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1  |  INTRODUC TION

Statistical methods and associated algorithms have been used for 
decades to develop species distribution models (SDMs) (Guisan 
& Zimmermann,  2000) because of their practical usefulness in 

ecological decision-making and conservation planning. Their usage 
continues to expand as ever-growing accessibility of occurrence data 
from public databases (Sofaer et al., 2019). However, many species 
occurrence datasets were not gathered in structured surveys. They 
thus may partially cover suitable habitats, contain sampling issues 
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Abstract
1.	 Multiple statistical algorithms have been used for species distribution modelling 

(SDM). Due to shortcomings in species occurrence datasets, presence-only meth-
ods (such as MaxEnt) have become increasingly widely used. However, sampling 
bias remains a challenging issue, particularly for density-based approaches. The 
Isolation Forest (iForest) algorithm is a presence-only method less sensitive to 
sampling patterns and over-fitting because it fits the model by describing the 
unsuitable instead of suitable conditions.

2.	 Here, we present the itsdm package for species distribution modelling with iFor-
est, which provides a workflow wrapper for the algorithms in iForest family and 
convenient tools for model diagnostic and post-modelling analysis.

3.	 itsdm allows users to fit and evaluate an iForest SDM using presence-only occur-
rence data. It also helps the users to understand relationships between species 
and the living environment using Shapley values, a suggested technique in ex-
plainable artificial intelligence (xAI). Additionally, itsdm can make spatial response 
maps that indicate how species respond to environmental variables across space 
and detect areas potentially affected by a changing environment.

4.	 We demonstrated the usage of the itsdm package and compared iForest with 
other mainstream SDMs using virtual species. The results enlightened that iFor-
est is an advantageous presence-only SDM when the actual distribution range is 
unclear.

K E Y W O R D S
explainable artificial intelligence (xAI), isolation forest, presence only, shapley values, species 
distribution modelling (SDM)
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and often lack absence cases, which negatively impact SDMs (Beck 
et al., 2014). Background sampling is a common way to deal with the 
missing absence records, but without enough background knowl-
edge and proper sampling strategies, taking background samples as 
pseudo-absence records may confound the environmental response 
of the modelled species (Barbet-Massin et al., 2012). Anomaly detec-
tion algorithms, which are semi-supervised, can take presence-only 
records without any pseudo-absence samples, reducing the risk of 
adding false information. Among them, maximum entropy (MaxEnt) 
has risen to dominance and has been widely used in many case 
studies (Elith et al., 2011; Phillips & Dudík, 2008). However, as with 
other density-based methods, it is easily affected by sampling pat-
terns and overfits (Kramer-Schadt et al., 2013; Merow et al., 2013; 
Radosavljevic & Anderson, 2014). The regularization multiplier may 
reduce the issues by controlling model complexity, but the effects 
are species-specific and prone to sample size (Morales et al., 2017; 
Radosavljevic & Anderson,  2014). Isolation Forest (iForest) uses a 
novel approach based on the depth of the branch in the tree to cal-
culate the probabilities (Liu et al., 2008, 2010, 2012). Optimizing to 
unsuitable conditions and not relying on sample density to fit the 
model, it thus suffers less from overfitting and sampling issues. 
The tree structure functions similar to profile models that describe 
the species–environment relationship as an ‘environmental profile’ 
(Franklin,  2010), and consequently trends to predict the environ-
mental suitability rather than the probability of detection.

In computer science, iForest is widely applied in spatial and non-
spatial anomaly detection and one-class classification problems 
(Feremans et al., 2020; Khan et al., 2019; Li et al., 2019), but it has 
not yet been adopted widely in ecology relatively because iForest 
lacks a standard toolkit to assess ecological validity and produce 
detailed summaries of fitted relationships. Many post hoc meth-
ods have been proposed to analyse the behaviours of models with 
non-interpretable structures. The ‘evaluation strip’ technique (Elith 
et al., 2005) can visualize variable responses for any modelling ap-
proach, aiding the users in evaluating and comparing models with 
different structures. Phillips et al. (2006) implemented leave out one 
Jackknife test to identify variables with significant individual effects. 
Shapley values technique is listed as one of the post hoc model ag-
nostic tools in explainable artificial intelligence (xAI) and is encour-
aged to be applied in SDM research domain (Ryo et al., 2021). It can 
explain the relative contribution of each feature to the prediction at 
a given instance locally and summarize variable response and vari-
able importance globally (Lundberg & Lee, 2017; Shapley, 1953).

