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Abstract
Mapping past time periods (retrospective mapping) using
remotely sensed data is hindered by a lack of coincident
calibration and validation information. The identification of
features of same ground cover invariant across time and their
use as calibration and validation data addresses this chal-
lenge by: (a) streamlining the process of image calibration for
multiple dates, and (b) allowing each image to generate its
own spectral signature. This study investigates the use of
temporally invariant calibration and validation data to map
land-cover in Massachusetts, employing five satellite images
collected from five separate dates and different sensors. The
results indicate that this technique can be used to produce
land cover classifications of similar overall map accuracy to
published mapping studies. Classification accuracy using this
method is highly dependent on the characteristics (radiomet-
ric, spectral, and spatial) of the satellite imagery.

Introduction
Land-cover mapping is essential for monitoring the biosphere
and contemporary global change (Turner et al. 1995). The
application of remote sensing technology to inventory forest
cover and productivity (Wulder, 1998), map post-wildfire
burn severity (Miller and Yool, 2002), identify urban expan-
sion (Ji et al., 2001; Weng, 2001), and monitor desertification
(Tripathy et al., 1996) has proven the worth of satellite
imagery as an effective data source to monitor past and
future landscape conditions (Turner et al., 1995). Further,
satellite records extend back over 30 years, with data sources
ranging from MSS to Landsat ETM�. However, one of the
limitations to utilizing this dataset in land-cover mapping is
the lack of ground reference data from past date(s) of imagery
to be used in calibration and validation of mapping products
(Rogan and Chen, 2004). This paper proposes a new method-
ological approach to overcome this limitation.

With an increase in availability of fine spatial resolution
and hyperspectral sensors, the quantity of remotely sensed
data is continuously increasing (Rogan and Chen, 2004).
These new data sources are building on the wealth of
current and historical information gathered from longer
running medium spatial resolution (20 to 30 m) sensors that
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provide the means for numerous regional operational
mapping and monitoring programs (see Franklin and
Wulder, 2002). Remote sensing image libraries, such as those
acquired by the Landsat mission over the past 30� years,
allow practitioners to create regional scale map products
with a variety of temporal resolutions (Goward and
Williams, 1997), an attribute which is critical for large scale
monitoring efforts (Hill et al., 1995). Many of these libraries
have also recently adopted policies which allow free access
to satellite imagery, greatly enhancing the general availabil-
ity of imagery for analysis all around the globe (e.g., the US
Landsat archive1, China and Brazil’s China-Brazil Earth
Resources Satellite (CBERS)2, and planned free data for the
European Space Agency’s Sentinel-2 program3). Categorical
land-cover maps which can be produced from satellite
imagery from sources such as CBERS, Landsat, and Sentinel
are useful to identify land change either directly through
post-classification comparison (Jensen et al., 1995), or
indirectly using spectral-based change mapping techniques
(Cohen and Fiorella, 1998; Singh, 1989). The creation of
land-cover maps for land change mapping is often hindered
by a lack of ground reference information and/or aerial
photography that is temporally explicit to the date of
remotely sensed imagery (Washington-Allen et al., 2006).
Therefore, a dearth in temporally pertinent calibration and
validation data is a constraint when any classification
approach is undertaken. To compensate for the scarcity
of calibration and/or validation data, methodologies such
as signature extension, whereby algorithmic calibration is
performed on one date or location of imagery, and the
resultant signatures are extended to a second date or
location of imagery, have been documented and to some
degree explored (Olthof et al., 2005).

