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Modeling Data Envelopment Analysis (DEA) Efficient  
 

Location/Allocation Decisions 
 
 
ABSTRACT  
Many types of facility location/allocation models have been developed to find optimal spatial 
patterns with respect to location criteria such as: cost, time, coverage, and access. In this paper 
we develop and test location modeling formulations that utilize aspects of the data envelopment 
analysis (DEA) efficiency measure to find optimal and efficient facility location/allocation 
patterns.  Solving for the DEA efficiency measure, together with location modeling objectives, 
provides a promising rich approach to multiobjective location problems.  
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INTRODUCTION 

Many types of facility location/allocation models have been developed to find optimal patterns 

with respect to different location objectives such as: costs, time, coverage, and access among 

others.  Some of these models have been formulated in a  multiobjective programming 

framework to elicit trade-offs among different and conflicting objectives.  In this paper we use 

the concept of efficiency as defined by data envelopment analysis (DEA) as another objective for 

location modeling.  DEA determines the relative efficiencies of comparable decision making 

units (DMUs) measured by the ratio of the sum of weighted outputs to the sum of weighted 

inputs, in which inputs and outputs can be measured in their natural units.  Two types of 

efficiencies can be optimized in this way; spatial efficiency - measured the least cost location and 

allocation patterns for facilities, and the facility efficiencies in serving demands - measured by 

the DEA efficiency score for “opened” facilities (those that are chosen to operate in the optimal 

solution).  In the next section, we provide a brief introduction to facility location/allocation and 

DEA models.  Next, we develop and present formulations combining the uncapacitated and 

capacitated facility location models with the DEA model.  Subsequently, we apply these models 

to a small hypothetical data set and present the results.  Finally, the conclusions and future 

extensions are discussed. 

 

BACKGROUND 

Facility Location Models 

The classical transportation problem satisfies demands from supply nodes at minimum 

transportation cost.  The uncapacitated facility location problem (UPLP) model extends this by 

choosing among a number of potential sites for locating supply facilities, those that minimize 

costs – defined here as the sum of transportation costs and the fixed costs of opening facilities 

(see Daskin, 1995 pp. 247 – 303, for a comprehensive and cogent review of formulations and 

solution algorithms for fixed charge location problems) (Balinski 1965).  The uncapacitated 

model assumes each facility has unlimited capacity, and as a result, if a facility supplies a 

demand node, it will satisfy all the demand, i.e., only one facility is necessary to serve a 

particular demand. The capacitated facility location problem operates under given supply 

capabilities/constraints.  There have been many extensions to this basic modeling framework 

(Current and Marsh 1993) that include multiobjective formulations (Current and Ratick, 1996), 
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and dynamic situations (Current, et al. 1998, Osleeb and Ratick 1990, Ratick et al. 1987).  In this 

paper, we will be using the UPLP and the CPLP as the base location modeling framework for our 

model  formulations.  The mathematical formulation of the UPLP (I) is:     

 

 0,1 y,x
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Where: 

k = 1, . ., K  index of facility locations 

l  = 1, . ., L  index of demand locations 

Parameters: 

ckl  =   cost of shipping one unit of demand from facility k to demand l 

deml   =  the # of units of demand at l 

Fk  =  fixed cost of  opening/using facility k  

Decision Variables: 

⎩⎨
⎧=

⎩⎨
⎧=

o/w   0

used) (ie. opened""k facility  if   1
y

o/w  0

l  demand  servesk facility  if   1
x

k

kl

 

The objective function (1) calculates the total cost (transportation and fixed opening costs) of 

supplying the demand in the system.  Total transportation costs are obtained by summing over all 

facilities and all demands the product of:  the per unit transportation cost from facility (k)  to a 

demand (l), the total number of units demanded (deml), and the integer variable xkl - which is 1 

only if that facility is chosen to supply that demand in the optimal solution.  Total fixed costs of 

opening facilities is obtained by summing over all facilities the product of: the fixed costs (Fk) 

and the integer variable, yk, which is 1 if that facility is chosen to be opened in the optimal 

solution.  Because each opened facility provides all the necessary resources to satisfy demands at 

locations that it serves, the constraints represented in (2) assure that every demand is satisfied, 
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and the constraints in (3) assure that only open facilities can supply demands (and that the fixed 

cost for opening the facilities are properly assessed in the objective function). 