To take advantage of the ability of iForest to handle presence-
only data with less sensitivity to sampling patterns, we developed 
a new r (R Core Team, 2021) package itsdm. It provided a wrapper 
for iForest and its related variants (Cortes,  2021b, 2022; Guha 
et al.,  2016; Hariri et al.,  2019; Liu et al.,  2008, 2010) to do spe-
cies distribution modelling, alongside methods delivering ecological 
insights from the model. This package aims to provide ecological 
modellers with an additional tool for creating SDMs, which can com-
plement well-established existing approaches, such as those imple-
mented in BIOMOD (Thuiller et al., 2009, 2021).

2  |  PACK AGE STRUC TURE AND 
DESCRIPTION

itsdm is a workflow wrapper coded in r and knits iForest and Shapley 
value explanation into an SDM workflow. The package's functions 
are in four groups (Table 1): pre-modelling analysis, modelling, model 
explanation and post-modelling analysis. The pre-modelling analysis 
functions diagnose the relationships between environmental vari-
ables and target potential sampling errors in the occurrence dataset. 
The model implementation functions format observation dataset, 
build and evaluate the model with different user settings. The model 
explanation functions delineate the importance of environmen-
tal variables and the species' spatial and non-spatial responses to 
them. The package also contains a post-modelling toolkit for further 
analysis of modelling results, for instance, analysing the impacts of 
a changing environmental variable, converting predicted suitability 
to a presence–absence and comparing the contribution of environ-
mental variables to observations. Importantly, all Shapley value-
based functions (such as shap_dependence, shap_spatial_response, 
detect_envi_change and variable_contrib) can apply to any fitted mod-
els as long as the function inputs are correctly set (see example in 
Section 4.2). Because visualization is critical in ecological modelling, 
itsdm provides corresponding print and/or plot generic functions to 
visualize every object (Table 1).

3  |  SDMs WITH ISOL ATION FOREST

Isolation Forest (iForest) is built based on the decision tree architec-
ture to distinguish anomalies or outliers from a set of samples (e.g. 
presence-only samples). Because the majority of the samples are 
normal, anomalies are few and different. In presence-only SDM, it 
means samples gathered in less suitable areas are lower in quantity 
and environmentally different from samples in suitable areas. iForest 
aims to fit a model to describe these anomalies rather than the normal 
samples, therefore, does not necessarily need background samples. 
More importantly, it is more robust to sampling issues and overfitting.

iForest uses the path in the tree structure to calculate the prob-
ability of a sample being anomalous (termed as anomaly score). 
Reflecting on a tree structure, the anomalies are isolated closer to 
the tree's root note, so they have shorter paths (Figure 1a). Given 
an isolation tree built on a dataset X = {x1, … , xn} of n samples, X is 
divided recursively by a test for every internal node Tin to two sib-
ling nodes (Tl , Tr) until the node becomes an external node Tex with 
no child or a predefined depth limit is reached. Within the feature 
space, the test is a hyperplane defined by a random normal vector 
and intercept (Figure  1b). The node splitting criterion for a given 
point �⃗x is as follows (Hariri et al., 2019):

where �⃗n is a random normal vector uniformly over the unit  
N-Sphere which specifies the N − 1 dimensional hyperplane to split 

(1)
(
�⃗x − �⃗p

)
⋅ �⃗n ≤ 0,
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nodes for a dataset with N attributes (N-dimensional). �⃗p is a set of 
values from a uniform distribution over the range of possible val-
ues at each node which serves as a set of random intercepts of the 

hyperplane. This is a general definition of iForest called Extended 
Isolation Forest (EIF). Standard iForest is a special case of EIF 
whose split test only consists of a randomly selected attribute q 

