 
differ primarily in terms of nighttime NEE (Figures 7 and 9), as also seen in X.-M. Hu et al. (2021) and Lauvaux 
et al. (2008, 2012).

During the summer months of June to August, VPRMnew and CASA both produce relatively unbiased CO2 
enhancements, with CASA having the smallest spread across towers (Figure 11 and Figure S13 in Supporting 

Figure 10.  Monthly mean simulated and observed biological atmospheric CO2 enhancements for VPRMnew, VPRMseas, VPRMann, CASA, and SiB4 at four towers: 
DNH in New Hampshire, TPD in Ontario, Canada, S01 in Indiana, and DVA in Virginia. Enhancements are determined using averaged convolutions with WRF-STILT 
and NAMS-STILT transport, “optimal” monthly background conditions, and Vulcan 3.0 + FFDAS fossil fuel emissions. The same figures using WRF-STILT and 
NAMS-STILT transport alone are shown in Figures S11 and S12 in Supporting Information S1.
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Information S1, Table 2). However, in seasonal transition months like October and November and February to 
May, the VPRMs have the most skill in simulating phenological transitions, whereas CASA is biased low in 
October and high in May, pointing to difficulties in simulating CO2 in transition periods. The higher temporal 
resolution diagnostic phenology (based on EVI) in VPRM relative to the monthly phenology (based on fPAR) in 
CASA can likely explain VPRM’s higher skill in these months.

SiB4 tends to produce more biased CO2 than VPRM and CASA throughout the year, with a larger spread across 
towers, particularly in January, April, July, and October, although it is relatively unbiased on average in June 
and August (Figure 11 and Table 2). The sensitivity test from May to October averaging all TBMs to the 0.5° 
scale before convolution with footprints showed that the relative biases among the TBMs changed very little 
with spatial resolution, implying that this was not the driving factor in explaining SiB4's poorer performance. 
(For example, the mean absolute error across towers in July for VPRMnew went up from 1.2 μmol/mol at 0.1° to 
1.3 μmol/mol at 0.5°, compared to 2.6 μmol/mol for SiB4 at 0.5°.) The SiB4 biases seen here are likely associated 
with errors in cropland phenology, flux magnitude, and spatial extent (i.e., for the Mississippi River Valley in 
April and the Corn Belt in July) which propagate downwind across the domain.

The VPRMs' underestimated enhancements in December and January and overestimation in September could be 
due to flux errors, but also potentially other components of the analysis. For example, in September, the positive 
biases for the VPRMs (especially VPRMnew) and SiB4 could be influenced by large background errors relative 
to small enhancements in this seasonal transition month (Figure 3b). The negative biases for VPRM in Decem-
ber and January could point to a bias in the flux tower nighttime NEE observations used for optimization, as 
discussed previously, and/or a systematic transport model error affecting both WRF-STILT and NAMS-STILT. 

Figure 11.  Boxplots of monthly mean biases (simulated - observed biospheric atmospheric CO2 enhancements) across towers from November 2016 to October 2017 
for each biospheric model, using mean of WRF-STILT and NAMS-STILT convolutions, “optimal” background conditions, and Vulcan 3.0 + FFDAS fossil fuel 
emissions. The same figures using WRF-STILT and NAMS-STILT transport alone are shown in Figure S13 in Supporting Information S1, as well as monthly mean 
biases for each individual tower with mean transport in Figure S14 in Supporting Information S1. The boxplots are the same as indicated in the caption to Figure 7.
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Evidence pointing towards a systematic transport model error is that CASA is also biased low in December and 
unbiased in January relative to atmospheric observations, whereas (Zhou, Williams, Lauvaux, Davis, et al., 2020) 
found overestimated wintertime Re fluxes compared to flux tower data for this particular CASA implementation. 
In fact, Re fluxes in SiB4 and CASA should be overestimated to some extent throughout the year due to the 
neutral biosphere assumptions discussed previously, which is seen for SiB4 in the atmospheric CO2 compari-
sons from November to March, especially with WRF-STILT transport (Figure 10 and Figure S13 in Supporting 
Information S1).

