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Abstract
Integrating raster-based categorical maps from multiple
sources necessitates the transformation of geometric charac-
teristics to compare maps, as in land change analyses. By
projecting maps to a new geographic reference framework
and scaling pixel values to a new size, distortions of map
information are introduced that can affect the proportion
and arrangement of thematic classes across the landscape.
Using a sample land cover dataset depicting a heteroge-
neous landscape, this paper examines these impacts using
three common raster-based transformation methods and
introduces a new vector-based method that minimizes error
propagation. While relative class area was best preserved by
a nearest-neighbor resampling method, distortions to the
contiguity of thematic classes and the overall fragmentation
of the landscape were minimized when using the vector-
based projection and resampling method. Results demon-
strate that more than a third of pixel values of a categorical
map may be affected by common projection and scaling
methods and reinforce the need for careful attention
to impacts of error propagation in categorical data 
transformations.

Introduction
Land change studies often utilize raster-based models of
geographic information, due to the ease of generalizing
thematic class information (Monmonier, 1983) and the
efficiency of analytical operations (Peuquet, 1979). Over
the nearly four decades of digital satellite imagery, innu-
merate conventions of spatial resolutions and geographic
reference frameworks have been employed, in accordance
with changing research agendas (Aspinall, 2002). However,
the direct comparison of raster-based maps necessitates that
each map has the same pixel size in the same geographic
reference framework (White, 2006; Foody, 2007). The
quantified implications of projecting (White, 2006) and
scaling (Costanza and Maxwell, 1994) categorical maps
have occasionally been noted, but the combined effects of
the necessary combination of these two operations have not
received much attention in the literature of the geographic
information science and land change research communities,
in spite of the potential to affect the results of change

PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING J u n e  2012 617

Zachary J. Christman is with the Middlebury College Depart-
ment of Geography, 14 Old Chapel Road, Middlebury,
Vermont 05753, and formerly with Clark University Graduate
School of Geography, Worcester, MA 01610
(zchristman@middlebury.edu).

John Rogan is with Clark University Graduate School of
Geography, 950 Main Street, Worcester, MA.

Photogrammetric Engineering & Remote Sensing 
Vol. 78, No. 6, June 2012, pp. 617–624.

0099-1112/12/7806–617/$3.00/0
© 2012 American Society for Photogrammetry 

and Remote Sensing

Error Propagation in Raster Data Integration:
Impacts on Landscape Composition 

and Configuration
Zachary J. Christman and John Rogan

analyses (Turner and O’Neill et al., 1989; Townshend and
Huang et al., 2000). In addition to changing the calculated
area of thematic classes, the depiction of landscape compo-
sition and configuration in the categorical map can be
distorted, increasing the perception of landscape fragmenta-
tion (Wickham and Ritters, 1995). When preparing maps
for land change analysis, these transformation methods 
can obscure the accurate representation of landscape
heterogeneity, especially along the borders between 
map categories, leading to diminished or exaggerated
estimates along the frontiers of most rapid land change
(Griffith, 2004).

This paper examines error propagation in raster data
integration, comparing several commonly used methods
using landscape ecological metrics to quantify landscape
composition and configuration, and introduces a model of
frequency-based aggregation that preserves these critical
features. This new method, involving a transformation of
categorical raster-based pixel information using a vector
framework, preserves the spatial arrangement and composi-
tion of the data, retaining maximum precision of landscape
composition and configuration information. An empirical
comparison of commonly used methods and a newly
proposed upscaling technique using a sample land cover
dataset surrounding the sensitive Monarch Butterfly Bios-
phere Reserve of Mexico demonstrates the necessity of
careful preparation of raster-based categorical maps in land-
change applications.