TA B L E  1  Core functions and descriptions in itsdm

Function (object) Visualization Description

Pre-modelling analysis dim_reduce (ReducedImageStack) print Select numeric environmental variables with pairwise 
Pearson correlation lower than a defined threshold. 
The user can specify preferred variables

suspicious_env_outliers 
(EnvironmentalOutlier)

print, plot Detect suspicious environmental outliers in the 
occurrence dataset according to each environmental 
covariate's general condition

Modelling format_observation (FormatOccurrence) print Quickly format the dataset to fit into the itsdm workflow

isotree_po (POIsotree) print Build Isolation Forest-based SDM and do the related 
model explanation, which optionally calls model 
explanation functions

evaluate_po (POEvaluation) print, plot Evaluate the model based on presence-only data

Model explanation variable_analysis (VariableAnalysis) print, plot Evaluate environmental variable importance using leave 
one out Jackknife test and Shapley values

marginal_response (MarginalResponse) plot Calculate marginal response curve of environmental 
variables using the evaluation strip method 
proposed by Elith et al. (2005)

independent_response 
(IndependentResponse)

plot Calculate independent response curve of environmental 
variables by creating an independent model using 
only one variable each time (Phillips et al., 2006)

shap_dependence (ShapDependence) plot Calculate Shapley value-based variable dependence 
plot which is introduced in Section 4.2. It is a 
supplementary plot for marginal and independent 
response curves using a completely different 
method. It also can explore the relationship 
between two environmental variables

spatial_response (SpatialResponse) plot Generate spatially partial dependence maps with type 
of marginal, independent and Shapley value based

shap_spatial_response (SHAPSpatial) plot Generate spatially partial dependence maps only 
with Shapley values. It can work on other external 
models

Post-modelling 
analysis

detect_envi_change (EnviChange) print, plot Use post hoc Shapley values technique to detect the 
tipping points and potentially affected areas due to 
a changing environmental variable

convert_to_pa (PAConversion) print, plot Convert predicted suitability to presence–absence map

variable_contrib (VariableContribution) print, plot Evaluate local and/or global variable contributions for 
interested observation(s)

F I G U R E  1  Schematic representation 
of a single tree (a) and its feature space (b) 
for an Extended Isolation Forest (EIF) built 
by a two-dimensional dataset.
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and a split value p such that the test q < p splits the node into sib-
ling nodes (Liu et al., 2008, 2012).

After the whole dataset is split into trees, an anomaly score is 
calculated as follows:

where h(x) is the path length for external node terminations in one 
tree, and E(h(x)) is the mean h(x) of all trees. c(n) is the normalizing fac-
tor (Preiss, 2008). The calculated anomaly score s ranges from 0 to 1: 
the closer to 1, the more likely the sample is anomalous; otherwise, the 
sample is more likely to be normal. To fit iForest into the SDM work-
flow, itsdm uses a linear conversion (p = 1 − s) to translate the anomaly 
score (s) into environmental suitability (p).

As a popular algorithm in anomaly detection, iForest has been 
continuously improved with amended node splitting methods 
such as split-criterion iForest (Liu et al., 2010), Robust random cut 
forest (Guha et al.,  2016) and Fair-cut forest (Cortes,  2021b), as 
well as new metrics for calculating outlier scores (Cortes, 2021a). 
The r (R Core Team, 2021) package isotree (Cortes, 2022) is an en-
semble of iForest and these variants with fast and multi-threaded 
implementation and thus is used in itsdm for model training. Table 
S1-1 (Appendix S1) lists the decisive arguments used in the func-
tion isotree_po (Table 1) for specific model types in the family of 
iForest.