  

The formulation for the CPLP (II) is given by: 

 

0b                        

   0,1 x,y                        

  

(8)               lk,   y]Cap,dem[MINb                             

(7)                                        l     demb                        

(6)                                        l,k      yx                            

(5)                                               l     1x                        

                                                            .t.s

                    yFbcMIN

K

1k

kl

K

1k

L

1l

K

1k

kkklkl

∀≥

+

∑

∑∑ ∑

=

= = =

(II)                                                                           

(4)                               

kl

klk

kklkl

l

K

1k

kl

kkl

≥
=

∀≤

∀=

∀≤

∑=

 

 

 

 

 

 

 

 

 

 

 

 

 

Where: 

Parameters: 

Capk  =  capacity of facility k 

bkl   =   # of units shipped from facility k to demand location l 

 

In CPLP (II), the objective function is similar to UPLP (I) except that the transportation costs is 

calculated as the product of the per unit transportation costs and the amount shipped from facility 

k to demand l, i.e., bkl.  Constraints in (8) assure that the amount shipped from facility k to 

demand l, bkl, is either less than the demand requirement at l (deml) or the supply at k (Capk) - 

whichever is smaller; if facility k is not opened, then bkl is forced to be zero.  The constraints in 

(5) and (6) are similar to the constraints in (2) and (3), respectfully, in UPLP (I).  The 

requirement that the sum of the amount shipped from all the facilities to each demand location 

must satisfy the demand location’s demand is expressed by the constraints in (7). 
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Current, Min, and Schilling’s (1990) review of 45 facility location papers demonstrated that 

location models are inherently multiple objective; with the most common objectives classified 

into four categories: cost minimization, demand-oriented, profit maximization and, 

environmental concern.  The cost minimization objective is the traditional objective of most 

facility location models.  Demand-oriented objectives focus on measuring the “closeness” of the 

facilities, where “closeness” may be measured in terms of coverage, access, or response time (for 

a review of covering models see Schilling et. al. (1993) and Toregas et al. (1971)); indicating 

that there are many attributes that can be used to measure a good location/allocation pattern.  In 

this paper, we suggest that a  good location pattern is one that not only optimizes the spatial 

interaction among facilities, and the demands they serve (as in the above mentioned models), but 

also optimizes the performance (efficiency) of those facilities at the chosen locations. To 

evaluate this we add to the spatial interaction measures another objective derived from a 

technique called data envelopment analysis (DEA), a linear programming approach to measuring 

relative efficiency among facilities. 

 

Data Envelopment Analysis (DEA) Models 

One of the main non-parametric approaches to efficiency measurement is data envelopment 

analysis (DEA).  DEA produces a single aggregate measure of relative efficiency among 

comparable units (called decision making units (DMUs)) that is a function of the inputs and 

outputs of  processes operating at the DMUs.  One advantage of  DEA is that these inputs and 

outputs can remain in their natural physical units without reducing or transforming them into 

some common measurement such as dollars.  DEA defines relative efficiency as the ratio of the 

sum of weighted outputs to the sum of weighted inputs: 

 

inputsweightedofSum

outputsweightedofSum
EffieicncyDEA =

 

The more output produced for a given amount of resources, the more efficient (i.e., less wasteful) 

is the process.  The problem is how each of the individual inputs and output variables, expressed 

in their different units, are to be weighted.  Solving for these weights is the fundamental essence 

of DEA.  For each DMU individually, the DEA procedure finds the set of weights that makes the 

efficiency of that DMU as large as possible (constrained to be between 0 and 1).  The values the 
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derived set of weights can have is restricted by evaluating them in the input/output vectors for all 

the other comparable DMUs, and constraining those ratios to also be less than or equal to 1.  

Traditionally, the procedure is then repeated for all other DMUs to obtain their set of weights 

and associated relative efficiency score. Thus, the DEA solution provides decision makers a 

listing of comparable DMUs ranked by relative efficiency.   

 

As an example, for the six DMUs shown in Figure 1 below, we will assume that each consumes 

the same amount of a single input but produces different amounts of outputs y1 and y2.  The DEA 

approach finds the convex hull of the non-dominated solutions, an envelope, using mathematical 

programming.  The procedure will identify DMUs P1, P2, P3, and P4 as being efficient; 

assigning these points, and the locus of points on the line connecting them, an efficiency score of 

1.  DMUs within the envelope, such as points P5 and P6, will have DEA efficiency scores less 

than one; in this example their DEA efficiency scores are equal to the ratio of the magnitude of 

the vector from the origin to the point (say P5) to the magnitude the vector from the origin 

through the point to the intersection with the convex hull (P’5)). 