Raster Data Preparation for Land Change Analysis
To compare two raster-based categorical maps, as in land-
change analyses and many other overlay operations, each
image or map must have the same geometric characteris-
tics (Foody, 2007; Congalton and Green, 2009). While fine
spatial resolution imagery (�250 m/pixel) has consistently
been used for local-scale land-change analysis, data cost,
repeat-availability, and volume impede the ability to scale
fine spatial resolution land change methods to broader
spatial extents (Rogan and Chen, 2004). Coarse spatial
resolution satellite imagery (�250 m/pixel) from sensors
such as Advanced Very High Resolution Radiometer
(AVHRR), Satellite Pour l’Observation de la Terre (SPOT)
VEGETATION, and Moderate Resolution Imaging Spectro-
radiometer (MODIS), have enabled broad regional analyses
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and led to the development of several global land cover
products, including those from International Geosphere-
Biosphere Programme Data and Information System Cover
(IGBP-DISCover) (Loveland and Belward, 1997; Global Land
Cover (GLC2000), 2003; Bartholome and Belward, 2005),
and the MODIS (MCD12Q1) Land Cover product (Friedl and
Strahler et al., 2002).

With pixels much larger than the landscape elements
depicted, every pixel in the map is uniquely mixed, but
coarse pixels provide a necessary generalization of land-
scape characteristics that can aid analyses of large areas
(Woodcock and Strahler, 1987; Herold et al., 2006). The
integration of maps of different spatial resolutions and
geographic frameworks is necessary for the following
reasons:

1. Fine spatial resolution data of known quality can be used to
calibrate large area image classifications using coarse-
resolution data and validate the resulting map products
(Muchoney and Strahler, 2002; Gao et al., 2003).

2. Products and analyses created with new satellite and map
data products can be compared with results of previous
analyses performed prior to their availability (Hansen et al.,
2008).

3. There is a need to integrate data from multiple datasets for
land-change studies at regular intervals to conduct analyses
at high temporal resolutions (Hilker et al., 2009) or over long
periods of time (Torres-Vera et al., 2009).

Pixel Size and Scaling Operations
The process of scaling raster data transforms the cell size of
the map through a process of sampling or aggregation
(Wang et al., 2004). While methods of downscaling exist to
approximate sub-pixel features while increasing the spatial
resolution (Dendoncker et al., 2006), this paper is primarily
concerned with the process of upscaling, or reducing the
spatial resolution of the map through the processes of
aggregation or sampling (Wang et al., 2004). By common
convention, fine spatial resolution data are generally
upscaled to fit the coarse spatial resolution framework to
minimize distortions of location (Pontius, 2000) and to
avoid ecological fallacies (Robinson, 1950).

Geographic Reference Frameworks and Projecting Operations
The process of projecting raster data transforms the shape
and arrangement of the matrix of pixel information from
one geographic reference system to another (Seong, 2003).
As all spatial reference systems that represent the three-
dimensional surface of the Earth within a two-dimensional
map introduce some type of distortion, the reference system
chosen generally depends on the scale and method of
analysis (Steinwand et al., 1995). Local-scale datasets
exploit the benefits of conformal projection systems, such
as the Universal Transverse Mercator system, because the
distortion of a small area is balanced with the necessary
preservation of shape and direction (Tobler, 1974; Snyder,
1987). Regional and global analyses have utilized datasets
based on equal-area projection systems (e.g., Sinusoidal),
which minimize the distortion of area (Usery and Seong,
2001) but can alter the allocation of classes across the
landscape (White, 2006).

Common Methods of Raster Data Preparation
To prepare multiple categorical maps for comparison and
analysis, there are several possible permutations of process-
ing procedures, each with implications upon the resulting
transformed data. For example, raster data can be projected
to a new reference framework first and then scaled to the
new spatial resolution, or data can be scaled and then
projected. A nearest-neighbor labeling procedure is favored

when scaling categorical maps (Franklin and Wulder, 2002),
because the nominal class labels of a categorical map do not
facilitate mathematical operations. However, methods of
selecting the majority or plurality of fine-resolution pixels
within a coarse-resolution pixel have been shown to retain
more consistent area measures across spatial scales (Moody
and Woodcock, 1994; Eastman, 2009).