4  |  APPLIC ATION OF SHAPLE Y VALUES

4.1  |  Local explanation and applications in itsdm

The Shapley value (Shapley, 1953) is an idea from cooperative game 
theory, which fairly distributes a game's payouts among players. The 
SHapley Additive exPlanations (SHAP) is an additive feature attri-
bution method based on Shapley values that decompose individual 
predictions of a model into the sum of the contributions of each vari-
able value (Lundberg & Lee, 2017). Assume there is a prediction f(x) 
for a single input x, the additive feature attribution method specifies 
the explanation as (Lundberg & Lee, 2017):

where g is the explanation model. x′ is the simplified x that maps to the 
original x by function x = hx

(
x�
)
. M is the number of input features. ∅0 is 

the constant value when all inputs are missing, and �i ∈ ℝ is the feature 
attribution for feature i . It was theoretically proved that Shapley val-
ues are the unique solution of Equation (3) with three desirable prop-
erties (see details in Lundberg & Lee, 2017):

where S is the set of all features in the model. Q is a subset of S. fQ∪{i} 
is a model trained with feature i  present and fQ is a model trained with 
feature i  withheld. Thus, fQ∪{i}

(
xQ∪{i}

)
− fQ

(
xQ

)
 represents the effects 

of including feature i  on the model. Because the effect of
withholding a feature relies on other features, ∅i calculates the 

weighted average of fQ∪{i}
(
xQ∪{i}

)
− fQ

(
xQ

)
 of all possible subsets 

Q ⊆ S �{i}.Several approaches (e.g. Kernel SHAP and Linear SHAP) 
(Molnar, 2020; Štrumbelj & Kononenko, 2014) have been proposed 
to approximate Shapley values (Equation  4). The package fastshap 
(Greenwell, 2021) is used in itsdm to estimate Shapley values, in which 
a Monte-Carlo sampling approach (Štrumbelj & Kononenko, 2014) is 
efficiently implemented.

Shapely values demonstrate how each explanatory covariate 
pushes the model result from the base value (the average model 
output over the training dataset) (Molnar,  2020). Positive values 
vote for presence, and negative values vote for absence. The higher 
the absolute Shapley value is, the more important the explanatory 
variable is. Using Shapley values and the characteristics, function 
variable_contrib (Table 1) in itsdm can diagnose how the explanatory 
variables decide the environmental suitability at each observation 
location.

4.2  |  Global explanation and applications in itsdm

Additionally, Shapley values can be integrated into global explana-
tions such as variable importance and response curves. Because 
features with large absolute Shapley values are important, variable 
importance could be evaluated by averaging the absolute Shapley 
values per feature across the whole data:

This is implemented in function variable_analysis (Table 1) in package 
itsdm.

Shapley values technique shows how a species responds to an 
environmental variable by plotting all possible feature values 
{
x
(j)

i

}n

j=1
 against the corresponding Shapley values 

{
�
(j)

i

}n

j=1
. As 

Shapley values are signed, the response curves also can show the 
tipping point(s) of when this species starts to be negatively impacted 
by this environmental variable. In itsdm, shap_dependence (Table 1) is 
the function to generate Shapley value-based response curves. To 
illustrate how a variable affects prediction spatially, itsdm provides 
the function shap_spatial_response (Table 1), which uses Shapley val-
ues to generate spatial response maps.

Expanding from shap_dependence and shap_spatial_response, 
itsdm provides a unique function (detect_envi_change) to analyse 
the vulnerable areas potentially impacted by the changing en-
vironmental variables. The users can apply a number to the cur-
rent environmental variable or assign a completely new future 

(2)s(x, n) = 2
−

E(h(x))

c(n) ,

(3)g
(
x�
)
= �0 +

M∑

i=1

�ix
�
i
,

(4)�i =
∑

Q⊆ S � {i}

|Q| ! (|S| − |Q| − 1) !

|S| !
[
fQ∪{i}

(
xQ∪{i}

)
− fQ

(
xQ

)]
,

(5)
Ii =

∑n

j=1

����
(j)

