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Abstract
The application of multiple endmember spectral mixture
analysis (MESMA) to map the physical composition of urban
morphology using Landsat Thematic Mapper (TM) data is
evaluated and tested. MESMA models mixed pixels as linear
combinations of pure spectra, called endmembers, while
allowing the types and number of endmembers to vary on a
per-pixel basis. A total of 63 two-, three-, and four-endmember
models were applied to a Landsat TM image for Los Angeles
County, and a smaller subset of these models was chosen
based on fraction and root-mean-squared error (RMSE) crite-
ria. From this subset, an optimal model was selected for each
pixel based on optimization for maximum area coverage. The
resultant endmember fractions were then mapped into four
main components of urban land cover: Vegetation, Impervious
surfaces, Soil, and Water/Shade. The mapped fractions were
validated using aerial photos. The results showed that a ma-
jority of the image could be modeled successfully with two- or
three-endmember models. The validation results indicated the
robustness of MESMA for deriving spatially continuous vari-
ables quantified at the sub-pixel level. These parameters can
be readily integrated into a wide range of applications and
models concerned with physical, economic, and/or socio-
demographic phenomena that influence the morphological
patterns of the city. 

Introduction
A recurrent theme in urban remote sensing studies has been
how to derive summary indicators of physical components of
urban morphology from remotely sensed data (Green, 1955;
Forster, 1985; Ridd, 1995; Jensen and Cowen, 1999). This type
of analysis has traditionally been limited due to the spectral
heterogeneity of urban features in relation to the spatial reso-
lution of the remote sensing sensors (Weber, 1994). This is
especially true in the context of multispectral images with
medium spatial resolution such as those provided by Landsat,
SPOT, and the Indian satellites. Because of the presence of
spectral mixing in the pixels of these images, the identifica-
tion of urban land cover using per-pixel analytical techniques
becomes very difficult because the continuum of land cover
cannot be readily divided into discrete classes.

Measuring the Physical Composition of
Urban Morphology Using

Multiple Endmember Spectral Mixture Models
Tarek Rashed, John R. Weeks, Dar Roberts, John Rogan, and Rebecca Powell

Strahler et al. (1986) divide scene models into two types,
H- and L-resolution models, depending on the relationship
between the size of elements (e.g., vegetation) in the scene
and the resolution cell of the sensor. In the H-resolution
model, scene elements are larger than resolution cells and,
therefore, the spatial arrangement of scene elements can
directly be detected. The L-resolution model is the opposite,
where scene elements are not individually detectable because
they are smaller than the resolution cells. Detecting the spatial
arrangement of objects may require a resolution cell size sev-
eral times smaller than their size. Accordingly, for multispec-
tral images with medium spatial resolution, the scene model
of urban landscapes can be regarded as an L-resolution model.
Further, as the size of objects in the urban scene becomes in-
creasingly small relative to the resolution cell size, it may no
longer be possible to consider objects individually (Strahler
et al., 1986). Instead, the urban scene model can be regarded
as a continuous model, in which the measurement of each
pixel can be treated as a sum of spectral interactions between
various scene elements weighted by their concentration or
relative aerial proportions within the resolution cell (i.e., a
mixture model). Therefore, it can be asserted that, in the con-
text of medium resolution multispectral images, H-resolution
models in urban areas should operate in a subservient role to
L-resolution models (Graetz, 1990; Rashed et al., 2001; Phinn
et al., 2002). 

Over the past ten years, there has been a trend toward de-
scribing the spatially varying character of land cover in terms
of continuous surfaces (Mather, 1999). Through this trend, the
proportions of different components of land cover are esti-
mated for each pixel of the image. Fuzzy classification and
spectral mixture analysis (SMA) are two groups of techniques
that have been proposed to provide soft analysis of mixed
pixels. The work we present in this paper is based on the SMA
approach. The SMA approach assumes that a landscape is
formed from continuously varying proportions of idealized
types of land cover with pure spectra, called endmembers
(Adams et al., 1986; Adams et al., 1993). Endmembers are
abstractions of land-cover materials with uniform properties
present in the scene. In an urban environment, these may
include impervious surfaces, vegetation types, water bodies,
and bare soils (Ridd, 1995). Linear SMA is the process of solv-
ing for endmember fractions, assuming that the spectrum
measured for each pixel represents a linear combination of
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endmember spectra that corresponds to the physical mixture
of surface components weighted by their areal abundance. Al-
though nonlinear mixing can be important for some types of
analysis, the effects of multiple scattering in the majority of
SMA applications are assumed to be negligible (Roberts et al.,
1998a; Mather, 1999). 