Potential Errors Introduced by Raster Data Transformations
Best practices of raster data preparation for direct comparison
must preserve the integrity of each individual map to accu-
rately represent similarities and differences between land
cover maps. However, through the processes of projecting and
scaling raster data, categorical maps can experience the
following distortions:

1. Representation: The geographic area delineated by a given
pixel may occupy a different size, shape, or location in
different reference frameworks (Fisher, 1999).

2. Composition: In an upscaling operation, the relative
proportion of classes can be distorted both within a single
pixel and across the entire landscape (Turner et al., 1989;
White, 2006)

3. Configuration: Projection operations may distort the relative
arrangement of grid cell matrices, effectively rearranging
pixels and impacting focal operations (Steinwand, 1994;
White, 2006).

Each of these distortions of data preparation can drastically
impact the information used in a land cover comparison.
To avoid these problems, data must be prepared in a
sequence that preserves the landscape composition and
configuration of the finer categorical map within the new
data framework. This sequence must retain the precise
location of the information of each grid cell and the
proportion and arrangement of each class and value across
the landscape.

Impacts on Composition
As per-pixel distortions of information through projection
operations are less pronounced with finer pixels than with
coarser pixels, the conventional wisdom suggests the
projection of finer data to fit the geographic reference
framework of the coarser data; alternately, all data must be
projected to another geographic reference framework. White
(2006) demonstrated the local scale effects of pixel loss and
replication on the projection of data from the Sinusoidal
reference framework, and Usery and Seong (2001) illus-
trated the net changes in relative class area among equal-
area reference systems. There have been efforts to assess
and improve the accuracy of raster projection methodology
(Seong, 2003), but the substantial impacts of misregistra-
tion on land change studies (Townshend et al., 1992) have
led some to suggest abandoning per-pixel comparison
altogether (Townshend et al., 2000). The distortion of the
relative area of classes in a thematic map is most common
impact associated with raster data transformation (Tobler,
1963; Dark and Bram, 2007). However, changing the size of
the pixel also invokes the Modifiable Areal Unit Problem
(Openshaw and Taylor, 1979), in which “zoning problems”
may distort the composition of the landscape, even if
relative class areas are maintained through aggregation
(Jelinski and Wu, 1996; Stein et al., 2009).

Impacts on Configuration
In an upscaling operation, an unequal number of finer-scale
original pixels might occupy the geometric space of a
resulting coarser-scale pixel (Wang et al., 2004). As with
changes in projection, improper scaling calculations can
distort the relative proportion of each class within the
landscape matrix and misrepresent the class of an individual
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mixed pixel (Moody and Woodcock, 1994; Wickham and
Ritters, 1995). Landscape configuration metrics can provide a
measure of differences in fragmentation among data process-
ing methods (Turner, 1989; Gustafson, 1998). An index of
relative contagion (Li and Reynolds, 1993), a modification of
the original contagion index proposed by O’Neill et al.
(1988), can be used to provide an overall metric of the
clustering of classes by examining pixel configuration
(Gustafson, 1998), in which high contagion values indicate a
landscape with fewer cohesive landscape patches and lower
values indicate fragmentation of land cover lasses (Li and
Reynolds, 1993). Similarly, the metric of fractal dimension
utilizes the relationship between the perimeter and area of
thematic classes to quantify the map composition (Riiters 
et al., 1995), in which higher values indicate greater 
fragmentation and variety within local pixel arrangements.
Fotheringham (1989) has suggested that fractal dimension
can serve as a scale-independent metric of the distribution of
a variable across the landscape; however, fractal dimension
is only constant at scales where self-similarity of the overall
landscape pattern exists (Jelinski and Wu, 1996).

