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Abstract 10 

Since the early 2000s, the Madre de Dios Region of southern Peru has experienced rapid 11 
expansion of both licit and illicit mining activities, in the form of Artisanal and Small-Scale 12 
mining (ASM). ASM typically takes place in remote, inaccessible locations, and is therefore 13 
difficult to monitor in situ. This paper explores the utility of Landsat-5 imagery via decision tree 14 
classification to determine ASM locations in Madre de Dios. Spectral mixture analysis was used 15 
to unmix Landsat imagery, using World-View and Quickbird l imagery to aid spectral 16 
endmember selection and validate ASM maps. The ASM maps had an overall area-weighted 17 
accuracy of 96%, and indicated a large proportion of illicit ASM activity (~65% of all ASM in 18 
the study area) occurring outside the permitted concessions. Holistic visual comparison of ASM 19 
output maps with reference imagery showed that these methods produce reasonable, realistic 20 
maps of mined area extent.  21 

  22 
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1. Introduction 23 

This paper examines the use of Spectral Mixture Analysis (SMA) and Classification Tree 24 

Analysis (CTA) of Landsat-5 imagery to map licit and illicit mineral extraction activity, 25 

primarily for gold, in the Madre de Dios Department of Peru. Peru is the sixth-largest producer 26 

of gold worldwide with a 7.68% market share (Vásquez Cordano and Balistreri, 2010), with 20% 27 

of Peru’s gold bullion originating from illicit Artisanal and Small-scale mining (ASM) (Gardner, 28 

2012). The Department of Madre de Dios, with an area of approximately 85,000 km2, generates 29 

roughly 70% of Peru’s ASM gold production, although the illicit nature of the mining prevents 30 

definitive estimates (Brooks et al., 2007). Both licit and illicit ASM operations result in forest 31 

loss and degradation, water and soil Mercury contamination, river siltation, and Mercury 32 

contaminated fish stocks (Hentschel et al., 2002; Veiga et al., 2006; Yard et al., 2012). 33 

Additionally, Asner et al. (2010) noted how ASM-caused forest degradation contributes 34 

significantly to carbon storage loss in the Peruvian Amazon. Furthermore, since small-scale 35 

illicit mining is inherently illegal, it cannot be mapped or monitored via traditional 36 

regulatory/concession documentation, and therefore there is no reliable estimate of the number of 37 

illicit mines in Peru (Swenson et al., 2011). Although the historical extent of ASM in Peru has 38 

largely been unknown (Mosquera, 2009), recent research has shown that Landsat data, together 39 

with spectral unmixing, can reliably detect ASM locations (Asner et al., 2013). However, to date 40 

these SMA methods have not been augmented with ancillary GIS datasets and decision tree 41 

analysis, nor have mapped ASM extents been measured within and outside of legal mining 42 

concession boundaries. As global demand for gold continues to increase, so too does the need for 43 

effective ASM monitoring methods, especially in locations where no regulatory information is 44 

available (Hilson, 2002; Hilson, 2005; Bebbington et al., 2008). The goal of this paper is to 45 
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develop methods for use with freely available Landsat imagery, Advanced Spaceborne Thermal 46 

Emission and Reflection Radiometer (ASTER) elevation data, and ancillary GIS data, to identify 47 

ASM mining operations and to quantify the extent of licit versus illicit ASM in Madre de Dios.  48 

 49 

Few studies have quantified the extent and magnitude of surface mining activities associated 50 

with ASM, as there has been more focus on larger-scale, industrialized mining (e.g. Latifovic et 51 

al., 2005; Slonecker et al., 2010; Erener, 2011). For example, Latifovic et al. (2005) used post-52 

classification change detection of Landsat-5 Thematic Mapper (TM) and Lansat-7 Enhanced 53 

Thematic Mapper Plus (ETM+) imagery to track decreasing trends in vegetation productivity 54 

related to land change caused by oil sand processing in the Athabasca Oil Sands Region in 55 

