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Predicting in‑hospital mortality 
after transcatheter aortic valve 
replacement using administrative 
data and machine learning
Theyab Alhwiti 1, Summer Aldrugh 2 & Fadel M. Megahed 3*

Transcatheter aortic valve replacement (TAVR) is the gold standard treatment for patients with 
symptomatic aortic stenosis. The utility of existing risk prediction tools for in‑hospital mortality post‑
TAVR is limited due to two major factors: (a) the predictive accuracy of these tools is insufficient when 
only preoperative variables are incorporated, and (b) their efficacy is also compromised when solely 
postoperative variables are employed, subsequently constraining their application in preoperative 
decision support. This study examined whether statistical/machine learning models trained with 
solely preoperative information encoded in the administrative National Inpatient Sample database 
could accurately predict in‑hospital outcomes (death/survival) post‑TAVR. Fifteen popular binary 
classification methods were used to model in‑hospital survival/death. These methods were evaluated 
using multiple classification metrics, including the area under the receiver operating characteristic 
curve (AUC). By analyzing 54,739 TAVRs, the top five classification models had an AUC ≥ 0.80 for 
two sampling scenarios: random, consistent with previous studies, and time‑based, which assessed 
whether the models could be deployed without frequent retraining. Given the minimal practical 
differences in the predictive accuracies of the top five models, the L2 regularized logistic regression 
model is recommended as the best overall model since it is computationally efficient and easy to 
interpret.

Administrative/claims data maintained by government payers and private insurers have been increasingly used 
for monitoring and improving health care  performance1–4. For example, the US National Inpatient Sample (NIS) 
from the Healthcare Cost and Utilization Project (HCUP) is an observational, anonymized database in which 
the unit of analysis is the discharge  record5. The NIS captures several demographic variables, admission date, 
discharge date and status, primary and secondary International Classification of Diseases (ICD) diagnoses, pro-
cedures, length of stay,  etc4,5. In the context of cardiac surgical outcomes, the NIS has been used to (a) identify 
surgical adverse outcomes and improve patient  safety2,6; (b) assess the efficacy/cost of surgical outcomes for 
specific patient  populations7; and (c) predict in-hospital death using statistical and/or machine learning  models1,3.

While the scope and size of administrative data (e.g., the NIS database) “affords wonderful research latitude”8, 
such data have inherent  limitations9 since they were originally collected for billing purposes. In the context of 
predictive studies, the following limitations are the most pertinent: (a) the lack of clinical data; (b) the surveillance 
bias phenomenon of “the more you look, the more you find,” which can make the study of certain diagnoses/
complications  invalid10; and (c) the volume of data (i.e., big data) can make p values for statistical significance 
frequently much less than the typical cutoff of 0.058. Despite these limitations, we utilized the NIS database in this 
paper since it is publicly available, incorporates multiple geographic regions, and continues to play an important 
role in health service  research9.

The overarching goal of this study was to examine whether the preoperative information encoded in the 
administrative NIS database could accurately predict in-hospital death/survival after transcatheter aortic valve 
replacement (TAVR), which is the “gold standard treatment for patients with severe symptomatic aortic stenosis”3 
and has been recently expanded to include low-surgical risk  patients11. To achieve this goal, we examined the util-
ity of both statistical and machine learning models for predicting in-hospital death post-TAVR procedures based 
on the discussion  in3,12–14. We utilized the performance assessment score  of1, which assessed the performance 
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of predictive models using “receiver operating characteristic (ROC) curve scores measuring discrimination 
(< 0.7 = poor, 0.7–0.8 = reasonable, > 0.8 = good)”. Hence, we examined whether an area under the ROC curve 
(AUC) value of > 0.8 could be achieved using only the preoperative information. Thus, this study can be consid-
ered a follow-up/extension  to3, which showed that in-hospital deaths post-TAVR procedures can be predicted 
using both pre- and postoperative NIS variables. Furthermore, we examined whether such models could be 
deployed in practice without frequent retraining by investigating the differences in predictive performance when 
the training and holdout samples were stratified by time order.