Signature extension methods, also called generalization,
have been primarily adopted to classify across image
scenes/locations (Minter, 1978; Iverson et al., 1994; Fazakas
and Nilsson, 1996; Olthof et al., 2005). Within-scene,

1 http://glovis.usgs.gov/
2 http://www.cbers.inpe.br/en/index_en.htm
3 http://www.esa.int/esaEO/SEMXK570A2G_environment

_0.html
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Figure 1. Map of the study area and rationale for study
area selection.

temporal generalization methods have been explored to a
lesser extent but have been shown to produce mapping
products of comparable accuracy to those created through
traditional classification techniques (Woodcock et al., 2001).
However, signature extension has been proven problematic
when presented with differences in image radiometric
properties, variable atmospheric effects across images, and
spatial/temporal variation in vegetative phenology (Pax-
Lenney et al., 2001; Olthof et al., 2005; Rogan et al., 2002).

In an attempt to overcome these problems, this paper
proposes the identification and use of temporally invariant
ground features as calibration and validation data for the
classification of past dates of imagery (retrospective map-
ping) for which ground data are not available. It is illus-
trated that this approach addresses many of the challenges
associated with retrospective mapping, while overcoming
the limitations of signature extension by: (a) only requiring
one calibration and validation dataset for all images, and (b)
allowing each image to generate its own signature character-
istics specific to its inherent spectral and spatial properties.
Further, the proposed methodology provides a cost and time
efficient method to classify images of identical spatial
extents from multiple sensors and points in time.

To investigate the utility of this new methodology,
images from five separate satellite platforms and five
separate dates spanning a 33 year period between 1973 and
2006 are selected for land-cover classification. Using the
imagery, temporally invariant samples are identified to cre-
ate an invariant data set. This invariant data set is then
applied to classify land-cover in each image to test the
plausibility of using invariant calibration data in long term
retrospective and cross-satellite sensor land-cover mapping.

Study Area and Data
The study area encompasses a 2,800 km2 portion of south-
central Massachusetts containing the metropolitan city of
Worcester and surrounding towns. The region is dominated
by heterogeneous mixture of needleleaved and broadleaved
forests; herbaceous lands used for horse pasture, crop based
agriculture, urban parkland, golf courses, and recreational
fields; sparsely vegetated land including bare soil, sand
quarries, and impervious surfaces from residential and com-
mercial developed areas; and numerous standing water features
such as lakes, rivers and reservoirs. Land change in this region
over the last 30 years has been predominately suburban
expansion from urban centers such as the cities of Boston
and Worcester into areas previously occupied by forest and
agriculture (DeNormandie, 2009; Breunig, 2003). The study
region’s boundaries represent the intersecting footprints of all
five remotely sensed datasets used in this study (Figure 1).

Five satellite images were acquired for the study area
including three Landsat scenes from 1973, 1987, and 1999
representing Landsat-Multispectral Scanner (MSS), Thematic
Mapper (TM), and Enhanced Thematic Mapper Plus (ETM�)
data, respectively, as well as a Satellite Pour l’Observation de
la Terre-1 (SPOT-1) scene from 2001 and an Advanced Space-
borne Thermal Emission and Reflection Radiometer (ASTER)
scene from 2006. All imagery was captured during the month
of July with the exception of the 1987-TM image, which was
captured during the early fall. Figure 2 highlights the differ-
ences in spectral resolution between each remote sensing
platform in the visible through shortwave infrared spectrum.
Acquisition resolution varied across the sensors, including 60
m (1973-MSS image), 20 m (SPOT-1 image), and 15-m (bands 1
to 3 of ASTER); the rest of the data were acquired at 30 m
resolution. All data were resampled to 30 m resolution using
a nearest neighbor resampling algorithm to facilitate their
compatibility with all other data sets (Table 1).