Canada. Baynard (2011) and Baynard et al. (2013) addressed direct and indirect landscape 56 

effects of petroleum exploration and extraction activities in tropical South America, using a 57 

combination of Landsat TM/ETM+ imagery and GIS data to create Landscape Infrastructure 58 

Footprints (LFIs). This work highlights the importance of infrastructure development (e.g., 59 

roads, clearings, tailing piles, parking zones) and regulation as an explanatory variable for 60 

predicting landscape fragmentation and degradation in a mining context. Swenson et al. (2011) 61 

used Landsat-5 TM imagery (2003 - 2009) to map deforestation in the Department of Madre de 62 

Dios, indicating that in this time period approximately 6,600 ha of primary tropical forest and 63 

wetlands were converted to mine-related ponds and tailings. The rate of forest conversion was 64 

shown to increase six-fold from 2003-2006 to 2006-2009, and it was linked to an annual increase 65 

in global gold prices during the period (Swenson et al., 2011)(Swenson et al., 2011)(Swenson et 66 

al., 2011)(Swenson et al., 2011). 67 

 68 
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While research in remote sensing of illicit mining has been promising, the principal challenge 69 

lies in detection of the small, remote, and intentionally clandestine patches of disturbance typical 70 

of ASM, using moderate spatial resolution (~30 m) imagery (Asner et al., 2013).  While several 71 

large-scale mining areas exist in the study area (Figure 1) on the order of 100 km2, ASM 72 

operations often occur on scales of tens of km2, meaning that many ASM sites may go 73 

undetected using conventional hard-classification methods. It is important to monitor the 74 

proliferation of these smaller ASM locations, since they are contributing to the rapid 75 

fragmentation of the region’s forest cover (Southworth et al., 2011; Swenson et al., 2011; Asner 76 

et al., 2013). The larger and more permanent mining operations, known as Huepetuhe, 77 

Guacamayo, and Delta-1, are easily captured by moderate spatial resolution data and commonly 78 

used classification methods, such as maximum likelihood classification. Conversely, the smaller, 79 

distributed nature of much ASM in Madre de Dios results in predominantly mixed pixels, 80 

making detection difficult or impossible with such methods. By spectrally unmixing these pixels 81 

into proportional surface features, it is possible to extract valuable information from moderate 82 

spatial resolution imagery, to produce maps of ASM. Although legally permitted mineral 83 

concession areas have been delineated by the Peruvian government, the extent of mineral 84 

extraction within these areas, i.e. the proportion of legal exploitation, has not been monitored, 85 

nor has the incidence of ASM outside of permitted concessions been mapped.  86 

 87 

ASM in Madre de Dios has caused an estimated 320 km2 (32,000 ha) of forest loss (Fraser, 88 

2009), with the rate of loss increasing from 292 ha/yr in 2006 to 1915 ha/yr in 2009, yielding a 89 

total estimate of 15,500 ha of ASM in 2009 (Swenson et al., 2011). ASM areas are spatially and 90 

spectrally distinct based on their proximity to stream channels and a high degree of exposed soil, 91 
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in and around the associated ponds and tailings (Swenson et al., 2011). The Huepetuhe, 92 

Guacamayo, and Delta-1 mining areas represent these characteristics, and are easily detected, as 93 

they cover areas on the order of 100 km2. Conversely, many smaller ASM sites (<10km2) dot the 94 

study area. Asner et al. (2013) estimate approximately 45,000 ha of ASM in 2011, far more than 95 

the Swenson et al. (2011) estimate; this larger estimate reflects the increased detection rate of 96 

ASM using subpixel methods. The primary goal of this study is to further refine the detection of 97 

these small ASM locations, and to assess their extent relative to legal mining concessions. 98 

 99 

2. Study Area 100 

The study area is a 57,000 km2 subset of the Madre de Dios Department of Peru (Figure 1). Both 101 

licit and illicit gold mining have been carried out in this region since the 1980s, with a rapid 102 

increase in ASM activity in the last decade (Asner et al., 2010; Swenson et al., 2011; Asner et al., 103 