Many SMA applications have been applied to multispec-
tral imagery in non-urban environments (e.g., Roberts et al.,
1998b; Rogan et al., 2002), but some recent studies have indi-
cated the feasibility of this technique in urban environments
(e.g., Ward et al., 2000; Madhavan et al., 2001; Rashed et al.,
2001; Small, 2001; Phinn et al., 2002; Wu and Murray, 2003).
Findings from these studies indicate that a classification of
the urban scene based on SMA-derived measures may be supe-
rior to other traditional per-pixel classifications techniques.
However, they also show a higher degree of RMS error associ-
ated with these models (Ward et al., 2000; Rashed et al., 2001;
Small, 2001). This is because the standard SMA model imple-
ments an invariable set of endmembers to model the spectra
in all the pixels within an image. The assumption fails to ac-
count for the fact that, due to the diversity of urban materials,
the number and type of components within the field of view
are variable. For example, the endmembers required to de-
scribe the central business district of a city are different than
those required to describe single family residential districts or
urban recreational areas. In addition, if a pixel is modeled by
fewer endmembers than required, the unmodeled portion of
the pixel spectrum will be partitioned into the resultant frac-
tions, thus increasing the model error for that pixel (Roberts
et al., 1998b). Similarly, the use of too many endmembers to
unmix the pixel spectrum will result in fraction errors, caused
by spectral confusion between these endmembers.

The purpose of this paper is to explore and test the ap-
plicability of an algorithm utilizing the technique of multiple
endmember spectral mixture analysis (MESMA) (Roberts et al.,
1998b) to measure the physical composition of urban mor-
phology from a Landsat TM image. The MESMA approach
allows the number and type of endmembers to vary for each
pixel in an image. This permits a larger number of endmem-
bers to be modeled within a scene, while meeting the con-
straints concerning the relationship between the number of
image bands and the maximum number of endmembers that

can be modeled in each pixel. Our specific objectives in this
paper are 

• to demonstrate how MESMA can be utilized to derive compara-
ble physical measures that describe the morphological charac-
teristics of urban areas; and

• to assess the utility of MESMA in the context of an urban envi-
ronment by (1) comparing the performance of MESMA with
that of a standard SMA model, (2) validating endmember frac-
tions produced by MESMA models, and (3) showing examples
of how estimated endmember fractions could be related to
patterns of urban morphology by applying a model of urban
material composition developed by Ridd (1995). 

Study Site
This study was undertaken in Los Angeles County, one of the
most ethnically diverse places in the United States (Gordon
and Richardson, 1999), with a total population exceeding
9.5 million according to data from the 2000 Census. The loca-
tion of the study area is shown in Figure 1. It represents the
metropolitan urbanized region within Los Angeles County,
which covers approximately 3220 square kilometers, almost
half of the county’s total area. 

The segregation patterns of ethnicity and socioeconomic
classes in Los Angeles, accompanied by successive waves of
economic restructuring and population expansion, have been
reflected by the built environment and the physical structure
of urban form within the region (Allen and Turner, 1997).
Li (1998), comparing areas in Los Angeles dominated by pop-
ulation groups from China and Indochina versus those domi-
nated by groups from Taiwan and Hong Kong, showed that
even the micro-divisions within the same ethnicity have their
geographical expression in the spatial differentiation of urban
landscape. Mullens and Senger (1969), using color-infrared
(CIR) aerial photos, revealed a highly consistent relationship
between the physical surrogates derived from these photos
(e.g., vegetation appearance, vacant land, lot and home sizes,
pools and patios, street conditions) and the demographic and
socioeconomic characteristics of urban neighborhoods in
Los Angeles. Herold et al. (2002) observed that roof materials
in California cities are particularly diverse in material and
color, and that this diversity is likely to be influenced by
the surrounding land use and neighborhood socioeconomic
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characteristics. Miller and Winer (1984) reported differences
in vegetation species composition in Los Angeles, not only
between residential and non-residential areas (e.g., commer-
cial, industrial), but also between residential areas with differ-
ent racial profiles. 

Therefore, the diverse social and physical character of
Los Angeles makes it an ideal study site for testing the capa-
bility of MESMA for deriving rigorous measures of urban mate-
rial compositions from remote sensing imagery. The temporal
and spatially explicit characteristics of these measures can
then be utilized to examine the degree to which variation in
the physical settings is connected to variability in societal at-
tributes. This can help improve our understanding of urban
morphological patterns in that region, and ultimately can aid
in the formation of policy in anticipation of the problems that
accompany urbanization processes and demographic shifts in
that region. 