i

���
n

.
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environmental variable. As a model agnostic post hoc method (Ryo 
et al., 2021), Shapley values technique can be used to explain any 
predictive models; therefore, the Shapley value-based functions 
in itsdm including detect_envi_change can apply to any SDMs. For 
instance, we fitted a MaxEnt SDM (Phillips & Dudík, 2008) named 
mod_maxent with multiple Bioclimatic variables BIO1, BIO2, BIO3, 
BIO13, BIO14, BIO18 and BIO19 (Fick & Hijmans,  2017) to esti-
mate the habitat suitability of Za Baobab tree (Adansonia za Baill.) 
in Madagascar (see ‘Data availability’ section for code). With a stars 
(Pebesma,  2022) object called bios_current to represent the cur-
rent environment, a stars (Pebesma,  2022) object called bios_fu-
ture to represent the future (2041–2060) environment (Fick & 
Hijmans, 2017), and a wrapper function called pfun for mod_max-
ent to do prediction, detect_envi_change works as follows to detect 
potential impacts to Za Baobab tree by a changing BIO1 (annual 
mean temperature):

pfun <- function(X.model, newdata) {  
 predict(X.model, newdata,   
 args = c("outputformat=cloglog"))}  
bio1_changes <- detect_envi_change(  
 model = mod_maxent,  
 var_occ = training[, 2:ncol(training)],  
 variables = bios_current,  
 target_var = "bio1",  
 variables_future = bios_future,  
 pfun = pfun)

The function returns a response curve with detected tipping 
points (Figure 2a), a vector of detected tipping points, a map of con-
tribution change (Figure 2b) and a stars (Pebesma, 2022) object of 
contribution change.

5  |  E X AMPLE

To demonstrate the package functionality, we provide a short ex-
ample using a virtual species generated by the package virtualspe-
cies (Leroy et al.,  2016), the distribution of which is in mainland 
Africa and shaped by climatic variables bio1, bio5 and bio12 (Fick & 
Hijmans, 2017). For this example, we took 2000 random presence-
only samples and selected bio1, bio5, bio12 and three other unre-
lated features (var1 through var3) as the explanatory environmental 
variables. In the workflow, 70% of the samples are used for training, 
and 30% of them are used for evaluation. The details of the virtual 
species can be found in Sections 2.1 and 2.2 in Appendix S1.

In function isotree_po, a model is fit to the provided sf 
(Pebesma,  2018) object of occurrence points and corresponding 
environmental variables, along with an optional sf (Pebesma, 2018) 
object of occurrence points for independent evaluation. For exam-
ple, with a training set of occurrence points obs, an independent 
evaluation set called eval and a stars (Pebesma, 2022) object holding 
the environmental predictors (env_vars), the following workflow cre-
ates an EIF model with an extension level of 2 (see more options in 
Table S1-1) and a sampling rate of 0.8:

F I G U R E  2  Environmental change analysis of BIO1 (annual mean temperature) to Za Baobab tree (Adansonia za Baill.) in Madagascar. 
Panel (a) shows that Za Baobab tree has a positive linear response to annual mean temperature in Madagascar. 23.28°C is the tipping 
point of annual mean temperature, which means the Za Baobab tree in areas with an annual mean temperature near 23.28°C is vulnerable 
to a cooling temperature. Panel (b) shows Za Baobab tree in most areas of Madagascar will not be affected by a changing annual mean 
temperature. The annual mean temperature in Northwest coastal areas will become not suitable for Za Baobab tree.
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# Create an Extended isolation forest  
mod <- isotree_po(  
 obs = obs,  
 obs_ind_eval = eval,  
 variables = env_vars,  
 sample_size = 0.8,  
 ndim = 2)

The function isotree_po provides a highly automatic workflow 
that contains model creation, model evaluation, model prediction 
and model explanation, with corresponding print and/or plot options 
to check the results (Table 1). The full description of the results can 
be found in Section 2 of Appendix  S1. Here, we only present the 
Shapley value-based analysis.

If argument check_variable is set to FALSE in function isotree_po, 
the users can call function variable_analysis to diagnose variable 
importance:

var_analysis <- variable_analysis(  
 model = mod$model,  
 pts_occ = mod$observation,  
 pts_occ_test = mod$independent_test,  
 variables = mod$variables)  
plot(var_analysis)

The function ranks environmental variables based on Shapley 
values (Figure 3) as well as the leave-one-out Jackknife test (Section 
2.5.1 and Figure S1-5 in Appendix S1).

