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Figure 5. Category level analysis of agreement, omission disagreement and commission 

disagreement for LULC maps of 2002 classified by (A) stratified and (B) unstratified 

classification. 

 

4.2. Spatiotemporal Dynamics of LULC Changes Using Intensity Analysis at Three Levels 

Figure 6 shows maps from the stratified method for five time points. Built-up increased while 

Agriculture decreased during all time intervals. Orchard increased since 1996. Woodland increased 

except during 2002–2010. 

The interval level intensity analysis produced Figure 7. Each bar that extends to the left from the 

middle axis is the change area. Each bar that extends to the right from the middle axis is the observed 

change intensity. In terms of the right side of middle axis, if an interval’s bar ends before the uniform 

line, then the change is relatively slow for that interval; if an interval’s bar extends beyond the uniform 

line, then the change is relatively fast for that interval. Figure 7 shows that overall land change has 

been accelerating across the four time intervals. Annual change is fastest during 2007–2010 though 

interval change area was the smallest. 

The category level intensity analysis for each time interval produced Figure 8. Each category has a 

pair of bars, where one bar shows gross gain and the other shows gross loss. The vertical axis shows 

the intensity of annual change during the time interval as a percent of the category. A horizontal line 

shows a uniform intensity of annual change for the entire study area. If a bar ends below the uniform 

line, then the change is relatively dormant for that category. If a bar extends above the uniform line, 

then the change is relatively active for that category. 

Woodland’s gains and losses were dormant while the gains and losses of Agriculture, Orchard, 

Built-up and Bare land were active for all time intervals. This indicated that Woodland experienced 

less intensively gains and losses than if the overall change were to have been distributed uniformly 

across the landscape. Similarly, Agriculture, Orchard, Built-up and Bare land experienced more 

intensively gains and losses than if the overall change were to have been distributed uniformly across 
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the landscape. These results are consistent for all four time intervals, meaning that the pattern is 

stationary at the category level intensity analysis. Water experienced gains more intensively than the 

landscape in general except for 2007–2010 and experienced losses more intensively than landscape in 

general across four time intervals. This indicates that Water’s losses were stationary while its gains 

were not. 

Figure 6. LULC maps of the JRW in 1986, 1996, 2002, 2007 and 2010. 

 

Figure 7. Interval level intensity analysis across four time intervals. 
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Figure 8. Category level intensity analysis, given the observed change during four  

time intervals.  

 

In terms of transition level intensity analysis, we focused the transitions from Woodland, 

Agriculture, Orchard and Water to Built-up, as urbanization is a hotspot in the coastal regions 

throughout the world. Figure 9 shows the results for the transition level analysis in terms of transitions 

from Woodland, Agriculture, Orchard and Water to Built-up. The four graphs in Figure 9A show the 

analysis of the gain to Built-up. The horizontal axis shows the losing categories and the vertical axis 

shows the transition intensity to Built-up. The four lower rows in Figure 9 show the analysis of the loss 

of Woodland (B), Agriculture (C), Orchard (D) and Water (E). The horizontal axis shows the gaining 

categories and the vertical axis shows the transition intensity. Figure 9A shows that Built-up’s gains 

target Agriculture, Water and Orchard and avoid Woodland for all time intervals. Therefore the 

transition from Woodland, Agriculture, Orchard and Water to Built-up is stationary, given the gain of 

Built-up. Figure 9B shows that Built-up avoids Woodland’s loss for all time intervals. The three lower 

rows of Figure 9 show that Built-up targets the losses of Agriculture, Orchard and Water respectively 

for all time intervals. The transition from Woodland, Agriculture, Orchard and Water to Built-up is 

stationary, given the loss of Woodland, Agriculture, Orchard and Water respectively. In Figure 9E, 

Built-up generally targets Water’s loss more intensively than the loss of other categories. This may 

reflect extensive reclamation in the Jiulong River estuaries in recent years. Intensity Analysis shows 

that transitions from Agriculture to Built-up, from Orchard to Built-up and from Water to  

Built-up are systematically targeting transition while the transition from Woodland to Built-up is a 

systematically avoiding transition. 
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Figure 9. Transition intensities from Woodland, Agriculture, Orchard and Water to Built-up, where figures in row A represent gains to  

Built-up during the intervals 1986–1996, 1996–2002, 2002–2007 and 2007–2010, respectively, while row B, C, D and E represent losses from 