Point-based Projection and Aggregation
In order to avoid distortions to area, composition, and
configuration that may affect the results of land change
studies, this paper introduces a new method of projection
and aggregation for upscaling operations across raster
frameworks. The mathematical equations of projecting raster
and vector data differ, because vector-based functions do not
necessitate the creation of a regular grid-cell lattice, which
can propagate distortions due to the need for the locations
of data values to conform to the resulting pixels (Steinwand
et al., 1995). As such, the extraction of representative point-
locations, represented here by the centroid, for each pixel
unit can retain the geographic precision of this information
when the data are projected to a new reference system
(Fisher, 1997), and the resulting array of point-based
information can be aggregated into grid cells. Because 
both the number and proportion of points in each resulting
grid cell can differ, a point-based combined transformation
of projection and scaling operations can preserve the 
composition and configuration of thematic classes in the
resulting coarsened data. This process effectively produces 
a continuous map of the distribution of each land cover

class in the original fine-resolution map, which can be
“hardened” into discrete thematic classes through plurality
or other weighting methods to create a discrete thematic
map at the new scale and reference system (Eastman, 2009).

Study Area and Data
The Monarch Butterfly Biosphere Reserve (Brower et al.,
2002), in central Mexico, is the winter breeding grounds for
millions of Monarch butterflies that migrate here from North
America, western Europe, and eastern Asia and Australia
(Figure 1). This area is under continual pressure from illegal
logging activities and changing micro-climatic conditions
(Honey-Rosés, 2009).

An experimental land cover map representing the area
of a 100 � 100 square block of 500-meter MODIS pixels was
generated from a Landsat Enhanced Thematic Mapper-Plus
(ETM�) scene, (path 27 row 46), acquired on 26 November
2001 with a spatial resolution of 30 m/pixel. Data were
classified using a Mahalanobis distance classifier in the
Idrisi Taiga software package (Eastman, 2009), with pseudo-
invariant ground reference data observed in January and July
2007 using a seven-class thematic legend including water,
forest, shrub, grass, built, crop, and a “mosaic” mixed
natural and anthropogenic class (Christman, 2010). Within
the study area, natural vegetation types cover 32.3 percent of
the landscape. Human-managed land cover classes com-
prised 62.8 percent of the study area, including agricultural
classes of crop (21.3 percent) and the mixed agricultural and
natural mosaic class (41.5 percent). Though this region is
rural, built cover comprised 3.0 percent of the landscape.

Methods
Projection and Scaling Operations
The original land cover map was projected and scaled in four
ways using common software-independent operations within
Idrisi Taiga software package (Eastman, 2009) (Plate 1):

1. Original land cover map, in the UTM reference system (Zone
14N), (30 m).

2. Projected map, transformed the Sinusoidal reference system
using a nearest-neighbor operation and no scaling operation,
(30 m).
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Figure 1. Study area surrounding the Monarch Butterfly Biosphere Reserve in sinusoidal and UTM
reference systems.
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3. Projected � nearest-neighbor scaled map, transformed to the
Sinusoidal reference system using a nearest-neighbor
operation and a nearest-neighbor scaling operation (500 m).

4. Projected � plurality-based scaling map, transformed to the
Sinusoidal reference system using a nearest-neighbor
operation and scaled using plurality aggregation, (500 m).

5. Plurality-based scaling � projected map, with 500 m/pixel
resolution, first scaled using plurality aggregation, then
projected to the Sinusoidal reference framework using a
nearest-neighbor operation, (500 m).

6. Vector-based projection and scaling with frequency aggrega-
tion map, first projected as a matrix of point-based data
within a vector framework to the sinusoidal reference
system, then scaled using frequency-based aggregation of
point data, (500 m) (Plate 2).

Among transformation operations, “nearest-neighbor”
rescaling refers to a case in which the Euclidean distance
between the centroid of the representative pixel value for a
location within the original spatial resolution or geographic

620 J u n e  2012 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

(a) (b) (c)

(d) (e) (f)

Plate 1. Landscape Composition at different scales and projections (See Tables 1, 2, and 3).