 

Figure 1.  Example of the DEA envelope 

 

Farrell (1957) first described an ‘envelope’ isoquant approach, in which multiple inputs and one 

output could be calculated in their natural units, for measuring the efficiency of agricultural 

production in the United States. Charnes, Cooper and Rhodes (1978) reformulated Farrell’s 

approach and extended this relationship to incorporate multiple outputs as well as multiple 

inputs.  They also provided a methodology for finding the envelope using a fractional linear 

 7



Klimberg & Ratick 3/3/2004 

program, and transformed the fractional program into an easily solved equivalent linear program 

(described below). The efficiency of the rth decision-making unit (DMU), wr, can be obtained by 

solving the following linear fractional CCR DEA formulation (III): 
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Where: 

i = 1, .  . ., I Inputs used at DMU 

j = 1, .  . ., J Outputs produced at DMU  

k = 1, . ., r, . ., K DMUs  

 

Parameters:

Ojk = amount of the jth output for the kth DMU 

Iik  = amount of the ith input for the kth DMU  

Decision Variables: 

 uj = the weight assigned to the jth output; 

 vi = the weight assigned to the ith input. 

This formulation determines objectively the set of weights, uj and vi that maximize the 

efficiency, wr , of DMU r.  The constraints in (10) require the ratio of the weighted sum of 

outputs to the weighted sum of inputs (the efficiency of each DMU, including the rth DMU) not 

to exceed one using a set of non-negative weights uj and vi.  A similar DEA formulation is 
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solved sequentially for each DMU.  A DMU is considered relatively inefficient (wr<1) if 

increasing its outputs without increasing inputs, or decreasing its inputs without decreasing 

outputs, is possible.  In this way, a DMU's inefficiency is measured relative to the set of efficient 

DMUs that define the convex hull.   

 

To solve this as a linear program, the denominator in the objective function, (9), is arbitrarily set 

equal to 1:    Both sides of the constraints in (10) are then multiplied by the sum of 

the weighted inputs, yielding the linear equivalent constraint set:   

1.  Iv ir

I

1i
i =∑=

k.   Iv   Ou ik

I

1i
i

J

1j
jkj ∀∑≤∑ ==  

 

Additionally, a special case called weakly efficient causes the DEA model to be modified in 

practice.  A particular DMU may be weakly efficient if, in the solution to the DEA linear 

programming model, its DEA efficiency score is 1 and one or more of its weights are equal to 

zero, but, it is dominated by points on the convex hull (i.e., DMU P’6 in Figure 1).  To address 

this problem the CCR DEA formulation requires each weight to be greater than ε, a small 

infinitesimal value to assure that weakly efficient DMUs are not classified as efficient.  The 

modified linear CCR DEA formulation therefore becomes (IV):  
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Where: 

     ε  =   is a small infinitesimal value. 

 

Since the Charnes, et al.’s 1978 paper, there have been thousands of theoretical contributions and 

practical applications in various fields using DEA, (Seiford 1995).  DEA has been applied to 

many diverse areas such as: health care, military operations, criminal courts, university 

departments, banks, electric utilities mining operations, manufacturing productivity, and railroad 

property evaluation (Klimberg (1998), Klimberg and Kern (1992), Seiford (1995) and Seiford 

and Thrall (1990)), for situations in which input data is stochastic (Desai et al. 2004) and 

extended to consider multiple objectives (Klimberg (1998), Klimberg and Puddicombe (1999) 

and Klimberg et al. (2001)).  There have also been applications of DEA to evaluating the 

efficiency of spatial location patterns.  Basing their work on the concept of spatial efficiency 

proposed by Fisher and Rushton (1979), Desai and Storbeck (1990), Desai, Haynes, and 

Storbeck (1995), and Athanassopoulos and Storbeck (1995), in a series of related papers applied 

DEA to measure the relative spatial efficiency of location decisions.  As part of their DEA 

models, they used two measures of access as input variables, the total travel distance and the 

extent of noncoverage (populations not within a specified distance of a facility).  Another 

application of DEA in the context of location/siting is Schroff et al.’s study, (1998) of siting 

long-term care facilities; in which they describe their problem as one of  “locational 

benchmarking” and used DEA to measure the relative efficiencies of potential geographical 

regions to determine the location of long-term care facilities. 
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COMBINED LOCATION/DEA MODELS 

The typical solution process for DEA consists of sequentially solving model IV for each DMU.  