Methods
Data Preprocessing
All data were projected into the Massachusetts State Plane
coordinate system to minimize the degree of positional
distortion resultant from projection into one of the two UTM
zones (18 and 19 north) spanned by the study area. Atmos-
pheric correction was performed on all spectral images using
the COS(T) dark object subtraction method (Chavez, 1996).
Ground location comparison was performed visually
between the satellite data and a Massachusetts roads layer
(1:100 000 scale) to determine if geometric correction was
necessary. The 1973-MSS and 1999-ETM� images were found
to match well with the roads. Geometric correction was
performed on the 1987-TM image using 39 ground control
points with a global Root Mean Square Error (RMSE) of 11 m;
on the 2006-ASTER image using 23 ground control points
with a RMSE of 8 m; and to the 2001-SPOT-1 image using 23
ground control points with a RMSE of 9 m. These RMSEs
were deemed tolerable for analysis on the basis of existing
literature (Rogan and Chen, 2004; Jensen, 1996), although
there is some discussion as to ideal tolerances (Townshend
et al., 1992).

Classification Scheme
Table 2 describes the land-cover categories examined in this
study. Classes include needleleaf forest, broadleaf forest,
herbaceous, non-forested wetlands, low intensity impervi-
ous (between 50 and 75 percent), high intensity impervious
(�75 percent), and water. These seven categories are chosen
based on prior knowledge of the study area, selecting the
most common and dominant land-cover types which could
be easily identified in both orthophotography and spectral
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Figure 2. Bandwidths and electromagnetic wavelengths collected by all sensors used in this study.

color composites. For example, the split between low
intensity and high intensity impervious was chosen to
facilitate the distinction between urban core and suburban
areas throughout the study area, while the wetlands cate-
gory is included in this scheme based on its ecological
importance to the landscape of Massachusetts (Brooks and
Hayashi, 2002).

Ground Reference Data
The following steps were taken to identify invariant features
using the 1973-MSS (earliest image) and 2006-ASTER (latest
image) data:

1. The images from 1973 (MSS) and 2006 (ASTER) were overlaid,
both displayed in a near-infrared false color composite for
visual interpretation purposes.

2. Visual assessment was performed to identify static land-
cover by looking for areas that exhibit generally static
reflectance properties as well as static feature shapes. Good
examples were found in established urban areas, large
homogeneous patches, and conservation areas (wetlands and
forest). Invariant reflectance values ranged between 1 to 5
percent in general.

3. Once an invariant location was indentified, a cover category
was attributed based on 1-meter color orthophotographs
collected by the Massachusetts Office of GIS (MassGIS;
http://www.mass.gov/mgis/) in April 2000.

4. For further verification that a land-cover is truly invariant
over time a visual inspection of imagery from the intermedi-
ate time steps (1987-TM and 1999-ETM�) was used to show no
temporary changes in state occurred. Additionally where

available a comparison of GIS land-use information from
1971 and 1999, acquired from the Massachusetts Department
of GIS, was performed (Figure 3).

Invariant site calibration was performed by digitizing
3,600 m2 polygons on the photographs, each representing at
least four pixels at 30 m spatial resolution. These polygons
were identified in center regions of large, contiguous
invariant features (e.g., inside large forest stands, the middle
of agricultural fields, and high density urban centers) to
avoid edge conditions where land change is most likely to
occur (Rogan and Miller, 2006). A total of 269 calibration
samples were collected for the study area, representing 42
sites for needleleaf forest, 40 sites for broadleaf forest, 36
sites for herbaceous, 34 sites for non-forested wetland, 41
sites for low intensity impervious, 39 sites for high intensity
impervious, and 37 sites for water. Figure 4 presents the
spectral response curves of the seven land-cover categories.

An independent validation dataset was produced based
on a stratified random sampling design using individual
30 m � 30 m pixels as the sampling unit and the seven

TABLE 1. SPECTRAL AND ANCILLARY DATA USED IN CLASSIFICATION

Spectral Data Resolution Platform

23/07/1973: Bands 4–7 60 m Landsat-1 MSS
16/09/1987: Bands 1–5 and 7 30 m Landsat-5 TM
07/07/1999: Bands 1–5 and 7 30 m Landsat-7 ETM�
20/07/2001: Bands 1–3 20 m SPOT-1
10/07/2006: Bands 1–9 15/30 m ASTER