Data and Methods
Data
The data utilized in our application of MESMA included a sub-
set (3113 lines by 4801 samples) from a Landsat TM image ac-
quired on 03 September 1990 (path 41, row 36). The acquisi-
tion date of this image corresponds reasonably well to the
1990 U.S. Census (taken in April of that year). In addition to
the multispectral image, we utilized a set of 1.0-m spatial
resolution aerial photos to aid in the validation of the resul-
tant endmember fractions. These photos were generated from
1:12,000-scale color photographs acquired in late 1993 by
I.K. Curtis Services, Inc., from an altitude of 2740 m using
an RC10 aerial survey camera.

Overview of the MESMA Approach
The MESMA approach, originally developed by Roberts et al.
(1998b), is based on the concept that, although the spectra in

any individual pixel can be modeled with relatively few end-
members, the number and type of endmembers are variable
across an image. In this sense, MESMA can be described as a
modified linear SMA approach in which many simple SMA
models are first calculated for each pixel in the image. The ob-
jective is then to choose, for every pixel in the image, which
model among the candidate models provides the best fit to the
pixel spectra while producing physically reasonable fractions. 

The procedure we followed in applying MESMA to the
study area is summarized in Figure 2. As shown in the figure,
we started this multistage process by selecting a set of candi-
date endmembers believed to represent a relatively pure spec-
tral response of the target materials in the scene. In the next
step, we applied a series of standard SMA models based on a
variety of possible combinations of the endmembers, such
that the number of endmembers in any single model is not
less than two and not more than the total number of image
bands. The performance of all models at each pixel was evalu-
ated to select the smallest subset of candidate models for
every pixel in the image. A reliable candidate model is one
that produces physically realistic fractions (i.e., between
0 percent and 100 percent) and does not exceed a certain
threshold of error. We then ran an optimization program to
select an optimal model from the subset of candidate models
previously selected for each pixel. Finally, we utilized the
fraction values produced by these optimal models to map the
abundance of general land-cover components in the urban
scene and validated the results using the aerial photos. The
procedure is described in more detail below. 

Selection of Endmembers
The selection of endmembers can be performed in two ways
(Adams et al., 1993): by deriving them (1) directly from the
image (image endmembers) or (2) from field or laboratory
spectra of known materials (reference endmembers) (see
Roberts et al. (1998b) for a comparison between the two).
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Because of the coarse spectral resolution of the TM image, and
because the present analysis uses a single-date image, we
deemed it more feasible to use image endmembers. Image
endmembers have the advantage of being collected at the
same scale as the image and are thus easier to associate with
features in the scene.

To select scene elements that represent general categories
of land cover, we followed the conceptual model proposed by
Ridd (1995). Ridd suggested that various subdivisions of
urban areas may be described in terms of proportions of Vege-
tation (V), Impervious surfaces (I), and Soil (S). Ridd’s VIS
model offers an intuitively appealing link to the spectral mix-
ing problem because the spectral contribution of its three
main land-cover components can be resolved at the sub-pixel
level using the SMA technique. The model was originally ap-
plied to American cities, but it has also been tested with data
from Australia (Ward et al., 2000), Thailand (Madhavan et al.,
2001), and Egypt (Rashed et al., 2001). The results of these
studies show that the model is robust in describing the urban
landscape, although it may be necessary to include an addi-
tional component of water or shade to achieve an accurate
characterization of urban morphology (Rashed et al., 2001). 

The process of image endmember selection commenced
by applying the Pixel Purity Index (PPI) method, developed by
Boardman et al. (1995) to initially screen all the pixels in the
image in terms of their relative purity. The PPI method allo-
cates to each pixel in the image a score based on the number
of times it is found to occupy a near-vertex position in the re-
peated projections of the n-dimensional data onto a randomly
oriented vector passing through the mean of a data cloud. The
resulting score allows reliable identification of image end-
members because those pixels that possess relatively pure
spectra will have a high score (i.e., will be found repeatedly at
the extremes of the data distribution). Out of the 14,011,347
pixels included in the image, only 2,536 pixels (about 0.018
percent) were identified as “extremes,” with PPI scores rang-
ing from 1 to 73 (Figure 3a). Only pixels with a PPI score
above the average were then selected as endmember candi-
dates, resulting in a reduction of the total number of extreme
pixels to 821. This reduced set of pixels was then divided into
smaller subsets based on their clustering in the n-dimension
space. These subsets were chosen according to a modified VIS
model that also incorporates water or shade as a fourth end-
member. A threshold of 50 pixels or more per group of clus-
ters was then used to remove dispersed pixels from the selec-
tion, and eight main groups of extreme pixels were identified.
Finally, the eight groups of extreme pixels were linked to the
image to determine their physical correspondence in the
urban scene (with the aid of aerial photos), and the mean
spectrum of each group was used as a candidate endmember
for unmixing. The spectral profiles of the final set of candidate
endmembers are shown in Figure 3b. These included: 

• One endmember, Shd (cluster 1), for the water (the ocean,
lakes) and shade category. 

