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Expanding the conceptual, mathematical and practical methods 
for map comparison 

Robert Gilmore Pontius Jr and John Connors 
Clark University 
School of Geography 
950 Main Street 
Tel.: + 001 508 793 7761; Fax: + 001 508 793 8881 
rpontius@clarku.edu; jconnors@clarku.edu 

Abstract 
Conventional methods of map comparison frequently produce unhelpful results for a variety of 
reasons. In particular, conventional methods usually analyze pixels at a single default scale 
and frequently insist that each pixel belongs to exactly one category. The purpose of this paper 
is to offer improved methods so that scientists can obtain more helpful results by performing 
multiple resolution analysis on pixels that belong simultaneously to several categories. This 
paper examines the fundamentals of map comparison beginning from the elementary 
comparison between two pixels that have partial membership to multiple categories. We 
examine the conceptual foundation of three methods to create a crosstabulation matrix for a 
single pair of pixels, and then show how to extend those concepts to compare entire maps at 
multiple spatial resolutions. This approach is important because the crosstabulation matrix is 
the basis for numerous popular measurements of spatial accuracy. The three methods show the 
range of possibilities for constructing a crosstabulation matrix based on possible variations in 
the spatial arrangement of the categories within a single pixel. A smaller range in the possible 
spatial distribution of categories within the pixel corresponds to more certainty in the 
crosstabulation matrix. The quantity of each category within each pixel constrains the range 
for possible arrangements in subpixel mapping, since there is more certainty for pixels that are 
dominated by a single category. In this respect, the proposed approach is placed in the context 
of a philosophy of map comparison that focuses on two separable components of information 
in a map: 1) information concerning the proportional distribution of the quantity of categories, 
and 2) information concerning the spatial distribution of the location of categories. The 
methods apply to cases where a scientist needs to compare two maps that show categories, 
even when the categories in one map are different from the categories in the other map. We 
offer a fourth method that is designed for the common case where a scientist needs to compare 
two maps that show the same set of categories. Results show that the methods can produce 
extremely different measurements, and that it is possible to interpret the differences at multiple 
resolutions in a manner that reveals patterns in the maps. The method is designed to present 
the results graphically in order to facilitate communication. We describe the concepts using 
simplified examples, and then apply the methods to characterize the change in land cover 
between 1971 and 1999 in Massachusetts, USA. 

Keywords: accuracy, fuzzy, error, matrix, uncertainty 

1 Introduction 
The goal of this paper is to propose useful intuitive general statistical methods to compare any 
two raster maps where the pixels can have partial membership to multiple categories. The 
proposed methods are designed to be applicable even for cases where the categories in one 
map are different than the categories in the other map. 
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Our proposed method relies on the crosstabulation matrix, also known as the contingency 
table. The crosstabulation matrix is the bedrock on which a mountain of statistical analyses for 
categorical variables is based. Crosstabulation matrices are used regularly to measure the 
spatial accuracy of raster maps (Congalton and Green 1999) and more generally to quantify the 
association between two categorical maps for a variety of reasons (Pontius et al. 2004a, 
Pontius et al. 2004b, Pontius and Spencer 2005). The columns of the matrix show the 
categories of the variable in the reference map for a study area and the rows show the 
categories of the variable in the comparison map for the same study area. If the reference map 
and the comparison map are realizations of a single categorical variable, then the category 
labels for the columns are the same as the category labels for the rows, in which the diagonal 
entries of the matrix indicate map agreement. The complete matrix that compares the entire 
reference map to the entire comparison map is the sum of the tallies of all the individual pixel 
positions in the study area. If each pixel position in the study area is classified as exactly one 
category in the reference map and exactly one category in the comparison map, i.e. if the 
pixels are hard classified, then the pixel position is tallied in a single obvious column and row 
within the matrix. One reason why scientists are tempted to classify each pixel in the map as 
exactly one category is because the statistical analysis of such data is straight forward. 
However, the decision to hard classify the data introduces a fundamental problem because 
scientists frequently know that each pixel really contains partial membership to multiple 
categories. Consequently, the data processing step to hard classify the pixels corrupts the 
underlying information in the maps. Nevertheless, scientists regularly classify each pixel as its 
single dominant category, because there are not widely recognized intuitive statistical methods 
available to compare maps that have partial membership to multiple categories. Specifically if 
the pixels do not belong to exactly one category, i.e. if the pixels are soft classified, then the 
construction of the crosstabulation matrix is not immediately obvious (Pontius 2002, Pontius 
and Cheuk 2006). 