TABLE 2. DEFINITIONS USED FOR MAP CLASSIFICATIONS

Category Description

1. Needleleaf Forest Forested land �50% needleleaf conifer
canopy cover

2. Broadleaf Forest Forested land �50% broadleaf 
deciduous canopy cover

3. Herbaceous Managed or open grass, pasture, 
and cultivated lands

4. Wetland Vegetated lands (sparse forest, shrub, 
or herbaceous) with water table present
at or near surface

5. 50 to 75% Impervious �50% and �75% presence of 
impervious surfaces (build-up)

6. �75% Impervious �75% presence of impervious 
surfaces (build-up)

7. Standing Water Standing water present �11 months
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land-cover categories as strata. Strata locations were derived
from a circa 2000 land-use/land-cover map with an overall
map accuracy of 87 percent (MaFOMP, 2009). Sixty-five
random points were generated in each stratum as potential
validation locations. Each point location was explored to
verify: (a) correct class definition using the 1 m orthophotog-
raphy, and (b) that the land-cover at the site did not change
over the 33 year study period so that it could be applied to
correctly validate all five years of classified imagery. Sample
points located in areas where land-cover change had
occurred were subsequently removed from the validation
set. After removing points that were identified as variant
across images, 358 calibration/validation samples remained,
ranging from 42 to 59 pixels per class (Table 3).

Classification
A See5 classification tree algorithm (CTA) was used for image
classification (Quinlan, 1996). CTA uses binary splitting to
develop rules which maximize homogeneity at each split and
continues recursively until all data are categorized into
homogenous classes (Friedl and Brodley, 1997). The CTA was
chosen due to its non-parametric nature and proven robust-
ness in land-cover/land-use classification over traditional
classifiers such as Maximum Likelihood, as well as for its
speed, transparency of data partitioning decisions, and ease
of use (DeFries and Chan, 2000; Pal and Mather, 2003).

Classification Evaluation
Error matrices (see Tables 5 through 9) were generated to
calculate overall accuracy measures that provide evaluations
of map quality. Individual class error (omission and com-
mission) was explored to identify areas of classification
difficulty in the individual map products.

Since a stratified sampling strategy was used in this
analysis, it was necessary to weight the proportion of
correctly classified pixels per stratum according to the areal
proportion of the landscape encompassed by each stratum.
This will minimize the effect of high map accuracies caused
by homogeneous classes (e.g., water) which encompass only
small portions of the study area. Proportion-weighted overall
accuracy was calculated:

(6)

where Xk is the number of correctly classified samples in
strata k, Zk is the total number of samples in strata k, Pk is
the total study area covered by strata k, and P is the total
area of the landscape. The inverse student-t was used to
determine the confidence interval of the overall accuracy
values using the proportion of the study area covered by the
validation plots. For example, the study area is 100,000

a PXk

Zk
  *

Pk

P Q

Figure 3. Steps to identify pseudo-invariant features for retrospective mapping:. (a) identifying invariant
features, e.g., Worcester business district, (b) draw reference polygon and assigning a land-cover
identification, e.g., bare land, presence of build up �60 percent, and (c) verification of feature invariance
using land-use data.
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Figure 4. Mean spectral response curves of the seven land-cover categories: (a) 1973-MSS, (b) 1987-TM,
(c) 1999-ETM�, (d) 2001-SPOT, and (e) 2006-ASTER.

square kilometers and only 3,000 square kilometers were
sampled and validated. Instead of assuming the accuracy
reported by those 3,000 square kilometers is exactly the same
over the rest of the study area we determined a confidence

interval at �5 percent and the reported the accuracy (in the
case of the 1973 classification) as a range of 62 to 73 percent
(where the derived overall accuracy was 67 percent). Follow-
ing much of the existing literature the overall kappa values
for each map were calculated (see Congalton and Mead,
1983; Congalton, 1991; Congalton and Green, 2009) (see
Table 4), although use of the kappa statistic has recently