In order to simultaneously consider both patterns of locations for facilities and the associated 

relative efficiencies of those facilities at each location, the DEA model solution process needs to 

be modified to allow for the DEA efficiencies of all the DMUs to be calculated in one linear 

program.  In their study of obnoxious-facility location, Thomas et al. (2002), combined a facility 

location model with DEA by iteratively executing the location/DEA models.  An iteration 

consists of first solving a facility location model and identifying an optimal facility location; then 

using this optimal facility location as input, a modified DEA model, called a multi-alternative 

DEA model, is solved simultaneously for all locations.  All possible combinations of the 

facilities must be iteratively tested.  Their multi-alternative DEA model examined each of the 

locations at one time, and their approach did not simultaneously find the efficiencies of all 

locations.  We address this issue in the following formulation. 

 

To modify the CCR DEA linear program for incorporation into the facility location models, we 

define dr as the level of inefficiency of DMU r (dr = 1-wr).  Then, separating out DMU r in 

constraint (13) and incorporating dr, we get: 
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Additionally, since constraint (12) applies to DMU r, we can substitute 1 for the weighted sum of 

outputs in (14), resulting in: 
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J
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With this adjustment to constraint (13), and additionally extending this modification to the 

objective function, the modified DEA formulation is now (V): 
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We extend model V to solve for all DMUs simultaneously as shown below (VI): 
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Where: 

Decision Variables: 

      urj  = the weight assigned to the jth output for DMU r; 

      vri = the weight assigned to the ith input for DMU r; 

 

 

To allow for the simultaneous solution of the DEA model for all DMUs, the objective function  
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(20), now maximizes the sum of the efficiencies.  The constraints in (21) require the sum of 

DMU r’s weighted inputs to be equal to 1, and they are written for each DMU.  The constraints 

in (22) define efficiency as the sum of DMU r’s weighted outputs; these constraints are also 

written for each DMU.  The constraints in (23), require the sum of each set of weighted outputs 

to be less than the corresponding sum of weighted inputs (note that in (23) r sets of k constraints 

are written because the weights for each r need to be tested with the input/output vectors for all 

other DMUs).  

 

The combination of model VI above for the simultaneous DEA model, with the UPLP (model I), 

results in the following formulation (VII) for the fixed simultaneous DEA/UPLP model:  
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The first objective function, (24), maximizes the sum of the efficiencies for all facility (k), 

demand (l) combinations opened in the optimal solution; the DMU being evaluated is the facility 
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k/demand l combination being used.  A particular facility may have a number of demands that it 

is chosen to serve in the optimal solution; each of these facility/demand pairs would have an 

associated DEA efficiency score.  The second objective function, (25), and the subsequent two 

sets of constraints, (26) and (27), are the same as those in model I for the UPLP.  The constraints 

in (28) and (29) are similar to the constraints in (21) and (22) for the simultaneous DEA model, 

(VI).  Additionally, the constraints in (30) are analogous to the constraints in (23) for model VI.  

When facility k serves demand l, i.e., xkl =1, the corresponding input and output weights are 

required to be greater than ε on account of constraints (31) and (32), respectively, and further, the 

constraints in (33) require the weighted outputs to be less than 1, for all facilities, demands, and 

output types.  On the other hand, if facility k does not serve demand l (xkl = 0), the constraints in 

(31) and (32) require the input and output weights to be non-negative, and the constraints in (28) 

and (33) force them to be equal to 0. 

In model VII if a facility k serves demand l, then it will serve all of demand l’s requirement.  

Consequently, there is no interaction between the level of operation and the DEA efficiency.  To 

combine the simultaneous DEA formulation (VI) with the CPLP (II), and to allow for some 

interaction between location and efficiency, we arbitrarily assumed one of the outputs in the 

facility’s input/output vectors is used to satisfy demands. The amount of that output used in 

computing the DEA efficiency score for a facility is then a function of whether or not the facility 

serves a demand, and the activity level of that facility/demand combination.  Thus, the DEA 

efficiencies are dynamically changing as the location and allocation patterns change.  

Additionally, not all facilities will be compared at optimality, only those that are open.  The DEA 

efficiency score for facilities that are not used is equal to 0.  The combination of the 

simultaneous DEA formulation (VI) with the CPLP (II), results in the following formulation for 

the adjustable simultaneous DEA/CPLP model (VIII):   
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Where: 

m = the index of the output that is used to satisfy demand in the CPLP. 