Consider the following riddle that shows how tricky it can be to analyze soft classified pixels. 
Assume the reference pixel contains membership of 0.7 to the black category and 0.3 to the 
white category, while the comparison pixel contains membership of 0.9 to the black category 
and 0.1 to the white category. How should we measure the association between the categories 
of the reference pixel to the categories of the comparison pixel? (Figure 1) 

 

 

0.9 
0.1 

Reference Pixel0.7 
0.3 

Comparison Pixel
 

Figure 1 The reference pixel and comparison pixel with partial membership to the black category as 
specified by the top number and to the white category as specified by the bottom number within the pixel. 

If we consider the partial memberships as probabilities, then it makes sense to multiply the 
memberships in order to quantify the categorical associations. If we follow this logic, then the 
black-to-black association is 0.7 × 0.9 = 0.63 and the white-to-white association is 0.3 × 0.1 = 
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0.03. So the overall agreement is 0.63 + 0.03 = 0.66. At first this might seem reasonable, 
because the overall agreement is less than 1 for the two pixels that are not identical. 

If we were to compare the reference pixel to itself using the same logic, then what would the 
resulting associations? The black-to-black association would be 0.7 × 0.7 = 0.49 and the white-
to-white association would be 0.3 × 0.3 = 0.09. So the overall agreement would be 0.49 + 0.09 
= 0.58. This result is unsatisfying for at least two reasons. First, the agreement between a pixel 
and itself is less than 1. Second, the agreement between the reference pixel and itself is less 
than the agreement between the reference pixel and a different pixel. 

If we think more deeply about the problem, we find that there can be a range of reasonable 
answers. To envision this range, it is helpful to think of the two categories as black and white 
paint within the pixels, where the proportion of the pixel’s area covered by each color of paint 
is equal to the pixel’s partial membership to the corresponding category. We can then consider 
various possibilities for the spatial arrangement of the paint within each pixel. With this 
analogy, we can envision possibilities for how the paint within the reference pixel could 
overlay on the paint within the comparison pixel, so that the amount of overlap for a particular 
combination of paint is the measurement of association between the corresponding 
combination of categories (Pontius and Suedmeyer 2004). For example, if both the reference 
pixel and the comparison pixel were to have its black paint concentrated in the northern part of 
the pixel, then the black-on-black overlap would be as large as possible. In this case, given the 
memberships in Figure 1, the greatest possible black-to-black association would be 0.7, which 
is equal to MIN(0.7, 0.9). If the black paint were distributed randomly within either pixel, then 
the black-to-black association would be 0.7 * 0.9 = 0.63, as initially computed in the riddle. 
The least possible association would occur if the black paint were in the northern part of the 
reference pixel and in the southern part of the comparison pixel, in which case there would still 
be an overlap of 0.6, which is equal to MAX(0, 0.7+0.9-1.0). 

Clearly, scientists need to think more deeply about how to compare a single pair of pixels that 
have partial membership to multiple categories, because this information is necessary to 
understand the level of certainty we place in maps (Foody and Atkinson 2002). First, we need 
to create a solid foundation to compare two pixels, then we can expand the methods to 
compare entire maps, because maps are collections of pixels. The purpose of this paper is to 
articulate general concepts and to lay a unifying mathematical foundation for categorical map 
comparison. 