2013; Damonte, 2013). Although initially supported by the Peruvian government with legal 104 

concessions, much ASM is now carried out illegally, as focus has shifted to larger-scale mines 105 

operated with foreign investments (Damonte, 2008, 135-74). Nevertheless, ASM has continued 106 

to expand, due to both the increase in international gold prices and the overall weakness of 107 

government in Madre de Dios (Swenson et al., 2011; Damonte, 2014). Indeed, in Peru 108 

(Mosquera et al., 2009; Pachas, 2011) and elsewhere (e.g., Hilson, 2005) efforts to monitor ASM 109 

and foster its formalization have been hindered by limited government capacity and a more 110 

general inadequacy of knowledge regarding the composition and organization of the ASM 111 

sector. 112 
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 113 

For the purpose of this study, the Madre de Dios study area was defined by the intersection of 114 

four Landsat scenes and the Peru national border with Bolivia and Brazil, as indicated by Figure 115 

1. Dominant vegetation comprises mostly tropical lowland rainforest with high biodiversity, and 116 

the area is one of the largest remaining uninterrupted expanses of rainforest in the region 117 

(Swenson et al., 2011). Three major rivers, critical water supplies for ASM, cross the study area: 118 

the Madre de Dios from west to east and Colorado and Inambari from south to north. The study 119 

area is topographically flat, with a mean slope of 7% and a mean elevation of 330 m. The 120 

recently constructed Interoceanic Highway crosses through the southeastern portion of the 121 

region; this has helped spur deforestation for land development (Naughton-Treves, 2004; 122 

[Approx. location for Fig 1] 
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Southworth et al., 2011).  123 

3. Data 124 

Landsat-5 TM imagery provided the primary data for this mapping project. The study area 125 

comprised tiles from path/row 2/68, 2/29, 3/68, 3/69, with imagery captured on 08-27-2011 and 126 

09-3-2011. These image dates correspond to the mid-dry season ((SENAMHI), 2011), aiding in 127 

detection of ASM areas against the vegetation background. The imagery was downloaded from 128 

the USGS EarthExplorer website (http://earthexplorer.usgs.gov/) as pre-atmospherically 129 

corrected and radiometrically calibrated reflectance images, and were then mosaicked and 130 

clipped to the study area boundaries. Ancillary data include active mining concession polygons 131 

for 2011 (http://geocatmin.ingemmet.gob.pe/geocatmin/), an ASTER 30 m digital elevation 132 

model (DEM) and derived slope map, stream channel polygon data obtained from the Peruvian 133 

Ministry of the Environment (MINAM) Geoserver, and a major roads polygon dataset. The 134 

streams and roads polygons were used to create distance rasters for the image classification 135 

process. Map validation relied on two fine spatial imagery datasets comprising 17 individual tiles 136 

covering approximately 12,000 km2, consisting of 2.5 m Quickbird and 2 m WorldView-2 137 

multispectral, as well as 1 m Worldview-1 panchromatic imagery, acquired between August 138 

2010 and August 2012 (DigitalGlobe, 2010-2012). 139 

4. Methods 140 

4.1 Spectral Mixture Analysis 141 

Spectral mixture analysis was carried out on the Landsat-5 TM imagery to extract sub-pixel 142 

http://earthexplorer.usgs.gov/
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information of proportional coverage of each endmember class per pixel. SMA yields a set of 143 

images equal to the number of endmembers, plus one image showing residual values per pixel, 144 

indicating how well the combination endmembers represent the pixel’s actual reflectance values. 145 

Spectral unmixing was deemed to be acceptably accurate based on the overall low residuals 146 

throughout the study area (<0.05). Much of the residual error was deemed to be noise, with little 147 

geographic coherence, except along rivers, which showed some degree of clustered, 148 

comparatively high residual values.   149 

 150 

The endmembers were 151 

selected based on 152 

contextual scene 153 

knowledge and trial-and-154 

error iteration, ultimately 155 

yielding the following 156 

endmembers: 157 

photosynthetic 158 

vegetation, non-photosynthetic vegetation, water, and three soil types, as shown figure 2. The 159 

mineral composition of the soil endmembers is unknown; however, they are representative of the 160 

dominant soil signals in the imagery. The spectral responses of soil types 1 and 3 are similar in 161 

shape, differing mostly in magnitude, and conform to the iron-dominated reflectance curves of 162 

many soils (Hunt, 1977). Soil type 2 is similar through bands 1 to 4, but shows a marked 163 

reflection decrease in the shortwave infrared bands, indicating either mineral-based or water-164 

based absorption. ASM produces a somewhat heterogeneous land-cover, consisting primarily of 165 