 

The first objective function in the above formulation, (34) and the corresponding DEA-related 

constraints (40 – 42) are equivalent to objective function (24) and constraints (28 – 30) in the 

fixed simultaneous DEA/UPLP (VII). The second objective function, (35), and the following 

four constraints, (36 – 39) are similar to the objective function and constraints in CPLP (II).  The 

only differences are in the constraints in (39), where for the capacity of facility k we use the 

capacity of one of the outputs, m. The DEA-related constraints (40 – 45) correspond exactly to 

the DEA-related constraints, (28 – 33), in model VII.  The constraints in (46)  require at least one 
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unit to be shipped from facility k to demand l, if xkl = 1, allowing for that facility to be used in 

the calculation of DEA efficiency scores.  Similar to model VII, if xkl =0, the DEA input and 

output weights for facility k are equal to 0, and that facility is not considered in the computation 

of the relative DEA efficiency scores for that location/allocation pattern. 

 

EXAMPLE  

An example with seven facilities serving 15 demands, each with four inputs and three outputs, 

was created and used to test the two DEA/facility location models, models VII and VIII.  Figure 

2 shows the relative locations of the facilities and the demands; Table 1 lists the demand at each 

of the 15 demands. 
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Figure 2.  Locations of Facilities (F#) and Demands (D#) 
 
 
 
 
Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Demand 8 28 20 17 23 25 50 49 16 29 45 42 40 8 16 

Table 1.  Demand requirements at each demand point 
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Associated with each demand that a facility may serve is a unique input-output vector. 

Averaging all the DEA scores for all possible demands that can be served by the facility yields 

an average DEA efficiency score for the facility (the number displayed below each facility in 

Figure 2).  Table A.1 in Appendix A contains the input-output vectors for each of the 

facility/demand pairs, and their corresponding DEA scores.   The remaining parameter values 

required by models VII and VIII are listed in Appendix A; Table A.2 gives the distances between 

facilities and demands, and Table A.3 contains the fixed costs for each of the facilities.   

  

The fixed simultaneous DEA/UPLP model, VII, was run with the data discussed above and 

yielded the following results shown in Table 2. 

   

Table 2.  Solution Values for the fixed simultaneous DEA/UPLP problem (VII) 

Weights for Uncapacitated Solutions  Min Cost  Max DEA

Relative Weight on Costs* 1 0 

Relative Weight on DEA* 0 1 

      

Objective Function Values     

Total Fixed Costs  $1,950.00 $940.00 

Total Transport Costs  $7,786.11 $15,215.76

Total Costs  $9,736.11 $16,155.76

      

Number of Open Facilities 5 2 

Number of facility-demand links 15 15 

Total Sum of Efficiency Scores for Open Facilities 10.09 15.00 

Average DEA Score for Solution 0.6725 1.0000 

Minimum Efficiency Score for Solution 0.2351 1.0000 

* - a small weight was used for the objective not being optimized to assure non-dominated 
multiobjective solutions 

 

Because there is no interaction between the level of operation and the DEA efficiency (which are 

fixed for this model), we solved for the minimum cost and maximum sum of DEA efficiencies as 

shown in Table 2.  The Min Cost column in Table 2, and visually displayed in Figure 3, shows 

the solution when the weight on the DEA objective is virtually 0.  Five facilities are chosen to 

serve the demands points with 15 facility-demand links.  The average DEA score for all open 

facility-demand links is a little over 67% and the minimum DEA score is 23.5% (when facility 
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F1 serves demand 13).  As expected all demands are served by their closest facilities, except for 

demand 15 that should have been served by facility F5, however, the savings in transportation 

costs do not offset the fixed charge for opening that facility.   

 

The last column in Table 2, labeled the Max DEA solution, and graphically displayed in Figure 

4, shows the solution when the weight on costs is virtually 0.  In this case, only two facilities are 

opened with 15 facility-demand links utilized.  The average DEA score and the minimum DEA 

score for all open facility-demand links is 1.000.  The fixed costs are significantly lowered from 

the minimum cost solution, by more than 50%.  However, the transportation costs are nearly 

doubled.  
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Figure 3.  Minimum cost solution to the fixed simultaneous DEA/UPLP location model 
Weight on DEA = 0, Weight on Costs = 1 
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Figure 4.  Maximum DEA solution to the fixed simultaneous DEA/UPLP location model 
Weight on DEA = 1, Weight on Costs = 0 
  

The adjustable simultaneous DEA/CPLP location model formulation, model VIII, was also run 

with the data presented above and in the Appendix.  Here one of the outputs in the DEA vector 

(Output 3) is the actual commodity transported from the facilities to the demands.  The amount 

of Output 3 in input/output vector for those facility-demand links chosen in the solution will 

change depending upon the amount of commodity supplied, and concomitantly so will the 

associated DEA score; increasing output can potentially increase the DEA efficiency score.  A 

series of multiobjective solutions were obtained by varying the relative weights on the DEA 

objective and the cost objective.  Table 3 gives the objective function values for these solutions.  