2 Methods 

2.1 Four matrices for a single pixel position 
This first subsection (2.1) uses the riddle of Figure 1 to motivate the mathematical principles to 
compare two pixels. The second subsection (2.2) gives the equations to compute the 
crosstabulation matrix to compare two entire maps. The third subsection (2.3) illustrates those 
principles with example maps. A fourth subsection (2.4) presents data for a practical 
application, which we analyze with the proposed methods. 

This paper uses the following mathematical notation: 
g – grain size of the pixels, i.e. resolution, 
G – maximum resolution where the entire study area resides in one coarse pixel, 
n – index for each pixel position in study area, 
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Ng – number of pixels of data in study area at resolution g, 
i – index for each category in comparison map X, 
I – number of categories in comparison map X, 
j – index for each category in reference map Y, 
J – number of categories in reference map Y, 
Wgn – weight of pixel n at resolution g, 
Xgni – membership to category i of pixel n at resolution g in comparison map X, 
Ygnj – membership to category j of pixel n at resolution g in reference map Y, 
Lgnij – entry in row i column j of the Least matrix for pixel n at resolution g, 
Rgnij – entry in row i column j of the Random matrix for pixel n at resolution g, 
Mgnij – entry in row i column j of the Most matrix for pixel n at resolution g and diagonal 

entry of the Composite matrix for pixel n at resolution g, 
Cgnij – off-diagonal entry in row i column j of the Composite matrix for pixel n at 

resolution g, 
Lg+ij – entry in row i column j of the Least matrix for study area at resolution g, 
Rg+ij – entry in row i column j of the Random matrix for study area at resolution g, 
Mg+ij – entry in row i column j of the Most matrix for study area at resolution g and 

diagonal entry of Composite matrix for study area at resolution g, 
Cg+ij – off-diagonal entry in row i column j of the Composite matrix for study area at 

resolution g. 

The memberships are constrained to conform to inequalities (1) and (2) for each pixel. The 
memberships must sum to 1 such that equations (3) and (4) hold for each pixel. 

10 ≤≤ gniX  (1) 

10 ≤≤ gnjY  (2) 

1
1

=∑
=

I

i
gniX  (3) 

1
1

=∑
=

J

j
gnjY  (4) 

Comparison of the pair of pixels at a single position n in the map generates an entire 
crosstabulation matrix. We consider four methods to compute the entries in the crosstabulation 
matrix. The four matrices are called: the Least matrix, the Random matrix, the Most matrix, 
and the Composite matrix. 

2.1.1 Least matrix 
The entries in the Least matrix give the least possible association between the categories in the 
reference pixel and the categories in the comparison pixel. We consider possible arrangements 
of the categories within pixel n such that category i in the comparison pixel overlaps as little as 
possible with category j in the reference pixel. If the sum of the pair of memberships is less 
than 1, then it is possible to arrange the categories within the pixels such that there is no 
overlap. If the sum of the pair of memberships is greater than 1, then category i in the 
comparison pixel must have some positive overlap with category j in the reference pixel. 
Equation 5 gives the least possible association between the comparison category i and the 
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reference category j within pixel n. We consider a different possible rearrangement for each 
entry in the matrix, so it is possible that the sum of all values in the matrix is less than 1. 

( )1,0MAX −+= gnjgnignij YXL  (5) 

2.1.2 Random matrix 
The entries in the Random matrix give the statistically expected association between the 
categories in the reference pixel and the categories in the comparison pixel, assuming those 
categories are distributed randomly within the pixels. The membership to each category is the 
proportion of that category contained in the pixel, so the amount of overlap between a pair of 
categories is the mathematical product of the memberships of those categories. Equation 6 
gives the expected association between comparison category i and reference category j within 
pixel n, assuming random distribution of the categories within pixel n. Equation 6 produces the 
Random matrix such that the sum of all values in the matrix is equal to 1. Lewis and Brown 
(2001) propose an equivalent procedure. 

gnjgnignij YXR ×=  (6) 