• Two endmembers, Veg1 and Veg2 (clusters 2 and 3, respec-
tively), for the green vegetation category. Veg1 corresponded
to urban vegetation found in residential lawns, gardens, parks,
golf courses, cemeteries, and shrublands, while Veg2 was used
for natural vegetation located in the coastal sage and chaparral
occupying the lower elevations of the Santa Monica and
San Gabriel mountains, in addition to the oak-grass woodland
located in the eastern portion of the image. The slight differ-
ence between the spectral profiles of these two vegetation
endmembers is due to the level of liquid water content in nat-
ural green vegetation (Veg2) that is higher than that of urban
vegetation (Veg1). 

• Three endmembers, Imp1, Imp2, and Imp3 (clusters 4, 5, and
6, respectively), for the impervious surface category. While the
spectral profiles of these first two endmembers follow the
same trend, as indicated in Figure 3b, the brightness values

vary due to differences in the targets they corresponded to in
the urban scene. Imp1 was used as an endmember for parking
lots and dark gray roads, whereas Imp2 was used for gray as-
phalt roofs, red-gray roofs, and light asphalt roads. The Imp3
endmember has a rather distinct spectral profile because it
corresponded to red tile roofs and wood shingle roofs. 

• Two endmembers, Soil1 and Soil2 (clusters 7 and 8, respec-
tively), for the soil category. The former corresponded to bare
soil in the urban scene, while the latter corresponded to
sparsely vegetated soils. Observed differences in the spectral
profiles of these two endmembers is a result of the variations
in the organic matter and mineral compounds between these
two soil endmembers. 

Generation of SMA Models
Based on the selected set of candidate endmembers, a series of
SMA models were identified to model the image scene based
on different possible combinations between these endmem-
bers. Given the size of the image, and to minimize the compu-
tational time of this process, we restricted the combination of
endmembers to only be between the general categories of land
cover. For example, the two endmembers Veg1 and Veg2 were
not allowed to be used together in any individual model be-
cause they belonged to the same vegetation category. This rule
resulted in a total of 63 separate mixture models for each
pixel in the Landsat scene. These models included 23 two-
endmember models, 28 three-endmember models, and 12
four-endmember models. For each one of these 63 candidate
models, we employed an algorithm for spectral unmixing that
was based on the unconstrained modified Gram-Schmidt
least-squares method (Roberts et al., 1998a), in which frac-
tions are constrained to sum to 1 while individual fractions
are allowed to be less than 0 or greater than 1. When this
method is applied to an image consisting of N spectral bands
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using a number of endmembers less than or equal to N, the
output will be a fraction image for each endmember and an
RMSE image that measures the model’s fit. The specific formu-
lation can be found in Adams et al. (1993), Tompkins et al.
(1997), and Roberts et al. (1998a).

Optimization of Model Selection
The purpose of this stage of the analysis was to identify, from
the 63 models produced in the previous stage, the optimal
model for each pixel in the image. A model had the potential
to be optimal for a pixel if it minimized the RMSE while pro-
viding reasonable (positive and physically meaningful) frac-
tions for that pixel. Because it was possible that more than
one model could meet these criteria for a pixel, the selection
of optimal models was conducted in two steps. In the first
step, a subset of potential candidate models was selected for
each pixel according to the following criteria:

• A fraction criterion: A model was considered to be a candi-
date for a pixel if it produced physically reasonable fractions
between �0.05 and 1.05 for that pixel. A 5 percent error in the
modeled fractions was permitted to allow for noise-generated
errors.

• An RMSE criterion: A model was selected if the RMSE was
below a threshold of 0.05.

Based on these two criteria, an algorithm was developed
to screen the fractions and the RMSE results produced by the
63 models in every pixel in the image. The output of this
process was an image consisting of 63 bands, each corre-
sponding to one of the 63 models. In each band, if a model
met the two criteria for a pixel, that pixel was assigned a
value of 1. Otherwise it was assigned a value of 0. 

In the second step, the resulting binary fractional bands
were further processed by an optimization program to address
the case when two or more models have met the criteria in a
pixel (i.e., model overlap). In this case, it becomes necessary
to choose which model, among these candidates, is optimal
for the pixel. We applied an optimization program based on
the classical maximal covering problem originally introduced
by Church and ReVelle (1974). The objective of this optimiza-
tion program was to select a final subset of optimal models
(one per pixel) that minimizes model overlap while maximiz-
ing the number of pixels being correctly modeled in the
image. This helped identify the dominant set of models that
were more likely to have physical correspondence to the
scene than would other spatially fragmented models. The
problem formulation of this optimization program is de-
scribed in detail in Roberts et al. (1998b). The program was
written to run on the GRID module of the Arc/Info GIS software
package.