The curves in Figure 5 illustrate the tradeoff between costs and DEA efficiency.  The lower solid 

curve shows the tradeoff between total costs and the minimum efficiency score, while the upper 

dashed curve demonstrates the tradeoff between total costs and the average DEA score.  

Additionally, three disjointed points are labeled in Figure 5.  These points refer to the solutions 

to the simultaneous DEA/UPLP model.  Points A and B apply to the minimum cost solution, 

where point A is the total cost and minimum efficiency score and point B is the total cost and 

average DEA score.  Lastly, point C corresponds to the maximum DEA solution of the 

simultaneous DEA/UPLP model.  
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Trade-off of Cost and DEA Efficiency Scores for of Open Plants
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Figure 5.  Trade-off of Costs and DEA efficiencies for the Adjustable Simultaneous DEA/CPLP 
Location Model 
 

Table 3.  Solution Values for Adjustable Simultaneous DEA/CPLP location model 

Weights for Capacitated Solutions           

Relative Weight on Costs* 1 0.8 0.7 0.6 0 

Relative Weight on DEA* 0 0.2 0.3 0.4 1 

            

Objective Function Values           

Total Fixed Costs  $3,003 $2,739 $2,248 $2,316 $1,874 

Total Transport Costs  $9,066 $10,367 $12,835 $16,662 $20,931 

Total Costs  $12,069 $13,106 $15,083 $18,978 $22,805 

            

Number of Open Facilities 6 5 3 3 2 

Number of facility-demand links 23 18 21 22 20 

Total Sum of Efficiency Scores 12.71 11.69 17.42 21.21 20.00 

Average DEA Score for Solution 0.5527 0.6492 0.8296 0.9641 1.0000 

Minimum Efficiency Score for Solution 0.2351 0.4586 0.6330 0.8297 1.0000 

* - a small weight was used for the objective not being optimized to assure non-dominated 
solutions.  Weights show relative importance in each solution, actual weights were adjusted for 
the relative sizes of the objective functions. 
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Figures 6 and 7 graphically show the solutions for DEA weight = 0 and DEA weight = 1, for the 

adjustable simultaneous DEA/CPLP model formulation (VIII).  These two solutions are 

comparable to the minimum cost and maximum DEA solutions for the fixed simultaneous 

DEA/UPLP model (VII), Figures 3 and 4.  A comparison of the minimum cost solutions shows 

the fixed simultaneous DEA/UPLP solutions to be less costly; to have a higher average DEA 

score and to have the same minimum DEA score, Figures 3 and 6.  On the other hand, the 

adjustable simultaneous DEA/CPLP model opened one more facility, F5, and used 23 

facility/demand links (while the fixed simultaneous DEA/UPLP model used 15 facility/demand 

links) because of the restrictions on supply.  The average DEA values for each open facility (the 

average of the DEA efficiency scores for open facility/demand links at a facility) are different for 

the two models minimum cost solutions (Figures 3 and 6), partially because of the readjustments 

due to supply constraints, and partially because of the varying output vector for facilities in the 

adjustable simultaneous DEA/CPLP model (VIII).  The two maximum DEA solutions, Figures 4 

and 7, are similar except for the split fulfillment of demand caused by supply constraints, leading 

to costs being lower in the fixed simultaneous DEA/UPLP model, and the adjustable 

simultaneous DEA/CPLP model using 5 more facility/demand links.    
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Figure 6.  Graphic Solution for the Adjustable Simultaneous DEA/CPLP location model  
Weight on DEA = 0, Weight on Costs = 1 
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Figure 7.  Graphic Solution for the Adjustable Simultaneous DEA/CPLP location model  
Weight on DEA = 1, Weight on Costs = 0 
 
 

CONCLUSIONS AND MODEL EXTENSIONS 

The fixed simultaneous DEA/UPLP and adjustable simultaneous DEA CPLP formulations, 

models VII and VIII, address the issue of solving for the two types of efficiencies described 

earlier; spatial efficiency - measured by least costs for serving demands; and facility efficiency - 

measured by the manner in which given inputs are used to produce outputs.  We accomplish this 

by first formulating the simultaneous DEA linear program, and then combining that formulation, 

in a multiobjective framework, with both the uncapacitated and the capacitated fixed charge 

facility location problem.  The results of those multiobjective formulations demonstrate that this 

combination may provide promising rich approach to multiobjective location analysis.  In model 

VIII, one of the outputs was used to serve demands, allowing for a more realistic treatment.  