3.4.3.  Comparison of Hourly Atmospheric CO2 Variability Across Towers

Comparisons of simulated and observed atmospheric CO2 enhancements at the hourly timescale (across all 
towers by month) show that all the TBMs do a better job capturing high-resolution atmospheric CO2 variability 
during the growing season (May to August) when the biospheric signal is stronger and the relative impact of other 
errors (transport, background, and fossil fuels) is smaller (Figure 12). In fact, in January, the mean biospheric 
enhancements across towers are of similar magnitude to the fossil fuel emission enhancements (Figure 3c), given 
the large extent over which Re fluxes accumulate in this domain. The biospheric models also better explain hourly 
variability in atmospheric CO2 throughout the year using the adjusted R 2 metric compared to the NSC, which 
penalizes biased flux estimates (as seen by negative NSC values for the VPRMs in December, CASA and SiB4 
in February, and SiB4 in April, July, September, and October). However, NSC and adjusted R 2 values are no 
higher than 0.45 and 0.5, respectively, in any month, pointing to substantial unexplained variability in simulating 
atmospheric CO2 variations from the biosphere throughout the year.

Across TBMs, VPRMnew generally outperforms other models in reproducing hourly CO2 variability using the 
adjusted R 2 metric (for 10 of 12 months) and during the growing season with the NSC (from April to August, 
but also February). In addition, the annual tower-specific adjusted R 2 (Table 3) comparing VPRMnew to observa-
tions is highest or tied with other TBMs at all 21 towers, whereas NSC values with VPRMnew are highest or tied 
at 18 of 21 towers (with S01 and the two southernmost towers, SMT and SCT as the only exceptions). Overall, 
these results point to remarkable skill for VPRMnew in simulating fine-scale afternoon CO2 variability across 
towers, likely due to a better representation of Re relative to the other VPRMs, but also domain-specific optimized 
parameters and high temporal resolution diagnostic phenology common to all the VPRMs. This can be seen by 

VPRMann VPRMseas VPRMnew CASA SiB4
201611 0.82 0.84 0.83 0.98 1.14
201612 1.84 2.59 1.93 1.22 1.15
201701 1.10 2.08 1.36 0.90 1.49
201702 0.68 0.77 0.62 1.58 1.33
201703 0.37 0.58 0.45 0.62 0.82
201704 0.75 0.75 0.51 0.70 1.45
201705 0.50 0.74 0.61 1.44 1.10
201706 1.48 1.17 1.11 0.92 0.96
201707 2.31 1.32 1.23 0.85 2.58
201708 1.34 1.01 1.22 0.94 1.05
201709 1.50 1.44 2.43 0.97 2.37
201710 0.81 0.79 0.80 1.68 1.60

Note. This metric indicates how well each TBM minimizes overall bias and captures spatial gradients in atmospheric CO2 
across towers within each month. These statistics also correspond to the monthly mean biases shown in Figure 11. MAE 
values ≤1.00 μmol/mol are highlighted in light yellow, with the TBM having an MAE≤1.00 μmol/mol and the minimal value 
across models is highlighted in orange.
(Corresponding tables using WRF-STILT or NAMS-STILT convolutions alone, and each set of background conditions are 
shown in table S6 in supporting information S1)

Table 2 
Mean Absolute Error (MAE) Across Towers of Monthly Mean Biases Between Simulated and Observed Biospheric 
Atmospheric CO2 Enhancements in μmol/mol, Shown for Each TBM and Month, Using Averaged WRF-STILT and NAMS-
STILT Convolutions.
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significantly higher adjusted R 2 and NSC values for all the VPRMs compared to CASA and SiB4 in March, May, 
June, September, and October, i.e., the seasonal transition months.