2.1.3 Most matrix 
The entries in the Most matrix give the greatest possible association between the categories in 
the reference pixel and the categories in the comparison pixel. We consider possible 
arrangements of the categories within pixel n such that category i in the comparison pixel 
overlaps as much as possible with category j in the reference pixel. The maximum overlap is 
constrained by the minimum of the memberships to the two categories. Equation 7 gives the 
greatest possible association between comparison category i and reference category j within 
pixel n. We consider a different possible rearrangement for each entry in the matrix, so it is 
possible that the sum of all entries in the Most matrix is greater than 1. Binaghi et al. (1999) 
propose this same minimum rule for all entries in the matrix. 

( )gnjgnignij YXM ,MIN=  (7) 

2.1.4 Composite matrix 
The entries of the Composite matrix are computed according to a mathematical rule that is a 
composite of the concepts expressed by the minimum rule of equation 7 and the multiplication 
rule of equation 6. The Composite matrix is designed specifically for the special case where 
the categories in the reference map are the same as the categories in the comparison map. For 
this common situation, the matrix is square, where the diagonal entries show agreement 
between the categories, while the off-diagonal entries show disagreement. Equation 7 gives the 
diagonal entries, i.e. when i = j. Equation 8 gives the off-diagonal entries, i.e. when i ≠ j. 
Pontius and Cheuk (2006) give the full derivation of the Composite matrix. 

( )[ ] ( )[ ] ( )[ ]∑
=

−−×−=
J

j
gnjgnignjgnjgnignjgnjgnignignij YXYYXYYXXC

1
,MIN,MIN,MIN

 
(8) 

The Composite matrix has conceptual advantages over the other three matrices when the 
reference map and the comparison map both show the same categorical variable (Kuzera and 
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Pontius 2004). Specifically, when a pixel is compared to itself, the Composite matrix gives 
zeroes for all off-diagonal entries, which is not necessarily the case for the Random and Most 
matrices. Furthermore, the entries of the Composite rule sum to 1, which is not necessarily the 
case for the Least and Most matrices. The Discussion section compares the relative merits of 
the four matrices in more detail.  

2.2 Four matrices to compare two maps 
The previous subsection (2.1) defines four methods to compute a crosstabulation matrix for a 
single pixel position, while this section describes how to compute a crosstabulation matrix for 
an entire study area composed of many pixels. The approach to generate the map-level matrix 
is to compute a weighted average of all pixel-level matrices. Each pixel has a weight (Wgn), 
which is usually the proportion of the pixel that resides in the study area. The most common 
case is where a pixel is either entirely within the study area, in which case its weight is 1, or 
entirely outside the study area, in which case its weight is 0. Some pixel weights are likely to 
be between 0 and 1 when the study area does not conform to a raster grid structure. 
Furthermore, if the projection of the map is not an equal area projection, then the weight of 
each pixel should be proportional to its area on the ground. For example, if each pixel is one 
degree latitude by one degree longitude, then pixels near the equator should have appropriately 
larger weights than pixels near the poles. Equations 9-12 give the map-level matrix entries that 
correspond to the pixel-level matrix entries expressed in equations 5-8 respectively. On the left 
side of equations 9-12, the + sign is the second subscript because the equations sum the pixel-
level matrix entries over all pixels. 
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(12) 

We include a subscript g for the resolution, because it is usually useful to consider how the 
results vary as a function of scale. Our approach is to compute the matrices at the resolution of 
the raw data, then to aggregate the data to coarser resolutions in order to compute the results at 
multiple coarser resolutions. The coarsest resolution is the resolution at which the entire study 
area is in one coarse pixel. We average the fine pixels’ weights and their category 
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memberships in order to construct maps of coarser pixels. The categorical membership for 
each coarse pixel is the average of the categorical memberships of the finer resolution pixels 
that contribute to the coarse pixel, so the coarse pixels have partial memberships to multiple 
categories when the fine resolution pixels show multiple categories contained within the 
borders of the coarse pixel, as the next subsection’s example illustrates. 