itsdm employs several methods to generate response curves, 
including spatial ones. The Shapley value-based response curve 

conveys how prediction is pushed away from the average prediction 
across the whole training dataset (Section 4.2). The Shapley values 
also allow users to diagnose the correlation between two variables. 
For example, Shapley value-based response curves of bio1 and bio12 
are plotted and coloured by bio5 (Figure 4):

# Plot Shapley value-based response curves without smoothing  
plot(mod$shap_dependences,  
 target_var = c('bio1', 'bio12'),  
 related_var = 'bio5', smooth_line = FALSE)

It is recommended to use response curves together with vari-
able importance analysis to explain model inputs. However, the 
standard response curves only provide a graphical, non-spatial as-
sessment of how a variable influences prediction. To illustrate how a 
variable affects prediction spatially, itsdm provides the function spa-
tial_response, which generates spatial response maps. To calculate 
response maps, spatial_response is used with a non-zero shap_nsim:

# Make spatial response maps with all three methods  
# Make sure to set a non-zero shap_nsim  
full_spatial_responses <- spatial_response(  
 model = mod$model,  
 var_occ = mod$vars_train,  
 variables = mod$variables,  
 shap_nsim = 10)  
plot(full_spatial_responses, target_var = 'bio12')

The last line displays the spatial response maps of variable bio12, 
and the Shapley value-based one is shown in Figure 5. Areas with 

F I G U R E  3  Variable importance of 
virtual species case diagnosed by Shapley 
values technique. Variables bio12, bio5 
and bio1 have much higher importance 
than var 1 through var 3, as intended. In 
addition, the similarity in the values for 
these metrics for both the training and 
test dataset indicates that the model is 
generalizable.

F I G U R E  4  Shapley value-based 
response curves of bio1 and bio12 
coloured by bio5 in our virtual species 
case. The modelled species has a strong 
positive response to both bio1 and 
bio12 that, respectively, peak at 25°C 
and 1000 mm, and that the two are also 
strongly correlated with bio5, particularly 
in the upper range for bio1 and in the 
lower to mid-range for bio12.

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14067 by C
lark U

niversity, W
iley O

nline L
ibrary on [10/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  7Methods in Ecology and Evolu
onSONG and ESTES

Shapley values below zero are where bio12 votes for absence for 
this species, and areas with Shapley values above zero are the op-
posite. Variables with large absolute Shapley values contribute more 
than others (Section 4.2).

itsdm also includes several optional post-analysis steps (Table 1), 
such as analysing variable contributions to a specific observation, as 
shown in Figure 6. The figure shows that bio5 pushes the predicted 
suitability higher and votes for presence. The bio12 and bio 1 con-
tribute oppositely.

The full list of functions and additional examples can be found 
in the itsdm package documentation and package vignettes with ex-
tended examples.

6  |  COMPARISON WITH OTHER SDMs 
AND RECOMMENDATIONS

To compare the predictive performance of iForest with other 
SDMs and highlight the conditions when it is beneficial to use 
iForest, we generated 50 virtual species with package virtualspe-
cies (Leroy et al.,  2016) (see ‘Data availability’ section for code). 
Bioclimatic variables BIO1, BIO2, BIO5, BIO6, BIO12 and BIO15 
(Fick & Hijmans,  2017) in mainland Africa were used to simulate 

these species. We generated a species suitability map by applying a 
Gaussian, linear, logistic or quadratic function with random param-
eters on randomly selected three to five variables for each species 
(Leroy et al., 2016). The final suitability is a multiplicative function 
of responses to the selected variables. A threshold of 0.5 or 0.6 was 
used to convert suitability to presence–absence to represent the 
normal detection type (Figure 7). A threshold of 0.8 or 0.9 was used 
to represent the core area concentrated detection type (Figure 7). A 
prevalence-weighted random number from 100 to 500 of presence-
only samples was drawn from presence–absence map for both de-
tection types. In addition, 10,000 background samples were taken 
for all SDMs except iForest. For evaluation, 2000 presence–absence 
samples were drawn for each species by excluding all training pres-
ence locations and their 3 × 3 neighbours and then subset the major-
ity class to ensure class balance.