In most months, CASA shows only slightly lower adjusted R 2 and NSC values than the VPRMs, while SiB4 
shows the lowest values, with negative NSC in February, April, July, September, and October and R 2s < 0.1 in 
April, September, and October. The sensitivity test averaging VPRM and CASA fluxes to 0.5° spatial resolution 
from May to October also had only marginal impact on the results shown here, indicating that SiB4 weaknesses 
in simulating hourly atmospheric CO2 variability (as with the monthly mean biases) have less to do with spatial 
resolution than other model-specific factors.

3.4.4.  Transport Model Uncertainty in Atmospheric CO2 Analyses

The previous sections highlight lessons learned about the TBMs by comparing observed atmospheric CO2 
enhancements to simulations using the mean of two transport models (i.e., WRF-STILT and NAMS-STILT). 
However, we can also learn something about transport model uncertainty itself from these analyses. First, using 
WRF-STILT or NAMS-STILT convolutions alone is seen to have the most impact on monthly mean biases in the 
months of June, July, and August, when biospheric fluxes are strongest (as also seen in Feng, Lauvaux, Keller, 
et al., 2019; Figures S11–S13, Table S6 in Supporting Information S1).

Second, differences in footprint strength can make it difficult to properly evaluate flux magnitudes (e.g., in 
December and January), although transport model uncertainty appears to be low enough in this study to detect 
overall source or sink biases in flux estimates during the growing season. For example, in July, simulated enhance-
ments for VPRMann and SiB4 are both biased low relative to enhancements (indicating a sink bias in the fluxes), 
but these biases are roughly double with NAMS-STILT compared to WRF-STILT, making it difficult to assess 
the magnitude of the flux error. In contrast, in June and August, VPRMnew, VPRMseas, and CASA convolutions 
are biased high with WRF-STILT, but are relatively unbiased with NAMS-STILT, making it difficult to ascertain 
whether a flux bias exists at all without additional information related to footprint quality for each model.

Figure 12.  Monthly adjusted R 2 (bottom) and Nash-Sutcliffe coefficients (top) comparing simulated to observed biospheric atmospheric CO2 enhancements at the 
hourly timescale across all towers by month. Averaged WRF-STILT and NAMS-STILT convolutions, Vulcan3.0 (+FFDAS in Canada) fossil fuel emissions, and 
“optimal” monthly background conditions are used for all comparisons. The same plots using WRF-STILT or NAMS-STILT transport alone are shown in Figure S15 in 
Supporting Information S1.

 21698961, 2022, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021JG

006290 by C
lark U

niversity, W
iley O

nline L
ibrary on [05/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Biogeosciences

GOURDJI ET AL.

10.1029/2021JG006290

25 of 32

Third, we can also gather some clues about the relative quality of transport simulations by looking at systematic 
biases in atmospheric CO2 across TBMs (although not a complete proof due to the possibility of similarly biased 
flux estimates across TBMs as well as errors in background conditions and fossil fuels). For example, simulated 
CO2 for all TBMs is biased especially low with NAMS-STILT convolutions in July, and NSC values are also 
lower from June to September with NAMS-STILT compared to WRF-STILT (Figure S15 in Supporting Informa-
tion S1), indicating that NAMS-STILT may have lower quality footprints than WRF-STILT during the growing 
season.

Finally, averaging convolutions from WRF-STILT and NAMS-STILT is shown to help improve correspondence 
with hourly atmospheric CO2 variability. That is, both the NSC and adjusted R 2 metrics are higher for almost 
all months and TBMs when using averaged WRF-STILT and NAMS-STILT convolutions, compared to using 
convolutions with either transport model alone (Figure S15 in Supporting  Information S1). For example, the 
mean year-round adjusted R 2 for VPRMnew goes up to 0.34 with mean transport convolutions compared to 0.27 
with WRF-STILT and 0.29 with NAMS-STILT, while the mean year-round NSC for CASA goes up to 0.19 
compared to 0.12 with WRF-STILT and 0.11 with NAMS-STILT footprints (results not shown). This suggests 
that convolution averaging helps to reduce random transport errors and may also potentially cancel out some 
errors in footprint magnitude across transport models.