2.3 Example data 
Figure 2 presents nine maps that illustrate the main concepts to demonstrate multiple 
resolution analysis for a non-square study area. The top row of Figure 2 shows the reference 
maps, which have two categories called black and white. The middle row shows the 
comparison maps, which have three categories called A, B, and C. The bottom row shows the 
weight maps, which mask the lower right quadrant by assigning a weight of 0 to the four fine 
resolution pixels in that quadrant. The diagonal stripes in the reference and comparison maps 
indicate that the four pixels in that quadrant have no data, so there are 12 fine resolution pixels 
in the study area. The Fine Resolution column on the left shows three maps of pixels arranged 
in four rows and four columns. The solid horizontal and vertical lines show the borders of the 
pixels, where the length of the side of each pixel is 1 meter, i.e. resolution = 1. The numbers 
within the pixels indicate the categorical memberships. For example, the pixel in the upper left 
corner of the reference map at the fine resolution has a membership of 1 to the black category 
and 0 to the white category. The pixel in the upper left corner of the comparison map at the 
fine resolution has a membership of 1 to category A, 0 to category B, and 0 to category C. The 
Medium Resolution column in the middle shows the maps where clusters of four contiguous 
fine resolution pixels are aggregated as indicated by the conversion of the pixel borders from 
solid lines to dotted lines. The aggregation spreads the category memberships more coarsely 
and uniformly within the reference map, thus the resolution of the information is 2 meters. The 
aggregation to the medium resolution does not influence the information in the comparison and 
weight maps because the fine resolution information is already clustered by quadrant for those 
two maps. The Coarse Resolution column on the right shows the maps at the coarsest 
resolution where the categorical memberships are spread uniformly across the entire map, thus 
the resolution is 4 meters. The weights are averaged at the coarsest resolution so that the single 
coarse pixel has a weight of 12/16, which illustrates how the technique addresses non-square 
study areas. 

Figure 3 shows the association between the black category in the reference map and category 
A in the comparison map. At the fine resolution of 1 meter, the association is 2/12 = 17%, 
because the black category overlays category A for 2 of the 12 pixels in the study area. All the 
matrices produce identical results when the pixels in the reference map or comparison map are 
hard classified, as they are for the maps in the Fine Resolution column and for the comparison 
map in the Medium Resolution column. The matrices produce different results at the coarse 
resolution because the pixels for both the reference map and the comparison map contain 
partial membership to multiple categories in the Coarse Resolution column. The association 
ranges from 0 to 4/12 = 33% at the coarse resolution of 4 meters. The Composite matrix is not 
relevant to the comparison in Figure 3 because the categories in the reference map are different 
than the categories in the comparison map. 
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Figure 2 Example data where the fine resolution maps have four rows and four columns of pixels. The top 

row of maps shows the reference data which have two categories. The middle row of maps shows the 
comparison data which have three categories. The bottom row of maps shows the pixel weights which 
mask the lower right quadrant. The three columns show three grain sizes of fine, medium, and coarse. 

It can also be useful to compare a map to itself in order to characterize the patterns and 
uncertainties within a single map. Figure 4 shows the association between the black category 
in the reference map and the white category in the reference map. At the fine resolution, the 
association is 0, because the pixels are hard classified so that there is no overlap between black 
and white. At the medium resolution of 2 meters, the matrices produce different results 
because the pixels become soft classified. The association ranges from 0 to 6/12 = 50% at the 
medium and coarse resolutions. As resolution becomes coarser, the range in the association 
increases at the resolution that corresponds to the size of the patches in the map. The 
Composite matrix gives the same results as the Least matrix in Figure 4. 
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Figure 3 Association of the black category in Reference map to the category A in the comparison map at 

three resolutions for the example data. 
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Figure 4 Association of the black category in reference map to the white category in the reference map at 

three resolutions for the example data. 