TABLE 3. NUMBER OF CALIBRATION AND VALIDATION SAMPLES ACQUIRED FOR
EACH CLASS, AND THE ESTIMATED PROPORTION OF STUDY AREA PER CLASS

Estimated Stratified Random Stratified Random
Proportion of Calibration Validation

Class study area Samples Samples

Needleleaf 4% 168 42
Broadleaf 37% 160 57
Herbaceous 14% 144 44
Wetland 8% 136 51
Impervious 
(50 to 75%) 24% 164 59
Impervious 
(�75%) 7% 157 58
Water 6% 148 47

TABLE 4. OVERALL ACCURACY AT THE 95 PERCENT CONFIDENCE
LEVEL FOR MAPS CREATED USING INVARIANT SAMPLE SITES

Proportion-weighted
Classification Overall Accuracy Overall Accuracy Overall
Year (95% confidence) (95% confidence) Kappa

1973 62 to 72% 59 to 82% .62
1987 83 to 90% 81 to 97% .94
1999 81 to 88% 80 to 95% .82
2001 75 to 83% 71 to 91% .75
2006 83 to 90% 75 to 94% .84
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TABLE 5. ERROR MATRIX FOR THE 1973 (MSS) CLASSIFICATION (VALIDATION DATA IN COLUMNS)

Validation

Need. Broad. Herb. Wetl. Imp (L) Imp (H) Water Total

Needleleaf 30 9 1 5 0 0 0 45
Broadleaf 2 42 3 11 1 0 0 59

Herbaceous 0 2 35 24 4 0 0 65
Wetland 10 4 1 9 6 0 0 30

Impervious (L) 0 0 4 1 43 24 0 72
Impervious (H) 0 0 0 1 5 34 0 40

Water 0 0 0 0 0 0 47 47
Total 42 57 44 51 59 58 47 358

TABLE 6. ERROR MATRIX FOR THE 1987 (TM) CLASSIFICATION (VALIDATION DATA IN COLUMNS)

Validation

Need. Broad. Herb. Wetl. Imp (L) Imp (H) Water Total

Needleleaf 38 3 0 1 0 0 0 42
Broadleaf 2 52 1 6 0 0 0 61

Herbaceous 0 0 38 11 0 0 0 49
Wetland 2 1 4 33 1 0 4 45

Impervious (L) 0 1 0 0 57 10 0 68
Impervious (H) 0 0 1 0 1 48 0 50

Water 0 0 0 0 0 0 43 43
Total 42 57 44 51 59 58 47 358

M
a
p

M
a
p

TABLE 7. ERROR MATRIX FOR THE 1999 (ETM�) CLASSIFICATION (VALIDATION DATA IN COLUMNS)

Validation

Need. Broad. Herb. Wetl. Imp (L) Imp (H) Water Total

Needleleaf 42 3 0 4 0 0 0 49
Broadleaf 0 50 0 8 0 0 0 58

Herbaceous 0 2 41 16 1 0 0 60
Wetland 0 2 0 23 0 0 5 30

Impervious (L) 0 0 3 0 57 11 0 71
Impervious (H) 0 0 0 0 1 47 0 48

Water 0 0 0 0 0 0 42 42
Total 42 57 44 51 59 58 47 358

M
a
p

TABLE 8. ERROR MATRIX FOR THE 2001 (SPOT) CLASSIFICATION (VALIDATION DATA IN COLUMNS)

Validation

Need. Broad. Herb. Wetl. Imp (L) Imp (H) Water Total

Needleleaf 34 6 0 9 0 0 0 49
Broadleaf 3 45 1 3 0 0 0 52

Herbaceous 0 1 32 5 0 0 0 38
Wetland 5 3 1 29 0 0 4 42

Impervious (L) 0 2 10 3 56 14 0 85
Impervious (H) 0 0 0 2 3 44 0 49

Water 0 0 0 0 0 0 43 43
Total 42 57 44 51 59 58 47 358

M
a
p

TABLE 9. ERROR MATRIX FOR THE 2006 (ASTER) CLASSIFICATION (VALIDATION DATA IN COLUMNS)