4.  Synthesis, Future Work, and Conclusions
In this study, the VPRM biospheric model was customized for an eastern North American domain containing 
large tracts of forests and productive croplands interspersed with industrialized and urban areas. Parameters were 
optimized using flux tower observations from a large historical domain-specific database, using a re-evaluated 
PFT classification with separated northern and southern evergreen needleleaf (and mixed) forests, and corn 

Note. Cells highlighted in gray are the highest across TBMs (within 0.01) for each tower, with the highest value for each 
metric and tower indicated in bold.

Table 3 
Adjusted R 2 and NSC Metrics by Tower Comparing Modeled to Observed Biospheric Atmospheric CO2 Enhancements at 
the Hourly Timescale for the Full Year
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distinct from other crops. The respiration model was also modified to introduce more process-based realism 
(with EVI, quadratic temperature, and water stress factors) relative to the simple linear function of temperature 
in the original model. VPRM flux estimates were then evaluated a) at flux tower locations by comparing them to 
observations reserved from the parameter optimization, and b) across the landscape by comparison with output 
from other TBMs (i.e., CASA and SiB4) and atmospheric CO2 observations at 21 towers in the domain.

Model-data comparisons at flux towers were used to evaluate the impact of the new VPRM respiration model, 
seasonal versus annual parameters, the parameter optimization technique (all 24 hour vs. night/day) and database 
resampling procedures. These comparisons showed that including EVI in the modified respiration model (i.e., 
VPRMnew) was the single most important factor in recovering realistic seasonality and fine-scale spatial variability 
for Re fluxes across PFTs, but especially for crops, which have large seasonal changes in biomass. In contrast, the 
original respiration model (i.e., a simple linear function of temperature) with annual parameters (VPRMann) fails 
to capture peak Re during the growing season, as well as sharp transitions in the spring and fall (Figures 6 and S5 in 
Supporting Information S1). Using seasonal parameters with the original respiration model (VPRMseas) partially 
accounts for seasonal changes in baseline respiration, but not to the extent of VPRMnew. These comparisons 
also showed that the superior performance of the new respiration model in VPRMnew was not only due to using 
a separate night-day optimization scheme for Re and GEE parameters (compared to optimizing all parameters 
simultaneously), but also due to more physiological realism in the updated model equation. Finally, dispropor-
tionate filtering out of nighttime data based on u-star thresholds (to ensure adequate turbulence) can lead to flux 
estimates biased toward daytime uptake; thus, database resampling to ensure even coverage across the diurnal 
cycle may be warranted in future studies where biospheric model parameters are optimized using flux tower data.

For gridded flux estimates, the availability of continuous atmospheric CO2 observations from a dense observing 
network in the domain allowed us to evaluate regional-scale fluxes across the landscape, and thus the implicit 
spatial scaling relationships embedded in PFT-specific parameters and land cover maps for VPRM. Gridded flux 
estimates from VPRM, CASA, and SiB4 were evaluated by first comparing their spatial patterns and seasonal and 
diurnal cycles, and then comparing simulated with observed atmospheric CO2 enhancements within the context 
of uncertainty from transport models, background conditions, and fossil fuel emission estimates. The averaging 
of multiple transport models and a priori evaluation of multiple background condition products in this study 
hopefully helped to reduce the influence of these additional uncertainties on the analyses.