However, there are two issues with our formulation that require more development and study.  

The first is to link the production of output to serve demand at a facility to the varying levels of 

inputs that need to be used to produce those outputs (inputs were exogenous and fixed in the 

DEA models including model VIII).  The other is that, in order to keep the formulation linear, we 

used the fraction of the total output supplied for the DEA input/output vector. The contribution 
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of that output to the DEA score was not weighted in the DEA solution, but restricted by the 

fraction of demand shipped.  If we had kept the true DEA weight and allowed the amount of 

output to vary as given in VIII, it would have resulted in a non-linear program. Developing 

solution schemes for an expanded model VIII, in which outputs, inputs and their corresponding 

weights are solved for, is another area in which further work needs to be done. While, in this 

paper, we have used the fixed charge facility location formulation, we assume that similar 

promising results would obtain if this approach were used with location models formulated with 

other criteria such as access and coverage; an area we hope to explore in the future. The ultimate 

test would be to apply the combined DEA/location modeling framework in a real situation. 
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Appendix A:  Input Data for Example Problems 
 

Table A.1  Input/Output Vectors for Each Facility Serving Each Demand with Associated DEA 
Scores 

Amount of Input 
  

Amount of Output 
  

  
  
Facility 

  
Serving 
Demand 1 2 3 4 1 2 3 

  
DEA 
Score 

F1 1 76 69 63 78 73 4 4 37% 

F1 2 50 92 75 98 80 35 30 37% 

F1 3 50 76 64 94 69 37 7 36% 

F1 4 50 25 24 94 21 36 9 34% 

F1 5 79 94 98 86 47 71 85 33% 

F1 6 87 90 57 55 52 40 60 33% 

F1 7 83 91 23 69 64 32 39 33% 

F1 8 26 43 21 84 17 20 35 32% 

F1 9 50 98 73 55 14 61 5 32% 

F1 10 17 65 24 73 18 10 33 30% 

F1 11 75 83 29 54 49 42 15 28% 

F1 12 50 74 92 93 56 19 14 27% 

F1 13 59 77 68 69 46 5 13 24% 

F1 14 70 82 68 32 35 19 6 19% 

F1 15 69 69 85 52 16 28 9 14% 

F2 1 98 69 41 25 68 34 76 60% 

F2 2 29 59 75 59 11 82 9 59% 

F2 3 40 39 18 50 46 60 27 59% 

F2 4 56 42 90 36 58 82 46 58% 

F2 5 61 20 86 83 27 61 96 56% 

F2 6 80 48 98 43 95 74 79 56% 

F2 7 26 17 34 75 0 46 32 55% 

F2 8 64 24 73 69 76 11 26 54% 

F2 9 73 56 39 54 76 78 35 54% 

F2 10 28 96 21 52 62 18 67 54% 

F2 11 55 95 8 42 33 64 38 54% 

F2 12 58 79 81 14 28 71 84 53% 

F2 13 71 79 51 55 79 89 77 53% 

F2 14 18 47 91 74 73 8 65 52% 

F2 15 34 84 88 74 99 69 89 52% 

F3 1 53 45 25 1 53 95 28 100% 

F3 2 1 62 76 32 94 59 38 100% 

F3 3 86 2 67 40 61 87 66 100% 

F3 4 22 52 41 10 66 63 6 100% 

F3 5 18 51 3 67 71 90 81 100% 

F3 6 80 17 6 10 85 91 30 100% 
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Table A.1  Input/Output Vectors for Each FacilityServing Each Demand with Associated DEA 
Scores  (Continued) 

Amount of Input 
  

Amount of Output 
  

  
  