Validation

Need. Broad. Herb. Wetl. Imp (L) Imp (H) Water Total

Needleleaf 38 8 0 1 0 0 0 47
Broadleaf 1 44 2 7 0 0 0 54

Herbaceous 0 2 34 3 0 0 0 39
Wetland 3 0 0 39 0 0 3 45

Impervious (L) 0 3 3 1 57 5 0 69
Impervious (H) 0 0 5 0 2 53 0 60

Water 0 0 0 0 0 0 44 44
Total 42 57 44 51 59 58 47 358

M
a
p
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been the topic of some debate (Pontius and Millones, 2008).
In addition to examining these quantitative results, a qualita-
tive visual review of the map products was utilized to
identify spatial errors quantitative analysis may not reflect.
This qualitative examination is particularly important for this
methodology, as temporally invariant pixels are frequently
“pure” cases, the exclusive selection of which can artificially
inflate map accuracy (Rogan et al., 2008).

Results
Table 4 presents both the unweighted and proportionally
weighted overall map accuracy results for each year of
classified imagery using a 95 percent confidence level.
Proportionally weighted overall accuracy between the five
maps ranged from 59 percent to 97 percent, with the lowest
overall accuracies produced by the 1973-MSS data (59 percent
to 83 percent, at a 95 percent confidence level) and highest
by the 1987-TM data (81 to 97 percent, at a 95 percent
confidence level). Figure 5 presents the Producer’s Accuracy
for each map and class, which ranged between 70 to 100
percent for all classes with the exception of the wetlands
category in the majority of cases and �75 percent impervious
in the 1973 map only. The wetlands category produced the
lowest class accuracies and had the highest range of variabil-
ity in accuracy between the maps ranging from 18 percent
(1973-MSS) to 76 percent (2006-ASTER). The water and 50 to 75
percent impervious categories produced the highest accura-
cies ranging from 89 to 100 percent (water) and 73 to 97
percent (50 to 75 percent impervious).

Even though the statistical accuracy is similar between
some maps, in particular 1987-TM, 1999-ETM�, and 2006-ASTER,
qualitative analysis shows clear difference in the spatial
configuration of the maps. The major visual inaccuracies on
all five maps can be attributed to the over classification and/or
poor placement of the wetlands category. Most prominently in
the 2006-ASTER image wetlands are over-classified. The 1973-
MSS and 1999-ETM� over-classified wetlands in smaller
patches spread across the image, and also over-classified small
patches of herbaceous into forested areas giving the illusion of

a more heterogeneous landscape than actually exists. The
2001-SPOT image is less affected by over-classification of
wetlands and herbaceous, but tended to over-classify “50 to 75
percent impervious” in the southwest portion of the image.

Discussion and Conclusions
Retrospective mapping using remotely sensed data is
currently hindered by a lack of temporally explicit calibra-
tion and validation information. The purpose of this paper
is to propose a solution to the lack of coincident calibration
and validation sites in retrospective mapping: the identifica-
tion and use of features of “same ground cover” which are
invariant across time. This paper has addressed the chal-
lenges of retrospective mapping by: (a) streamlining the
process of image calibration for multiple dates, and (b)
allowing each image to generate its own signature.