[Approx. location for Fig 2] 
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purification pools interspersed with exposed soil; overall, exposed soil and turbid water dominate 166 

the spectral response for these sites (Asner et al., 2013). The SMA process was iterated with 167 

different endmembers and different endmember training pixels until the overall residuals image 168 

showed residual values no greater than 0.05. 169 

4.2 Image Classification 170 

Classification Tree analysis was carried out using the six fraction images, as well as the 171 

elevation, slope, distance to rivers, and distance to roads images. The CTA used the Gini 172 

splitting rule, which maximizes node purity (Zambon et al., 2006). Five categories were used for 173 

the final classification: ASM, water, agriculture, forest, and natural alluvial deposits. A 3 × 3 174 

mode filter was used on the land-cover map to reduce speckle caused by topographic and other 175 

shading influences. 176 

4.3 Active Concessions Overlay 177 

The extent of licit mineral exploration was determined by overlaying the ASM classification map 178 

with a polygon dataset of active mining concession areas. Locations within the study area that 179 

did not fall within the active concessions polygon were deemed ‘illicit’, while those within were 180 

deemed ‘licit’ (Cuba et al., in press).  181 

4.4 Map Validation 182 

Quickbird, WorldView-1, and WorldView-2 imagery were used to validate the Landsat-derived 183 

land-cover map. This imagery was acquired for a coincident time period, with panchromatic and 184 

multispectral images from August 2010 to August 2012. A categorically and spatially stratified 185 

sampling design used 580 validation points that were randomly generated within the study 186 

region, with a minimum of 50 points per land-cover category. Further, the points were 187 
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constrained to a 2 km buffer of stream channels, in order to avoid a spuriously inflated accuracy 188 

estimate caused by the forest class, which is both the most abundant and the most spectrally 189 

distinct. This spatial stratification relies on the observation that ASM activities require proximity 190 

to a major water source for operation (Cuba et al., in press). For each validation point, the true 191 

land-cover was ascertained by manual interpretation of the fine spatial resolution imagery. The 192 

mapped and true cover were then cross-tabulated for accuracy assessment, yielding commission 193 

error, omission error, and overall accuracy, shown in table 3. Because the distribution of 194 

reference samples per category was not proportional to the area of that category in the map, the 195 

per-category accuracies were weighted based on their areal proportion to calculate the overall 196 

accuracy. For example, since forest class dominates the study area, its relative contribution to 197 

overall accuracy is much higher than agriculture, which covers much less area. 198 

5. Results 199 

Based on the reference imagery, the overall area-weighted map accuracy was 96% (87% raw 200 

overall accuracy) (Table 3).   The omission error for ASM was 29%, and the commission error 201 

was 31%. Classification tree results showed primary decision splits for the distance-to-rivers, 202 

proportion vegetation, and proportion water, indicating that these variables most clearly separate 203 

the target categories. All input variables contributed to the classification tree, with elevation 204 

being least important. For the entire study area, 65,000 ha were mapped as ASM, with 23,000 ha 205 

falling within active concessions (Table 1). This shows that 36% of all ASM area falls within the 206 

active legal mineral extraction concessions. The classification error matrix is shown in table 2. 207 

Classification confusion exists between ASM and natural alluvium, and also between alluvium 208 

and river categories.   209 
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 210 

 211 

Three previously mapped areas of larger-scale 212 

mining – Huepetuhe, Guacamayo, and Delta-1 213 

(Swenson et al., 2011; Asner et al., 2013)– were 214 

detected successfully (Figure 3). The more 215 

numerous smaller extent (>10 km2) ASM 216 

locations were also detected successfully 217 

(Figure 4), based on validation using interpretation of the fine-resolution imagery.  218 