Facility 

  
Serving 
Demand 1 2 3 4 1 2 3 

  
DEA 
Score 

F3 7 17 6 59 85 80 46 34 100% 

F3 8 21 32 1 27 7 82 16 100% 

F3 9 32 8 31 68 49 41 90 100% 

F3 10 34 37 51 1 53 58 50 100% 

F3 11 21 93 65 15 71 93 88 100% 

F3 12 63 5 100 13 51 24 33 100% 

F3 13 58 87 68 4 93 1 55 100% 

F3 14 2 92 83 79 100 71 82 100% 

F3 15 25 18 94 6 10 43 80 99% 

F4 1 11 96 65 79 82 36 64 51% 

F4 2 56 69 40 66 46 65 76 50% 

F4 3 73 72 65 91 18 93 98 50% 

F4 4 69 82 49 100 19 98 87 49% 

F4 5 45 31 75 72 17 69 12 49% 

F4 6 75 51 36 32 69 56 41 48% 

F4 7 39 74 96 62 84 57 70 47% 

F4 8 39 84 62 98 23 6 92 46% 

F4 9 24 83 49 54 48 37 67 46% 

F4 10 100 74 39 47 52 97 10 46% 

F4 11 76 29 34 98 19 52 53 46% 

F4 12 89 16 45 71 56 38 25 46% 

F4 13 33 79 86 98 87 24 71 44% 

F4 14 38 41 53 7 2 38 3 44% 

F4 15 27 62 65 60 64 22 46 43% 

F5 1 38 41 53 7 2 38 3 44% 

F5 2 27 62 65 60 64 22 46 43% 

F5 3 51 26 86 73 52 4 63 42% 

F5 4 35 61 1 99 11 13 8 42% 

F5 5 37 69 3 58 1 64 8 41% 

F5 6 28 28 69 81 41 27 58 40% 

F5 7 82 98 42 94 89 60 55 40% 

F5 8 99 81 94 42 86 59 41 40% 

F5 9 81 83 80 97 93 36 17 40% 

F5 10 71 52 82 93 26 82 35 40% 

F5 11 64 18 17 22 3 31 21 39% 

F5 12 35 95 27 80 15 70 17 38% 

F5 13 89 84 37 13 1 59 33 38% 

F5 14 52 94 36 39 9 63 24 37% 

F5 15 78 70 93 68 34 83 5 37% 
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Table A.1  Input/Output Vectors for Each FacilityServing Each Demand with Associated DEA 
Scores (Continued) 

Amount of Input 
  

Amount of Output 
  

  
  
Facility 

  
Serving 
Demand 1 2 3 4 1 2 3 

  
DEA 
Score 

F6 1 26 65 73 9 79 37 89 100% 

F6 2 1 2 100 78 86 70 97 100% 

F6 3 7 50 7 18 73 38 51 100% 

F6 4 7 97 39 47 8 81 88 100% 

F6 5 72 5 35 56 66 94 64 100% 

F6 6 4 84 1 26 87 71 8 100% 

F6 7 50 11 88 13 15 89 75 100% 

F6 8 10 25 30 49 63 2 83 100% 

F6 9 97 5 19 55 7 55 45 100% 

F6 10 96 52 52 3 1 58 95 100% 

F6 11 18 5 37 59 45 55 83 100% 

F6 12 39 62 23 8 16 72 86 100% 

F6 13 72 73 6 36 36 11 86 100% 

F6 14 97 16 17 74 64 53 95 100% 

F6 15 23 21 53 7 60 58 93 100% 

F7 1 26 43 44 91 78 56 68 70% 

F7 2 22 31 82 66 83 44 19 70% 

F7 3 85 29 60 45 95 96 52 69% 

F7 4 21 64 97 80 33 90 93 67% 

F7 5 31 53 95 49 21 88 31 67% 

F7 6 10 67 94 90 72 87 57 67% 

F7 7 32 85 79 14 31 4 90 66% 

F7 8 30 83 65 69 36 91 99 66% 

F7 9 18 27 95 30 21 37 67 64% 

F7 10 75 20 67 62 18 26 91 64% 

F7 11 95 75 5 56 35 10 57 63% 

F7 12 27 88 71 62 43 87 82 63% 

F7 13 46 7 93 79 13 49 77 63% 

F7 14 80 13 8 39 25 47 11 62% 

F7 15 92 3 84 83 53 28 56 61% 
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Table A.2  Distance Matrix for Facilities to Demands 

To Demand From 
Facility 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

F1 46 69 62 39 57 52 31 48 42 32 37 17 12 60 29 

F2 11 72 74 87 49 35 76 62 22 27 68 59 63 27 23 

F3 74 39 28 28 45 89 19 22 75 67 77 24 46 64 53 

F4 61 17 19 61 11 83 50 13 67 63 90 43 64 36 45 

F5 41 49 44 46 36 57 34 30 42 35 57 18 33 41 20 

F6 25 96 99 108 72 32 98 87 30 39 76 81 80 48 45 

F7 48 108 104 79 91 30 74 90 37 33 18 62 44 81 50 

 
 
 

Table A.3  Fixed Costs for Opening Facilities* 

Facility Fixed Cost 

F1 250 

F2   370 

F3 500 

F4 330 

F5 300 

F6 440 

F7 430 

 

* This is the fixed cost for opening the facility to serve any of the demands; a smaller 
fixed cost of 10% of this value is assessed for each demand served. 
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