Plate 2. Vector-based projection and scaling with frequency aggregation.
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reference framework, and the centroid of the representative
pixel location in the resulting spatial resolution or geo-
graphic reference framework is used to determine the class
identity of the resulting pixel. “Plurality aggregation” refers
to a rescaling operation in which the relative frequency of
class identities of the finer resolution pixels in the original
spatial resolution and geographic reference framework
occupying the region covered by a coarser resolution pixel
in the resulting spatial resolution and geographic reference
framework are used to determine the class identity of each
pixel. “Frequency-based aggregation” refers to a similar
rescaling operation to the “plurality aggregation” above, but
the representative locations in the original geographic
reference framework are depicted by points, and the fre-
quency of points is determined by the geographic overlap of
these features with individual pixels in the resulting spatial
resolution and geographic reference framework. See Plate 2
for a detailed explanation of this method. In all references 
to ~500 m/pixel resolution, the exact pixel size is 
463.3 m/pixel in the Sinusoidal reference framework.

Area Calculations and Landscape Composition Metrics
The total area and relative proportion of each class across
the landscape was calculated in each of the transformed
maps (Table 1). Metrics of relative contagion and fractal
dimensionality per map were calculated using the IAN image
analysis program (DeZonia and Mladenoff, 2004). The
relative contagion metric representing the degree to which
classes were clumped into discrete patches, and the fractal
dimension metric represents the arrangement of different
pixel values across the landscape (Gustafson, 1998).

Map Comparison
Each of the four projected and scaled maps (Plate 1) was
compared using raster crosstabulation to evaluate similarities
and differences among maps. Differences among maps were
compiled into a single figure to illustrate the number of
different classes ascribed to a given pixel across all maps
(Figure 2a) as well as the pixels with the same class among
all transformed maps (Figure 2b).

PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING J u n e  2012 621

Figure 2. Per-pixel differences among transformed maps at ~500 m/pixel resolution.

TABLE 1. CLASS AREA FOR EACH TRANSFORMED MAP (SEE PLATE 1)

Class area as percent

Map Water Forest Shrub Grass Built Crop Mosaic

(a) 1.90% 21.95% 6.41% 3.93% 3.04% 21.29% 41.47%
(b) 1.91% 21.92% 6.41% 3.93% 3.04% 21.28% 41.49%
(c) 1.96% 22.37% 5.94% 3.99% 3.41% 21.17% 41.16%
(d) 1.15% 22.32% 1.35% 0.88% 0.47% 19.58% 54.25%
(e) 1.23% 22.45% 1.29% 0.93% 0.44% 19.75% 53.91%
(f) 1.23% 22.40% 1.28% 0.85% 0.40% 19.58% 54.26%
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Results
Map Composition
Each transformation method resulted in differences to the
absolute and relative area of classes, compared to the
original map. The nearest-neighbor scaling method most
closely retained the overall proportions of the original fine-
resolution map. Plurality- and frequency-based scaling
operations had the greatest impact upon the least frequent
classes, diminishing the overall class proportions of the
Shrub, Grass, and Built categories, with a net increase in the
overall area of the Mosaic mixed class. Full class area
results are summarized in Table 1.

Landscape Contagion
Relative contagion changed substantially with different
transformation operations (Table 2). In the unprocessed map,
the relative contagion was 52.8. Upon projection of the map
without scaling, the relative contagion increased to 61.9.
Scaling operations had varying effects: the nearest neighbor
operation (Plate 1c) yielded a relative contagion of 26.8;
maps using the plurality-based raster scaling method (Plates
1d and 1e) both yielded a relative contagion of 52.2; the
point-based frequency aggregation transformation (Plate 1f)
yielded a relative contagion of 52.6. Higher values indicate
more spatial cohesion, and lower values indicate more spatial
dispersion in landscape configuration of thematic classes.