The results from atmospheric CO2 comparisons show that VPRMann has an overall sink bias during the growing 
season (only partially alleviated by using seasonal parameters in VPRMseas). In contrast, VPRMnew is relatively 
unbiased throughout the year (except in December and January), although CASA best captures spatial gradients 
across towers at the height of the growing season from June to August. The atmospheric CO2 analyses also show 
that the high temporal resolution diagnostic phenology in all VPRM versions (with 8-day average EVI and 4-day 
average LSWI) is important for capturing seasonality in GEE and Re, particularly in cropping areas. In contrast, 
CASA with monthly diagnostic phenology is more biased than the VPRM models in seasonal transition months 
like May and October, and SiB4 prognostic phenology appears to be too early in croplands for this year.

VPRMnew also best explains atmospheric CO2 enhancements at the hourly timescale throughout the year 
compared to other TBMs (Figure 12 and Table 3), showing the benefit of both the new respiration model as well 
as high-resolution diagnostic phenology for capturing fine-scale CO2 variability in the atmosphere. Also, given 
the simpler process-based representation of Re in VPRMnew compared to CASA and SiB4, and the more empirical 
photosynthesis model in VPRM and CASA compared to SiB4, the superior performance of VPRMnew in explain-
ing fine-scale atmospheric CO2 variability demonstrates that factors like high-quality gridded input data sets, 
diagnostic phenology and domain-specific parameters may be equally as important (or more) than process-based 
model complexity in simulating high-resolution gridded CO2 fluxes (e.g., as also found in Raczka et al., 2013; 
Schwalm et al., 2010).

This study also shows the importance of adequately simulating agricultural fluxes in the Corn Belt and Missis-
sippi River Valley for explaining atmospheric CO2 in the growing season across this domain, due to their large 
flux magnitudes and upwind locations. For example, SiB4 has the largest cropland extent among the TBMs in its 
underlying land cover map, and along with errors in crop phenology for this year and a strong uptake for corn (too 
strong?), this results in a large sink bias in July for SiB4 compared to atmospheric CO2 observations at almost all 
towers, which cannot be explained by its coarser spatial resolution in this study.
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The underestimation of wintertime NEE for the VPRM's relative to atmospheric observations, as well as the 
smaller magnitudes of component fluxes (GEE and Re) in VPRM relative to CASA and SiB4, remains an unre-
solved issue here. Given that the wintertime bias in VPRM NEE is not seen in the flux tower evaluation (Figure 7, 
bottom sub-plot), this could indicate a bias in the flux tower observations used for parameter optimization, due 
to nighttime drainage and morning venting (and hence under-observed nighttime Re) and/or a systematic bias in 
both transport models (WRF-STILT and NAMS-STILT) in these months. Given the magnitude of the difference 
in component fluxes among the TBMs, and hence the shape of the diurnal cycle (especially for CASA), resolving 
this issue in future work is clearly warranted.

Other future potential improvements to VPRM include (a) incorporating SIF and/or NIRv into the GEE equation 
(e.g. (Badgley et al., 2019; Luus & Lin, 2015; Turner et al., 2020), to better simulate the impact of growing season 
transitions and water stress, and (b) further modifying the respiration equation to incorporate biomass maps, 
simultaneous GEE (to account for the large contribution of recently assimilated carbon to autotrophic respiration), 
disturbance maps, and/or week-to-week changes in EVI (to account for inputs to surface litter pools at the end of 
the growing season). In addition, new flux towers in additional locations, especially in the Appalachian deciduous 
broadleaf forests, the southern half of the domain, in urban areas, and across disturbance gradients, would help to 
improve the representativeness of flux estimates for all biospheric models with empirically derived parameters.

Overall, this study demonstrates the scientific value of using a dense atmospheric CO2 observing network for 
evaluating TBM flux estimates at regional scales, and the analyses shown here form a prototype evaluation 
framework that can be used to guide future model improvements. Parallel and continuing development for each 
TBM, along with simultaneous evaluation using atmospheric measurements, can help to refine TBMs for the 
ultimate purpose of separating anthropogenic and biospheric signals to monitor fossil fuel CO2 emissions using 
an atmospheric data constraint.