The lowest overall map accuracies resulted from the two
sensors most limited in radiometric, spectral, and spatial
resolution (MSS and SPOT-1). The results from the MSS image,
which were lower than all other classifications, are most likely
hindered by spatial and radiometric resolution of the sensor.
The coarser 60 m spatial resolution of MSS causes mixing of
land-cover types within each pixel, making it harder to
identify pure examples of each class, particularly within
heterogeneous classes such as herbaceous and 50 to 75
percent impervious. The 6-bit radiometric resolution of MSS
likely introduced confusion between similar classes for which
seperability is important for accuracy (e.g., 50 to 75 percent
impervious and �75 percent impervious). Both the MSS and
SPOT sensors are likewise hindered by the lack of shortwave
infrared bands, which provide information on moisture
content in vegetation and could enhance separability between
the vegetated classes that account for approximately 63
percent of the study area. A review of classification tree
splitting rules from the TM, ETM�, and ASTER classification
indicate that the shortwave infrared (TM/ETM� bands 5 and 7
and ASTER bands 4 through 9) aided in the distinction between
needleleaf forest and wetlands, herbaceous and 50 to 75
percent impervious, and between 50 to 75 percent impervious

Figure 5. Per-class Producer’s Accuracy for all five map products.
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and �75 percent impervious (Figure 6). Seperability of classes,
assessed by reviewing the spectral response curves for each
class, shows a high similarity between the needleleaf and
wetlands classes in all bands except for the SWIR. This
suggests that accuracy in sensors omitting SWIR bands is
driven by sensor quality, rather than classification methodol-
ogy. Conversely, the success of the 1987-TM image is most
likely due to the date of image capture, as previous research
indicates that imagery showing early to mid-senescent stages
of vegetation phenology (e.g., September/October in Northeast
United States) can increase the separability of vegetation
classes and improve map accuracy (Kalensky and Scherk,
1975; Schriever and Congalton, 1995). All other images were
captured in the month of July, which represents the height of
vegetation phenology in this region.

The per-class accuracy results show that the classified
maps which produced the highest and lowest class accura-
cies are highly variable, and no single set of imagery
outperformed the others for every class. The 1973-MSS data
clearly produced the lowest per-class accuracies in the
majority of categories, which is concurrent with the poor
results of the 1973-MSS imagery in the overall accuracy
comparison. Per-class accuracies achieved by the other four
dates of imagery fell between 73 percent to 100 percent. The
exception to this case is the wetlands category which saw
accuracies as low as 18 percent (1973-MSS) and only as high
as 76 percent (2006-ASTER). The poor accuracy of the wet-
lands class could be primarily attributed to the fact that the
wetland class refers to a state of land-cover and is not itself
a land-cover type, as these areas frequently transition
between dry and wet states. There is high variability within
this class (e.g., how wet the land is in any particular area
corresponds to a high variability in spectral response),
leading to confusion with all three of the other major
vegetation categories: needleleaf forests, broadleaf forests,

and herbaceous. Other than wetlands, the majority of class
confusion in the classified products occurred predominantly
between like classes such as: needleleaf and broadleaf
forests, 50 to 75 percent impervious and �75 percent
impervious, herbaceous and broadleaf forests, and water
with wetlands, all classes with semantic similarities.

While selecting temporally invariant calibration sites to
classify multiple images can be applied to both retrospective
and current datasets, the results of each map will be
restricted by the spatial and spectral properties of the data
from which they are made. Further, for larger time series
assessing the invariant nature of each sample site may be
impossible due to resource restraints. This limitation can be
particularly problematic when attempting to map land
covers which change over non-regular intervals (e.g.,
commercially managed forests). While choosing sample sites
well away from edges (where change is more likely to occur)
can help to mitigate this issue, it can introduce challenges
in classifying “transitional” or “mixed” habitat types.
Acknowledging these limitations, the results show that this
method of classification based on temporally invariant
calibration sites can: (a) expedite the process of ground data
collection by requiring only one calibration set for multiple
maps, (b) overcome the limitation of ground reference
unavailability, (c) be applied across multiple sensors of
differing spatial and spectral characteristics, and (d) produce
land-cover maps of overall statistical accuracy �76 percent.
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Figure 6. Example classification tree produced using 1999-ETM� spectral bands 1 through 5, 7, and
ancillary variables.
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