2.4 Plum Island Ecosystems (PIE) – Long Term Ecological Research data 
Figures 5 and 6 show maps of the 26-town region that comprises the Plum Island Ecosystems 
(PIE) - Long Term Ecological Research site of the United States’ National Science 
Foundation. The State of Massachusetts (MassGIS 2005) supplied the original maps in vector 
format, and then Clark University’s Human-Environment Regional Observatory (HERO 2006) 
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reformatted the maps to raster format, such that each 30-meter pixel is hard classified as 
exactly one of three categories: Forest, Built, or Other. The decision to harden the data to 30-
meter pixels allows for direct comparison with other case studies where pixels are hardened to 
a 30-meter resolution because 30 meters is a popular resolution of satellite based data. Figure 5 
shows the year 1971 and Figure 6 shows 1999. Therefore, the crosstabulation matrix of these 
maps indicates the land change from 1971 to 1999. 

 

 
Figure 5 Land cover in 1971 for pixels hardened at a 30-meter resolution for the PIE data. 

 

 
Figure 6 Land cover in 1999 for pixels hardened at a 30-meter resolution for the PIE data. 
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3 Results 
Table 1 shows the crosstabulation matrix that compares the 1971 map to the 1999 map for the 
PIE study area at the 30-meter resolution. The Least, Random, Most, and Composite matrices 
produce the same results, because the pixels are hard classified at the 30-meter resolution. The 
diagonal entries show persistence on the landscape while the off-diagonal entries show 
differences. Forest is the largest category in 1971, covering 47% of the study area; while Built 
is the largest category in 1999, covering 43% of the study area. There is a transition from 
Forest in 1971 to Built in 1999 for 8% of the study area. Table 2 gives the results at the 
resolution of 960 meters for the Least, Random, Most, and Composite matrices. At each matrix 
entry position in Table 2, the top number in bold is the Most matrix, the second number in 
normal font is the Composite matrix, the third number in italics is the Random matrix, and the 
bottom number in bold italics is the Least matrix. Table 3 gives the range of results at the 960-
meter resolution, which is the Most matrix minus the Least matrix. The association of Forest of 
1971 to Forest of 1999 has the largest range, i.e. 24 percentage points, while the association 
from Built of 1971 to Other of 1999 has the smallest range, i.e. 8 percentage points.  

Table 1 Crosstabulation matrix in percent of study area for the PIE data at 30-meter resolution. 

  1999  

  Forest Built Other Total 

Forest 39 8 0 47 

Built 1 32 0 33 

19
71

 

Other 0 3 17 20 

 Total 40 43 18 100 

 

Table 2 Crosstabulation matrix in percent of study area for the PIE data at 960-meter resolution. The top 
numbers give the Most matrix, the second numbers give the Composite matrix, the third numbers give the 

Random matrix, and the bottom numbers give the Least matrix. 

  1999  

  Forest Built Other Total 

Forest 

39 
39 
24 
15 

26 
8 
17 
4 

12 
0 
6 
0 

77 
47 
47 
19 

Built 

18 
0 
9 
0 

32 
32 
20 
12 

8 
0 
3 
0 

58 
33 
33 
12 

19
71

 

Other 

13 
0 
6 
0 

12 
3 
6 
0 

17 
17 
8 
4 

42 
20 
20 
5 

 

Total 

70 
40 
40 
15 

70 
43 
43 
17 

37 
18 
18 
4 

177 
100 
100 
36 
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Table 3 The Most matrix minus the Least matrix for the PIE data at 960-meter resolution. 

  1999  

  Forest Built Other Total 

Forest 24 22 12 58 

Built 18 10 8 46 
19

71
 

Other 13 12 13 37 

 Total 55 53 33 141 

 
Figure 7 examines the association between the Forest category of 1971 and the Built category 
of 1999. Figure 7 confirms that the transition from Forest to Built occurs in 8% of the PIE 
study area according to all the matrices at the fine resolution where the data are hard classified. 
The range in the association grows as resolution grows coarser. The rate at which the range 
grows is an increasing function of the level of interspersion between the patches of Forest and 
Built. 