Data Availability Statement
Scripts to generate the results shown here, along with input data and summary files, are archived on the NIST 
server at https://data.nist.gov/od/id/mds2-2362. VPRM gridded flux estimates at 0.02°, hourly resolution from 
November 2016 to December 2020 are similarly archived at https://data.nist.gov/od/id/mds2-2382.

DOIs for other data sets used in the paper are listed below:
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obspack_co2_1_GLOBALVIEWplus_v5.0_2019_08_12, https://doi.org/10.25925/20190812, 2019.
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�Baker, John, Tim Griffis (2014-) AmeriFlux US-Ro4 Rosemount Prairie. [Dataset]. https://doi.org/10.17190/

AMF/1419507.
�Baker, John, Tim Griffis, Timothy Griffis (2003–2017) AmeriFlux US-Ro1 Rosemount- G21. [Dataset]. https://

doi.org/10.17190/AMF/1246092.

 21698961, 2022, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021JG

006290 by C
lark U

niversity, W
iley O

nline L
ibrary on [05/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://data.nist.gov/od/id/mds2-2362
https://data.nist.gov/od/id/mds2-2382
https://doi.org/10.18434/M32126
https://doi.org/10.3334/ORNLDAAC/1568
https://doi.org/10.25925/20190812
https://doi.org/10.17190/AMF/1246009
https://doi.org/10.17190/AMF/1246011
https://doi.org/10.17190/AMF/1246152
https://doi.org/10.17190/AMF/1246152
https://doi.org/10.17190/AMF/1246093
https://doi.org/10.17190/AMF/1246093
https://doi.org/10.17190/AMF/1418683
https://doi.org/10.17190/AMF/1419507
https://doi.org/10.17190/AMF/1419507
https://doi.org/10.17190/AMF/1246092
https://doi.org/10.17190/AMF/1246092


Journal of Geophysical Research: Biogeosciences

GOURDJI ET AL.

10.1029/2021JG006290

28 of 32

�Bernacchi, Carl (2004–2008) AmeriFlux US-Bo2 Bondville (Companion site). [Dataset]. https://doi.
org/10.17190/AMF/1246037.

�Biraud, Sebastien, Marc Fischer, Stephen Chan, Margaret Torn (2002-) AmeriFlux US-ARM ARM Southern 
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�Bohrer, Gil (2011–2016) AmeriFlux US-ORv Olentangy River Wetland Research Park. [Dataset]. https://doi.
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�Bohrer, Gil, Janice Kerns (2015–2016) AmeriFlux US-OWC Old Woman Creek. [Dataset]. https://doi.
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�Chen, Jiquan (2002-2002) AmeriFlux US-Wi8 Young hardwood clearcut (YHW). [Dataset]. https://doi.
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�Chen, Jiquan (2002–2005) AmeriFlux US-Wi4 Mature red pine (MRP). [Dataset]. https://doi.org/10.17190/
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�Chen, Jiquan (2004-2004) AmeriFlux US-Wi5 Mixed young jack pine (MYJP). [Dataset]. https://doi.
org/10.17190/AMF/1246020.

�Chen, Jiquan (2004–2005) AmeriFlux US-Wi9 Young Jack pine (YJP). [Dataset]. https://doi.org/10.17190/
AMF/1246024.
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�Gough, Christopher, Gil Bohrer, Peter Curtis (2007-) AmeriFlux US-UMd UMBS Disturbance. [Dataset]. https://
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�Hadley, Julian, J. William Munger (2004-) AmeriFlux US-Ha2 Harvard Forest Hemlock Site. [Dataset]. https://

doi.org/10.17190/AMF/1246060.
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�Suyker, Andy (2001-) AmeriFlux US-Ne3 Mead - rainfed maize-soybean rotation site. [Dataset]. https://doi.
org/10.17190/AMF/1246086.

�Torn, Margaret (2005–2006) AmeriFlux US-ARc ARM Southern Great Plains control site- Lamont. [Dataset]. 
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org/10.17190/AMF/1246081.
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