Validating Fractions
In the final stage of our application of MESMA, the per-pixel
optimal models were used to map the fractional abundance
of the general components of land cover in the urban scene
(i.e., Veg1 and Veg2 endmember fractions were mapped to a
vegetation land-cover class, while Soil1 and Soil2 fractions
were mapped to a soil land-cover class, and so on). The end
product of this process consisted of four maps depicting the
spatially varying character of the following land-cover compo-
nents: Vegetation, Impervious surface, Soil, and Water/Shade.
In addition, a map of RMSE was generated showing pixels of
higher RMSE (�0.05 DN) which could not be modeled by any
of the 63 models.

To assess the accuracy of final fraction maps and to evalu-
ate the robustness of MESMA in the context of the urban envi-
ronment, aerial photos were utilized to validate the final
results. Despite the growing number of studies on SMA, as-
sessing the accuracy of derived endmember fractions through
direct quantitative methods is a topic that has been remark-

ably neglected, with the exception of small number of studies
that have attempted to address this issue, including Small
(2001), Peddle et al. (1999), and Elmore et al. (2000). The dif-
ficulty arises from the fact that natural surfaces composed of a
single uniform material do not exist in the real world. Even
with human-made materials, factors such as material ageing,
atmospheric influences, and other human-related activities
have a profound impact on the heterogeneity of urban sur-
faces. This makes it very difficult to find sufficient reference
data that can directly be compared against the continuously
varying surface of endmember fractions generated over large
areas. The alternative solutions are either to compare the
agreement of derived endmember fractions with estimates of
fractions derived independently by another method, or to as-
sess the validity of derived fractions in light of their useful-
ness in providing accurate land-use/land-cover categorical
classification of urban areas. Clearly, the former is difficult to
pursue because none of the currently competing methods has
been proven superior, while the latter defies the objective of
our research, which is to describe the continuous nature of
the urban landscape. 

Acknowledging these limitations, we followed a simple
approach to validate endmember fractions through aerial pho-
tos by building upon a procedure described in Peddle et al.
(1999). In this approach, a stratified adaptive cluster sampling
(SACS) method was used to identify a number of test sites on
the aerial photos. This method was designed to adaptively in-
crease sampling efforts of observed values that satisfy a condi-
tion of interest (Thompson, 1992). Our interest here was to
find “relatively” homogeneous surfaces that were occupied by
endmembers that belonged to one, and only one, of our four
categories of land cover. This was achieved by applying a
threshold of 0.7, or greater, to fraction images to delineate all
pixels in each image that include at least 70 percent of a sin-
gle endmember. The threshold of 70 percent was arbitrarily
chosen, assuming that when a pixel meets this condition for a
certain fractional value, then it is most likely that this pixel
can be classified under that “crisp” land-cover class. The spa-
tial clusters of delineated pixels corresponded to urban fea-
tures that were expected to be homogeneous (e.g., park, an air-
port runway, parking lot, lake, etc). From this population of
spatially clustered pixels, a random subset of test sites was se-
lected and identified on the aerial photos. The boundaries of
these test sites were digitized on the aerial photos, and areas
of the digitized polygons were then calculated to represent the
reference data. For each polygon, the percentage of corre-
sponding endmember fractions in the pixels was summed up
to indicate the area of the polygon estimated by MESMA. The
accuracy of each endmember fraction (�) was identified as the
mean of the percentage absolute difference between actual
and modeled cover estimates, calculated according to the fol-
lowing equation (Peddle et al., 1999):

� �� �
�� �

�
��

��n (1)

where � is the area of a test site, � is the area calculated by ac-
cumulating endmember fractions for that site, and n is the
number of test sites identified for each endmember. A total of
16 test sites (four for each land-cover component) were used
in the validation process. 

Results and Discussion
Evaluation of SMA Models Performance
The performance of the 63 SMA models was evaluated in
terms of a model’s ability to produce lower RMSE values
(�0.05 DN) and physically reasonable fractions for the
largest number of pixels. Table 1 lists these 63 models, the
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endmembers they used, and the actual number of modeled
pixels resulting from each one. A comparison between these
models is shown in Figure 4 in terms of the percentage of
modeled pixels. In this figure, the performance of individual
two-endmember, three-endmember, and four-endmember
models is shown in Figures 4a, 4b, and 4c, respectively, while
Figure 4d shows performance results of the models when they
are combined based on the number of endmembers used in
the model. These results demonstrate that no single set of
endmembers can adequately describe the spectra measured by
every pixel in the image. However, the more endmembers that
are added to a single model, the better will be the perfor-
mance of that model. For example, no more than 36 percent of
the image was modeled by any one of the 23 two-endmember
models. At the same time, several individual three- and four-
endmember models accounted for more than 70 percent of
land cover in the image. Nevertheless, an increase in the num-
ber of endmembers also leads to an increase in the overlap be-
tween the models (that is, if a pixel is correctly modeled by
two or more SMA models), resulting in similar performance
for the combined two-, three-, and four-endmember models
after optimization (75 percent, 91 percent, and 86 percent,
respectively—Figure 4d).