Figure 8 gives the association between the Built category of 1999 and the Built category of 
1999. The rate at which the range widens as resolution grows coarser is an increasing function 
of the level of patchiness of the Built category, relative to the size of the pixels. The range is 
small where pixels are either dominated by Built or dominated by non-Built. The range is large 
where the amounts of Built and Non-Built in the pixels are close to one half. The Composite 
matrix gives the same results as the Most matrix in Figure 8. 

 

0

10

20

30

40

50

30 60 12
0

24
0

48
0

96
0

1,
92

0

3,
84

0

7,
68

0

15
,3

60

30
,7

20

61
,4

40

RESOLUTION (in meters of the side of a pixel)

PE
R

C
EN

T 
O

F 
ST

U
D

Y 
A

R
EA

Most

Random

Composite

Least

 
Figure 7 Association of the Forest category in 1971 map to the Built category in the 1999 map at multiple 

resolutions for the PIE data. 
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Figure 8 Association of the Built category in 1999 map to the Built category in the 1999 map at multiple 

resolutions for the PIE data. 

4 Discussion 

4.1 Interpretation of results 
Table 2 shows the four matrices at a resolution of approximately 1 kilometer. The Least matrix 
gives 0 for five transitions: Forest to Other, Built to Forest, Built to Other, Other to Forest, and 
Other to Built. This means that the 1-kilometer resolution is probably not sufficiently precise 
to detect these transitions, because the available fine resolution data indicate that these 
transitions occur in patches that are substantially smaller than 1 square kilometer on the 
landscape. 

If we were to use 1-kilometer data to examine the transition from Forest to Built, then we 
would be able to establish some positive estimate of the transition, however that estimate 
would have substantial uncertainty, since Table 2 shows that the range for that transition spans 
from a low of 4% in the Least matrix to a high of 26% in the Most matrix. The increase in the 
range in Figure 7 as resolution grows coarser reflects the interspersion of the patches of Forest 
in 1971 among patches of Built in 1999. The range is large where Forest of 1971 and Built of 
1999 are found in the same coarse pixels. 

The variation of the range in Figure 8 reflects the spatial distribution of Built within the 1999 
study area. If the Built in 1999 were distributed in a chessboard pattern of 30-meter square 
patches, then the Least matrix would give an association of 0 at all resolutions coarser than 30 
meters and the Most matrix would give a large stable association similar to Figure 8. At the 
other extreme, if the Built were distributed in one large patch in the northeast quadrant of the 
map, then all matrices would give an identical large stable association for resolutions from 30 
meters to much coarser. Figure 8 shows how the Built-to-Built association is somewhere 
between these extremes. 
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4.2 Comparison of four matrices 
Table 4 compares characteristics of the four proposed matrices. All four matrices give entries 
that are expressed as proportions of the study area. The sum of the entries is 1 for the Random 
and Composite matrices, therefore those two matrices show plausible internally consistent 
complete descriptions of the associations between the maps. The Random matrix is the only 
one of the four matrices that gives entries that sum to 1 when comparing maps that show 
different categories. The Composite matrix requires that the categories in the reference map be 
identical to the categories in the comparison map. The sum of the entries is not necessarily 1 
for the Most and Least matrices, so the interpretation of those two matrices must be somewhat 
different than for the Random and Composite matrices. The entries for the Most and Least 
matrices should be interpreted one entry position at a time, because each entry is computed 
according to a potentially different arrangement of the categories within the pixels, which is 
why the entries do not sum to 1. It can be useful to subtract the entries of the Least matrix from 
the corresponding entries in the Most matrix in order to construct the range for each entry in 
the matrix, as in Table 3. A larger range demonstrates a larger uncertainty concerning the 
particular association between the two categories.  

Table 4 Characteristics of four methods to compute the crosstabulation matrix. 