 219 

[Approx. location for Fig 3] 

 

 

 

 

[Approx. location for Table 1] 

 

 

 

 

[Approx. location for Table 3] 

 

 

 

 

[Approx. location for Table 2] 

 

 

 

 



12 

  

6. Discussion and Conclusions 220 

Mapping ASM locations with Landsat imagery is challenging due to their small areal extent and 221 

spectral similarity to natural alluvial features. The combination of SMA and CTA methods 222 

presented here sought to overcome these 223 

challenges by extracting physically-based 224 

land-cover proportions and invoking 225 

ancillary data for physical context. These 226 

methods produced plausible results, based 227 

on the random sampling validation and also 228 

a holistic visual interpretation of the CTA 229 

map with the fine spatial resolution data, 230 

shown in figure 4. The large, previously documented mining areas are seen clearly in figure 3, 231 

and exhibit a heterogeneous pattern caused by interspersed agriculture, non-ASM soil and water, 232 

and what appear to be abandoned older mines. Compared to a previous ASM map produced by 233 

Swenson et al. (2011), the Guacamayo site appears to have extended southwards across the 234 

newly constructed Interoceanic Highway; this extension is excluded from legal concession areas, 235 

as illustrated in figure 5, and is an example of illicit mining activity. Numerous small patches of 236 

ASM are visible along the Madre de Dios River. These locations are spatially coherent and 237 

appear to be well classified, based on comparison to the Quickbird imagery shown in figure 4. 238 

Overall, 65,129 ha of ASM was predicted for the study area, considerably larger than the 15,500 239 

ha predicted by Swenson et al. (2011). This discrepancy is likely due to the improved detection 240 

of small ASM patches using the proposed SMA/CTA methods, and also due to the temporal 241 

offset between the two studies. Asner et al. (2013) reported roughly 45,000 ha of forest to ASM 242 

[Approx. location for Fig 4] 
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conversion in Madre de Dios by 2011, and while this estimate is much closer to that presented 243 

here, the study area extent used by Asner et al. was more limited. 244 

 245 

The distance-to-rivers and distance-to-roads variables were particularly useful for discriminating 246 

ASM from natural alluvium, as ASM typically occurs in intentionally remote and obscured 247 

locations, but also requires access to water and transportation. These small, clandestine ASM 248 

locations are the primary target for this mapping effort, since the Huepetuhe, Guacamayo, and 249 

Delta-1 mining locations are plainly visible in Landsat imagery, and can easily be classified with 250 

[Approx. location for Fig 5] 
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more traditional methods. As shown in figures 4 and 5, ASM locations are typically associated 251 

with small-scale agriculture activities, also discriminated from other spectrally similar classes on 252 

the basis of their distance from rivers and roads. ASM/alluvium confusion is problematic for 253 

parts of the scene, most likely due to the similar spectral responses of the soil exposed by mining 254 

and that exposed by natural erosion processes. These categories were separated fairly well based 255 

on the distance-to-rivers variable, since ASM locations tend to be slightly farther away from 256 

rivers; however, this decision rule did not perfectly distinguish all cases of these two land-uses. 257 

Alluvium/water confusion also reduced overall accuracy, and was likely caused by shallow water 258 

with a high spectral contribution from the underlying river sediment, or by ephemeral streams 259 

and seasonal river depth changes associated with precipitation. 260 

 261 

Some degree of classification confusion between ASM and other categories was caused by the 262 

mismatch in spatial resolution of the output map (30 m) and the validation imagery (~0.5 to 2.5 263 

m); this mismatch is particularly relevant for validation points falling close to the edge of a 264 

landscape patch or ASM area. Such points potentially introduce spurious errors due to the nature 265 

of hard-classification of inherently mixed pixels. Therefore, the accuracy estimates provided in 266 

tables 2 and 3 may be overly pessimistic. 267 

 268 

ASM activity is not well confined by legal mining concessions in Madre de Dios, as illustrated in 269 

figure 5, which shows active mining concessions. This image is centered on the southern 270 

expansion of the Guacamayo mining area, and shows the expansion of licit operations into new, 271 

illicit areas. This figure also shows smaller-scale mining occurring outside but adjacent to legal 272 

concessions, in this case along the Malinowski River in the southern portion of the map. In total, 273 
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64% of mapped ASM occurs in areas with no active mining concessions. Even allowing for 274 

commission error of ASM, the proportion of illicit mining is very high in the study area, with 275 