Woodland, Agriculture, Orchard and Water during the same intervals respectively. 
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Figure 9. Cont. 
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5. Discussion 

5.1. The Performance of the Stratified Classification 

The determinants of LULC classification performance include the classification algorithm, 

characteristics of the study area, the classification scheme, the pixel spatial resolution, and the quality 

of the reference data [37]. Stratified classification in this paper extracted subsets based on spectral 

features and then classified each subset in a same scheme. This is different with hierarchical 

classification, which classified images in hierarchical way [38,39]. Other studies have also used 

stratified classification and spatial reclassification procedures to suppress the confusion in spectral 

signals [21,40]. Liu and Yang [21] stratified the entire landscape into rural and urban subsets and then 

classified each subset independently by using multiple endmember spectral mixture analysis. The 

completeness and temporal accuracy of the road network data are critical for the success of landscape 

stratification in Liu and Yang’s study. Unfortunately, we were not able to obtain accurate road network 

data for the same year as the satellite images. Instead, we took the spectral features of vegetation in the 

red band and water in the short-wave infrared band to make two masks. The image was then 

partitioned into three subsets. Therefore, our image stratification doesn’t need ancillary data to clip the 

image. We adopted ISODAT clustering to process each subset, because we were not able to gather 

enough previous information about our study area.  

The stratified classification produced lower overall error than the unstratified classification. 

However, the stratified classification produced higher quantity disagreement (Figure 4). This was 

mainly caused by the overestimation of Woodland and underestimation of Agriculture (Figure 5). 

Specifically, the largest confusion in the stratified map is that the map shows Woodland where the 

reference information shows Agriculture. Most of the error in the stratified map is due to this single 

type of confusion. 

5.2. Spatialtemporal Dynamics of LULC Change in the JRW 

Intensity Analysis showed that land transformation has been accelerating across the four time 

intervals, which is consistent with accelerating economic development in this coastal watershed of 

Southeast China. This finding is similar to our prior study [41]. 

Woodland experienced dormant gains and losses, which exemplifies the large dormant category 

phenomenon [42]. Agriculture, Orchard, Built-up and Bare land experienced active gains and losses. 

These patterns are stationary at the category level intensity analysis. Our prior study had similar 

observation that Agriculture and Built were active whereas Natural was a large dormant category [41]. 

The systematically targeting transitions from Agriculture to Built-up, Orchard to Built-up and 

Water to Built-up might be attributable to the spatial proximity of those losing categories to 

urbanization in recent years in the JRW. Towns tend to be in the flat areas, and agricultural activities 

have historically also been located in these areas. Orchard is traditionally planted in the Zhangzhou 

plain within downstream of the JRW. Therefore, as the Built-up expands spatially, it is likely to take 

over Agriculture and Orchard. This explains why most gain of Built land surrounding the cities such as 

Zhangzhou, Longhai and Longyan comes from Agriculture and Orchard. Moreover, urban reclamation 

from Water, especially in the Jiulong River estuary, can explain the systematic transitions from Water 
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to Built-up land in the JRW. Spatially expanding urban growth was identified as one of the leading 

causes of regional arable land loss in Eastern Coastal China [43,44]. The systematically avoiding 

transition from Woodland to Built-up was perhaps due to some forest protection policies and laws in 

China, such as the Grain for Green policy implemented since 1999. But the more plausible explanation 

is that Forest is far away from expanding cities, and Forest is a large dormant category.  

The next steps in our research agenda is to check whether the LULC data derived from our 

methodology are sufficiently accurate to indicate landscape change and the conclusions of Intensity 

Analysis [45,46]. 

6. Conclusions 

This study developed a stratified classification methodology to create a time series of LULC maps 

in the JRW and analyzed the spatiotemporal dynamics of LULC with Intensity Analysis. The stratified 

classification produced lower overall error than the unstratified classification. However, the stratified 

classification produced higher quantity disagreement because the stratified map overestimated 

Woodland and underestimated Agriculture. The sequence of stratified maps for five time points 

showed that overall land change in the JRW has been accelerating, which is consistent with 

accelerating economic development. Woodland is dormant in both gains and losses, while most all 

other categories are active in both gains and losses, which might be because Woodland accounts most 

of the JRW, especially in places far from land change. Transitions from Agriculture, Orchard and 

Water to Built-up are systematically targeting and stationary. 
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