Characteristic Least Random Most Composite 

Gives entries that are proportions of the study area Yes Yes Yes Yes 

Gives entries that sum to 1 No Yes No Yes 

Can compare two maps that show different variables Yes Yes Yes No 

Can compare two maps that share a single variable Yes Yes Yes Yes 

Gives zeroes in off-diagonal entries for identical pixels No No No Yes 
 

4.3 Comparison to other approaches 
There are many other methods to compare maps that show categorical variables, because there 
are many ways to compare categorical variables. We have examined some of those alternative 
methods and have found them to be more challenging conceptually and mathematically 
compared to this paper’s methods. The additional complexity of the alternative methods is no 
guarantee for improvement in practical usefulness. 

For example, information theory forms the conceptual foundation of some alternative 
approaches. Finn (1993) and Foody (1996) use information theory in a procedure that 
computes the average mutual information shared between maps. Similarly, Wear and Bolstad 
(1998) use information theory to compare categorical maps in a hypothesis testing framework. 
Information theory computes statistics in units of entropy, which is a concept we find 
challenging to grasp intuitively when relating to a map. The mathematics necessary to compute 
the entropy in maps is certainly much more complex than this paper’s mathematics. 

Fuzzy set theory forms the conceptual foundation of another popular set of approaches. 
Woodcock and Gopal (2000) propose a fuzzy based method to compare maps for which a 
given pixel can have various intensities of agreement to multiple categories. The total 
agreement to all categories is not necessarily constrained mathematically, just as the entries in 
the Most matrix are not constrained to sum to 1 (Binaghi et al. 1999). The reason for this lack 
of constraint is related to the fact that that the source of the uncertainty in fuzzy set theory is 
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ambiguity in the class membership. In fuzzy set theory, the class memberships are not 
necessarily proportions of the classes in the pixels. 

Pattern metrics form a third popular set of approaches to evaluate maps that show categorical 
variables. There are many pattern metrics that can be computed for raster maps where the 
pixels are hard classified, and many of these metrics are related to the overall patchiness of the 
map (Ritters et al. 1999). These metrics are not computable when the pixels are soft classified. 
This paper’s methods produce results that reflect the patchiness in a map when the pixels are 
soft classified, as Figures 3 and 4 illustrate. When the sizes of the patches are smaller than the 
grain of the resolution of the maps, then the range between the Most and Least matrices can be 
large. When the sizes of the patches are larger than the grain of the resolution of the maps, then 
the range between the Most and Least matrices is likely to be small. Figures 7 and 8 show 
smooth growth in the range because the PIE data contain patches of several different sizes 
within the same study area. This type of multiple resolution procedure is important to consider 
when deciding the scale at which to perform an analysis, because it allows one to quantify the 
uncertainty of the mapped information as a function of patch size and resolution (Woodcock 
and Strahler 1987). 

5 Conclusion 
This paper proposes an approach to compare pixels that contain partial membership to multiple 
categories, i.e. pixels that are soft classified. It then extends the approach to compare maps at 
multiple resolutions. We can envision the memberships to various categories within the pixels 
as proportions of various colors of paints within the pixels. The underlying conceptual 
approach to compare categories in pixels is analogous to examining the range of possibilities 
for how much of a particular color of paint in a reference pixel can overlap with another color 
of paint in the corresponding comparison pixel, depending on the spatial arrangement of the 
paint within the pixels. Hopefully, scientists will find this approach intuitive and useful, 
especially because the paint analogy is applicable also to real variables (Pontius et al. in press). 
Scientists should find this approach mathematically accessible, because division is the most 
complicated mathematical operation. The methods can be used to examine uncertainty in maps 
as a function of the patterns in the maps, whether or not the two maps share the same 
categories. Uncertainty concerning a particular categorical association is larger where the Most 
and Least matrices show a larger range. Hopefully this technique and its paint analogy will 
open the doors for additional conceptual development of techniques for categorical map 
comparison that are intuitive, useful, and rigorous. 
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