64% of ASM occurring in non-concession areas. 276 

 277 

Due to the logistical difficulties of in situ monitoring of illicit mining activities in the remote 278 

Madre de Dios region, Landsat imagery, together with other free, publically available ancillary 279 

data sets, presents a practical and effective alternative. The use of SMA and CTA for this 280 

classification proved to be effective based on validation using fine spatial resolution imagery. 281 

Furthermore, the small patches of ASM located in the output classification are consistent with 282 

the type of mining that is occurring in this region, as shown by previous research (e.g. Asner 283 

2014) and by the fire resolution imagery. As these methods rely on free, easily accessible data 284 

and straightforward methods, it is reasonable to assume that they could successfully be 285 

implemented in other areas experiencing similar ASM activity. Future research will explore this 286 

possibility, as well as the potential for expanding temporal coverage using Landsat-8 imagery. 287 
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Tables 370 

Table 1: Land use category areal extents (ha) inside and outside of mining concessions as of 371 

2011. Note that the values have been confined to 2 significant figures. 372 

 373 

    Landcover Class 

    Forest Agriculture ASM Alluvium River Total 

M
in

in
g

 C
o

n
ce

ss
io

n
 

S
ta

tu
s 

Entire 

Study Area 

5,493,000 79,400 65,100 50,500 25,200 5,713,300 

96.1% 1.4% 1.1% 0.9% 0.4% 100% 

No 

Concession 

5,084,300 68,400 41,800 33,000 11,300 5,238,700 

97.1% 1.3% 0.8% 0.6% 0.2% 100% 

Active 

Concession 

408,700 11,000 23,400 17,500 13,900 474,500 

86.1% 2.3% 4.9% 3.7% 2.9% 100% 

 374 
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Table 2: Accuracy assessment cross tabulation, based on the classification output (rows) and the 376 

fine resolution reference imagery (columns). 377 

 Reference Image 

  Forest Agriculture ASM Alluvium River Total 

C
la

ss
if

ic
a

ti
o

n
 

O
u

tp
u

t 

Forest 321 1 4 4 2 332 

Agriculture 10 33 5 3 0 51 

ASM 1 4 24 2 3 34 

Alluvium 0 5 1 41 15 62 

River 0 0 1 4 20 25 

 Total 332 43 35 54 40 504 
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Table 3: Accuracy report for classification. Note that the overall accuracy figure accounts for the 379 

relative abundance of each land use type in the study area. 380 

Class Omission 

Error 

Commission 

Error 

Overall 

Accuracy 

    

Forest 3.31% 3.31%  

 

95.6% 

Agriculture 23.26% 35.29% 

ASM 31.43% 29.41% 

Alluvium 24.07% 33.87% 

River 50% 20% 

 381 
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Figures 382 

 383 

Figure 1: The location of the study area in Madre de Dios, Peru  384 
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 385 

Figure 2: Endmember spectral signatures used to unmix Landsat imagery in this study  386 

 387 

 388 

Figure 3: Final CTA output showing three previously documented mining locations: Huepetuhe, 389 
Guacamayo, and Delta-1. 390 
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 391 

Figure 4: Enhanced image of Artisanal Small-scale Mining and agriculture areas along the 392 
Madre de Dios River. The eastern portion of the figure shows ASM, agriculture, and natural 393 
alluvium, overlaid with Quickbird imagery, while the western portion shows only the imagery, 394 
with a ring around a typical ASM location.  395 

 396 
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Figure 5: Classification tree output, showing active mineral extraction concessions in 2011. Note 397 

that a large proportion of the ASM activity falls outside of these concessions. 398 
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