The effect of model overlap is also illustrated in the
decline in the performance between the combined three-
endmember models and the combined four-endmember mod-
els. This suggests that there is a tradeoff between the number
of endmembers utilized in the models and the amount of
overlap between the models. Ideally, a better characterization
of the urban scene would be achieved when the overlap be-
tween models is kept to a minimum so that each model repre-
sents spatially contiguous, potentially meaningful features
across the urban landscape. This also suggests that the lower
RMSE values obtained by the models that utilized four end-
member fractions were not due to an accurate utilization of

endmembers, but rather, from the statistical fact that the RMSE
value is guaranteed to decrease whenever a new variable is
added to a regression model. Hence, the optimum model for a
pixel is the one that can correctly model that pixel with a
minimum number of endmembers because in this case these
endmembers will likely be physically, rather than statistically,
meaningful.

Our evaluation of model performance (not shown) sug-
gests that a strategy for selecting those optimal models that
better characterize the urban scene is to minimize the model
overlap whenever possible. This can be achieved by starting
with two-endmember models, evaluating these models in
terms of the RSME and fraction criteria, selecting the models
that meet these criteria with minor overlap, and then, if neces-
sary, appending additional models that incorporate more end-
members. By adopting this strategy in the optimization pro-
gram, optimal models were assigned to 98.86 percent of the
pixels in the image. The remaining portion of the image (1.14
percent) represented areas with a higher RMSE that could not
be adequately modeled by any of the models. The majority of
these areas existed in the Santa Susanna Mountains, located
in the northwest quadrant of the image.

Analysis of Endmember Fractions
Based on the optimal model selected for each pixel, the abun-
dance of endmember fractions was mapped into the four main
categories of the modified VIS model: vegetation, impervious
surface, soil, and water/shade. The maps of these generalized
fractions are shown in Figure 5. Brighter areas indicate higher
fractional abundance of the endmember category while darker
areas indicate lower abundance. These fractions provide a
measure of the physical properties of the dominant land-cover
categories in the scene, thus helping to reveal the physical com-
position of the morphological patterns of the Los Angeles met-
ropolitan area at the time of image acquisition. For example,
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TABLE 1. THE 63 TWO-, THREE-, AND FOUR-ENDMEMBER MODELS USED IN THE ANALYSIS

Two-Endmember Models Three-Endmember Models Four-Endmember Models

Model# Endmembers Pixels Modeled Model# Endmembers Pixels Modeled Model# Endmembers Pixels Modeled

1 Shd, Veg1 1 692 347 24 Shd, Veg1, Imp1 3 318 195 52 Shd, Veg1, Imp1, Soil1 11 594 957
2 Shd, Veg2 1 095 685 25 Shd, Veg1, Imp2 4 115 168 53 Shd, Veg1, Imp2, Soil1 7 836 608
3 Shd, Imp1 780 773 26 Shd, Veg1, Imp3 2 171 710 54 Shd, Veg1, Imp3, Soil1 10 538 917
4 Shd, Imp2 860 357 27 Shd, Veg1, Soil1 5 732 480 55 Shd, Veg1, Imp1, Soil2 724 983
5 Shd, Imp3 642 062 28 Shd, Veg1, Soil2 6 502 150 56 Shd, Veg1, Imp2, Soil2 3 083 792
6 Shd, Soil1 1 228 036 29 Shd, Veg2, Imp1 1 964 924 57 Shd, Veg1, Imp3, Soil2 2 716 161
7 Shd, Soil2 3 275 691 30 Shd, Veg2, Imp2 3 074 462 58 Shd, Veg2, Imp1, Soil1 11 538 398
8 Veg1, Imp1 2 061 850 31 Shd, Veg2, Imp3 1 393 240 59 Shd, Veg2, Imp2, Soil1 8 209 641
9 Veg1, Imp2 5 106 606 32 Shd, Veg2, Soil1 6 006 944 60 Shd, Veg2, Imp3, Soil1 10 607 065