Fractal Dimension
The fractal dimension of the maps also varied by processing
type (Table 2). In the original map, the fractal dimension
was 1.533, which increased to 1.572 upon projection
without scaling. Among the transformed maps, the fractal
dimension metric of the scaled maps varied from 1.637
(Plate 1c), indicating the most dispersion among categorical
classes, to 1.477 (Plate 1f), in which classes were most
agglomerated.

Map Differencing
Differences among transformed maps varied widely, with
as high as 36.0 percent difference between two transformed
maps (Figures 2c and 2d) (Table 3). Even among the most
similar transformed maps (Figures 2e and 2f), 2.1 percent
of all map pixels were different, with the least prevalent

land covers experiencing greatest disparity, such as shrub
(9.4 percent difference), built (5.0 percent), and grass 
(4.7 percent). Between the two maps that underwent 
the same transformation operations in opposite order
(Figures 2d and 2e), 9.8 percent of all pixels were different.
Only 60.8 percent of pixels shared the same value in the
resulting maps, and 5.9 percent of all pixels had three or
more different values, depending on transformation
methodology (Figure 2).

Discussion
Results of this research show that data transformation
methodology has a quantifiable effect upon the resulting
composition and configuration of categorical maps in which
data has been both projected and upscaled. As others have
noted (Moody and Woodcock, 1994; Usery and Seong,
2001), the distortion of per-class area is one of the most
pronounced effects of these operations, independently.
However, the increased proportions of the most prevalent
classes may be ascribable to the generalization of features 
in coarse resolution thematic maps, eliminating small
patches of under-represented classes. With respect to the
landscape composition, while the contiguity of map classes
varied by transformation method, the newly introduced
point-based frequency aggregation method (Plate 1f) yielded
the most contiguous, agglomerations of similar pixel values,
and the relative contagion metric was closest in value to the
unprocessed map.

Similarly, the fractal dimension of the transformed maps
varied across scaling and projection methods, but the
plurality-based raster methods and the frequency-based
vector method generated a landscape arrangement with
greater class agglomeration, based on both the relative
contagion and fractal dimension. While landscape metrics
have been shown to be sensitive to changes in pixel size
(Turner et al., 1989; Wickham and Ritters, 1995), results
indicate that transformation methodology may also play a
critical role in the consistency of landscape metrics across
scales.

This study evaluates differences among common raster
data transformation methods and introduces a model
through which raster data are projected in the form of
point-based vector coordinates and scaled though fre-
quency-based aggregation of the resulting composition. With
this preparation method, neither quantity nor location is
misrepresented, minimizing the propagation of error in
categorical raster data transformation. By exploiting the
precision of projection within a vector data model and the
generalizability and analytical methods of a raster data
model, this method maximizes the integrity of the original
data and enables an accurate depiction of landscape
composition.

The results of this paper affirm the need for frequency-
based aggregation when projecting and scaling data, demon-
strating the misrepresentation of landscape composition and
apparent change that can occur through inadequate prepara-
tion within a raster model. Without direct and deliberate
action to preserve true landscape characteristics and
composition, the transformation of raster data with different
geometric characteristics into a common framework for
direct comparison can cause distortions in the absolute and
relative location of pixel information, as well as the total
composition of the landscape categories. As the methods of
geographic information science increasingly permeate a 
vast number of related applications, researchers must
address the fundamental techniques for data manipulation
that enable data integration within our interdisciplinary
community.
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TABLE 3. PERCENT DISCREPANCY AMONG TRANSFORMED
(PROJECTED � SCALED) MAPS (SEE PLATE 1)

Map (d) (e) (f)

(c) 35.99% 34.23% 34.09%
(d) 9.79% 9.44%
(e) 2.09%

TABLE 2. LANDSCAPE METRICS FOR EACH TRANSFORMED
MAP (SEE PLATE 1)

Landscape Metrics

Map Relative Fractal 
Contagion Dimension

(a) 52.776 1.533
(b) 61.902 1.572
(c) 26.773 1.637
(d) 52.248 1.492
(e) 52.200 1.483
(f) 52.612 1.477
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