True skill statistics with a threshold of 0.5 (TSS0.5) and three 
threshold-independent evaluation metrics: Area under the ROC 
curve (AUC), Pearson correlation (COR) and Euclidean distance were 
used to assess predictive performance. AUC and TSS0.5 measure the 
capability of a model to separate presences from absences. COR 
values and Euclidean distances in this experiment were calculated 
between the predicted environmental suitability and the simulated 
suitability of the virtual species. They work together to measure the 
similarity between predicted and actual suitability values, which is to 
say, they have the same values for the same cases.

We selected seven SDMs with high performance (Valavi 
et al.,  2022) to make the comparison: Generalized linear model 
(GLM), generalized additive model (GAM), maximum entropy 
(MaxEnt), Random forest (RF), multivariate adaptive regression 
spline (MARS), boosted regress trees (BRT) and extreme gradient 
boosting (XGBoost). The results are shown in Figure 7. If the train-
ing samples can represent the actual distribution well (Normal case 
in Figure 7), GAM and GLM perform better than iForest and oth-
ers, having a greater ability to discriminate presences and absences 
(high AUC and TSS0.5) and higher similarity to actual suitability (high 
COR and Euclidean distance). It is worth mentioning that suitabil-
ity values predicted by iForest have the closest Euclidean distance 
with actual suitability values, which is also evident in Figure S1. If 
the training samples only represent the actual distribution partially, 
for example, having sampling bias or imperfect detection (Core area 
case in Figure  7), iForest starts to be advantageous. Even though  
iForest gets slightly lower AUC than GLM, GAM and MaxEnt, it 
makes significantly higher COR and TSS0.5 and lower Euclidean dis-
tance. The similar performance of models fitted under two cases 
(Figure 7; Figure S1-1) indicates that iForest is resistant to sampling 
issues and overfitting.

For presence-only species distribution modelling, when the spe-
cies occurrences cover the true distribution range, models like GLM, 
GAM or MaxEnt perform better than iForest. This is also true if oc-
currences do not cover the whole distribution range, but the range is 
known so that background samples can be extracted conditionally. 
When it is unfeasible to estimate the distribution range before mod-
elling, iForest can be a cautious choice.

F I G U R E  5  Shapley value-based spatial response map of 
variable bio12 in our virtual species case. It is evident that bio12 
contributes minimally in some areas even though it is the most vital 
environmental variable diagnosed in variable analysis.

F I G U R E  6  Variable contributions to the modelled suitability of 
an occurrence observation.
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7  |  DISCUSSION

iForest is an appealing method in SDM because it takes presence-
only data as input, which matches it with most occurrence datasets 
of wildlife nowadays. Additionally, splitting feature space by hyper-
planes is similar to profile models that translate species–environment 
relationships into profiles. Thus, it results in environmental suitabil-
ity rather than the probability of presence. Unlike methods that are 
optimized to suitable conditions, iForest is optimized to describe un-
suitable conditions and thus is less likely to overfit (Abe et al., 2006; 
He et al., 2003; Rousseeuw & van Driessen, 1999). These give iFor-
est strengths as an SDM, particularly when it is unclear if the pres-
ence samples cover suitable areas fully and there are no reliable 
absence samples to use.

Shapley values technique is a growing topic of interest in inter-
pretable machine learning, as they can help to explain any predictive 
model (Ryo et al., 2021). It offers a potentially powerful tool to com-
parably interpret SDMs that are built with different methods and 
decipher complex models to explain real-world ecological phenom-
ena (Mammola et al., 2019). As a post hoc technique, Shapley values 
can be used to interpret the impacts of a changing environment in 
species distribution conveniently.

The r package itsdm offers convenient functions to fit iForest SDM 
and generalizes the Shapley values technique for all SDMs to analyse 
species' response to the environment. Undoubtedly, not relying on 
causal mechanisms, iForest and Shapley values' technique has the 
same limitations as other statistical methods in applications of eco-
logical modelling, especially for change analysis. itsdm is intended as 
a new SDM toolbox that complements existing frameworks, which 
will enable users to apply iForest and Shapley values' technique in 
their studies and explore advantages and disadvantages.
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