10 Veg1, Imp3 5834 33 Shd, Veg2, Soil2 5 07 126 61 Shd, Veg2, Imp1, Soil2 517 036
11 Veg1, Soil1 12 493 34 Shd, Imp1, Soil1 4 800 338 62 Shd, Veg2, Imp2, Soil2 2 461 663
12 Veg1, Soil2 155 703 35 Shd, Imp1, Soil2 426 120 63 Shd, Veg2, Imp3, Soil2 1 877 092
13 Veg2, Imp1 1 278 423 36 Shd, Imp2, Soil1 1 929 781
14 Veg2, Imp2 4 224 485 37 Shd, Imp2, Soil2 1 476 696
15 Veg2, Imp3 2708 38 Shd, Imp3, Soil1 1 158 487
16 Veg2, Soil1 23 193 39 Shd, Imp3, Soil2 1 529 938
17 Veg2, Soil2 87 669 40 Veg1, Imp1, Soil1 9 824 236
18 Imp1, Soil1 3 484 584 41 Veg1, Imp1, Soil2 1 593 546
19 Imp1, Soil2 357 485 42 Veg1, Imp2, Soil1 9 806 578
20 Imp2, Soil1 2 797 658 43 Veg1, Imp2, Soil2 4 311 990
21 Imp2, Soil2 1 334 251 44 Veg1, Imp3, Soil1 27 034
22 Imp3, Soil1 3136 45 Veg1, Imp3, Soil2 72 771
23 Imp3, Soil2 3514 46 Veg2, Imp1, Soil1 9 571 234

47 Veg2, Imp1, Soil2 1 153 540
48 Veg2, Imp2, Soil1 10 112 890
49 Veg2, Imp2, Soil2 3 923 361
50 Veg2, Imp3, Soil1 41 959
51 Veg2, Imp3, Soil2 35 734
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the spatial distribution of fractions generally resembles the
classic concentric model of land use. Fractions of impervious
surface are very high in the central business district (CBD) at
the urban core (Figure 5b). Moving outward in all directions
from the CBD, the proportion of impervious surface decreases.
Conversely, vegetation and soil fractions (Figures 5a and 5c)
increase as one goes outward from the core to the periphery.
Whether vegetation or soil fractions become dominant de-
pends on the ambient environment. Vegetation dominates the
northeast and southwest quadrants of the scene where the San
Gabriel and the Santa Monica Mountains are located, respec-
tively. Soil dominates the northwest quadrant of the image
near the Santa Susanna Mountains and in the southeast quad-
rant where some industrial areas are located. Although shade
fractions are highly sensitive to such factors as topographic
effects and solar zenith angle at the time of image acquisition,
they are still capable of providing us with a reasonable assess-
ment of features in the scene (Figure 5d). Besides water bodies
(e.g., the ocean, lakes), differences in shade abundance can be
observed between the CBD with its skyscrapers and other resi-
dential areas, between multi-family housing in and around
the urban-core and single-family housing on the periphery,
and between the different aspects of slope in the mountainous
regions.

In this study, our primary objective was to derive mea-
sures that can be linked in subsequent research with social
variables to describe urban morphological patterns in Los
Angeles. It is, therefore, worthwhile to highlight here some
indications about the potential linkage between variation in
socioeconomic and demographic variables, and the physical
variables as determined by the endmember fractions. The net-
work of freeways in Los Angeles acts as a framework for the
distribution of endmember fractions, and also for linking vari-
ation in these fractions to patterns of ethnicity and socioeco-
nomic segregation in the study area. For example, the non-
Hispanic white population is dominant in neighborhoods that
extend along the periphery, which score high on the socioeco-
nomic scale. These areas are characterized as having relatively
high values of vegetation fraction, given a larger share of pri-
vate green space (e.g., golf courses, home lawns), medium in
impervious surface fractions, and low in shade and soil frac-
tions. The majority of African-American dominated neighbor-
hoods are associated with less affluent areas located in the
urban core between the 405 and the 710 freeways. These areas
have very low values of vegetation fraction (with the excep-
tion of public green spaces such as parks and school yards),
high values of shade and impervious surface fractions, and
relatively higher soil fractions. This increase in soil fraction
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Figure 4. Performance of individual models assessed in terms of the percentage of pixels that met the RMSE and fraction
criteria. The results for individual two-, three-, and four-endmember models are shown in (a), (b), and (c), respectively.
(d) compares the performance of the models aggregated according to the number of endmembers to the performance of all
models combined together. Results shown in (d) were optimized for maximum area coverage. 

(a)

(c)

(b)

(d)
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Figure 5. Images produced by mapping endmember fractions from per-pixel optimal models to the four main components of
urban land covers: (a) Vegetation, (b) Impervious Surface, (c) Soil, and (d) Water/Shade. Brighter areas indicate higher abun-
dance while darker areas indicate lower abundance.

(a)

(c) (d)

(b)

values indicates a degree of instability associated with recon-
struction and development activities that took place in some
of these areas in 1990 at the time of image acquisition. Like-
wise, the Hispanic population is largely concentrated in the
central region, which extends along Interstates 10 and 5, to
the San Gabriel Valley in the east and the San Fernando
Valley in the north. The socioeconomic status of these neigh-
borhoods ranges from low to middle as do the fractions of
vegetation, impervious surface, and shade (the latter two are
inversely related to the socioeconomic status of the areas). 

Fraction Validation Results
The accuracy of MESMA fractions was assessed by comparing
the accumulated fraction estimates in relatively homogeneous
land-cover components to other estimates derived from the
higher resolution aerial photos. We deemed this approach suf-
ficient because, for most applications, one would be interested
in the aggregation of fraction measures over well-defined re-
gions (e.g., census tracts, ecological fields), rather than the
fractions of an individual pixel. Table 2 shows the results
from a comparison of the areal coverage of “reference” homo-
geneous features obtained from aerial photos, with the area of
corresponding features on the image scene calculated through
the accumulation of the fractions that were obtained from
MESMA. The results indicate that there is good agreement
between the measures calculated from the fractions and the
aerial-photo-derived estimates for all the four land-cover

components. Both vegetation and soil fractions had the small-
est total mean difference from the reference data aggregated
over the test sites. The accuracy of impervious surface frac-
tions was slightly lower, while water fractions had the lowest
accuracy. These overall accuracy results are also consistent
with the individual results by site. 

The standard deviation values calculated for each class of
land cover provide a complementary measure to assess agree-
ment between reference estimates and MESMA fractions. If
MESMA models were consistently overestimating or underesti-
mating the actual areal coverage of a certain class, the distrib-
ution of the accumulated fraction estimates for that class
would be consistently different from the distribution of the es-
timates derived from the aerial photos. Therefore, the overall
standard deviation values calculated in Table 2 for the four
components strengthen the assertion that the distribution of
fraction estimates are consistent with the distribution of corre-
sponding aerial-photo-based estimates.

Indeed, we recognize that there is a considerable degree
of uncertainty associated with the validation exercise de-
scribed here. This uncertainty is a product of the flaws and
biases resulting from the selection of homogeneous test sites
used for the comparison, and from the error associated with
the estimation of the areal coverage of these sites from aerial
photos. Therefore, the validation exercise described above
is obviously incomplete and should be thought of as a first
step toward a more strongly quantitative verification of the
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MESMA-derived fractions. Nevertheless, the preliminary re-
sults of this exercise suggest that it is possible to quantify the
general land-cover components shaping the physical structure
of urban morphology from multispectral images with medium
spatial resolution. The results also confirm that MESMA is ro-
bust and well suited to provide measures that appropriately
describe the physical composition of urban morphology. 

Summary and Conclusions
In this paper, we described an approach for measuring the
physical composition of urban morphology from medium res-
olution multispectral satellite images using a multiple end-
member spectral mixture analysis (MESMA). The technique
has the potential for providing a direct measure of the basic
elements that comprise the morphology of the city through a
process of pixel-unique endmember selection, based on an op-
timization technique that minimizes model overlap. We tested
this approach in the urban context of Los Angeles County—an
area with diverse physical and social settings that are rapidly
changing due to a range of complex, interrelated forces of ur-
banization that are not yet well understood. Using MESMA, we
showed that two- and three-endmember models can provide
better separation of urban materials than can four-endmember
models because of reduced model overlap. We mapped the
derived endmember fractions into four general components of
urban land cover and demonstrated how these fractions can
be linked to the spatial patterns that exist in the region by
ethnicity and socioeconomic class.

It has been suggested that urban morphology is “the phys-
ical appearance of social reality” (Pesaresi and Bianchin,
2001, p. 56). The potential of MESMA to contribute to urban
morphological analysis lies in its ability to quantify the physi-
cal composition of urban areas occasioned by human activity
at different geographic scales. This serves as an image-derived
proxy for human behavior taking place on the ground that we
might not otherwise be able to measure. The research pre-
sented herein is a work in progress and we recognize that
there are limitations in the results. Specifically, we recognize
the need to adopt a more rigorous method to validate MESMA

results based on simultaneously acquired, high-resolution
hyperspectral imagery with coincident field measurement.
However, the aim of this paper is to illustrate the capability of
MESMA for providing ways of generating physically meaning-
ful estimates of urban morphology that are not measurable by
other means. In future research, we will explore in more de-
tail how these remotely sensed measures can be linked with
socio-demographic variables to reveal different morphological
patterns of human settlements in large cities. 
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