Results
Baseline characteristics. Table 1 presents the baseline characteristics of our dataset (n = 54,739). There 
were 1113 (2.03%) in-hospital patient deaths before discharge. Additionally, we found that the patients who died 
in the hospital were more likely to be older; female; to have a history of fluid and electrolyte disorders, implant-

Table 1.  Demographic, hospital, and comorbidity characteristics of TAVR patients.

Overall Survived Deceased p value Training dataset Test dataset p value

Demographic characteristics N = 54,739 53,626 1113 43,791 10,948

 Age (years) 79.65  ± 8.5 79.62  ± 8.5 81  ± 8.9 < 0.001 80  ± 8.5 80  ± 8.6 0.622

 Sex (female) 25,229 (46.1) 24,629 (45.9) 600 (53.9) < 0.001 20,215 (46.2) 5,014 (45.8) 0.494

 Smoker 20,793 (38) 20,537 (38.3) 256 (23) < 0.001 16,690 (38.1) 4103 (37.5) 0.22

 Dyslipidemia 38,654 (70.6) 38,102 (71.1) 552 (49.6) < 0.001 30,954 (70.7) 7700 (70.3) 0.468

 Atrial fibrillation and flutter 22,215 (40.6) 21,678 (40.4) 537 (48.3) < 0.001 17,733 (40.5) 4482 (40.9) 0.397

 Carotid artery disease 3611 (6.6) 3563 (6.6) 48 (4.3) 0.002 2889 (6.6) 722 (6.6) 0.993

 Known CAD 38,673 (70.7) 37,959 (70.8) 714 (64.2) < 0.001 30,972 (70.7) 7701 (70.3) 0.429

 Prior CABG 9714 (17.8) 9569 (17.8) 145 (13) < 0.001 7830 (17.9) 1884 (17.2) 0.099

 Prior ICD 1528 (2.8) 1503 (2.8) 25 (2.3) 0.265 1182 (2.7) 346 (3.2) 0.01

 Prior MI 6980 (12.8) 6861 (12.8) 119 (10.7) 0.037 5599 (12.8) 1381 (12.6) 0.63

 Prior PCI 11,975 (21.9) 11,828 (22.1) 147 (13.2) < 0.001 9566 (21.8) 2409 (22) 0.718

 Prior PPM 5351 (9.8) 5278 (9.8) 73 (6.6) < 0.001 4315 (9.9) 1036 (9.5) 0.218

 Prior TIA/stroke 76 (13.9) 7482 (14) 122 (11) 0.004 6071 (13.9) 1533 (14) 0.707

Elixhauser comorbidity

 Anemia 5084 (9.3) 4957 (9.2) 127 (11.4) 0.017 4087 (9.3) 997 (9.1) 0.466

 Cancer 1469 (2.7) 1440 (2.7) 29 (2.6) 0.871 1176 (2.7) 293 (2.7) 0.958

 Cardiac arrhythmias 29,382 (53.7) 28,626 (53.4) 756 (67.9) 0.0001 23,498 (53.7) 5884 (53.7) 0.872

 Chronic kidney disease 11,978 (21.9) 11,613 (21.7) 365 (32.8) < 0.001 9603 (21.9) 2375 (21.7) 0.594

 Chronic pulmonary disease 17,549 (32.1) 17,113 (31.9) 436 (39.2) < 0.001 14,037 (32.1) 3512 (32.1) 0.961

 Coagulopathy 7706 (14.1) 7353 (13.7) 535 (31.7) < 0.001 6144 (14) 1562 (14.3) 0.523

 Depression 4441 (8.1) 4378 (8.2) 63 (5.7) 0.002 3535 (8.1) 906 (8.3) 0.486

 Diabetes mellitus 20,257 (37) 19,936 (37.2) 321 (28.8) < 0.001 16,258 (37.1) 3999 (36.5) 0.246

 Fluid and electrolyte disorders 9206 (16.8) 8624 (16.1) 582 (52.3) < 0.001 7397 (16.9) 1809 (16.5) 0.357

 Heart failure 40,541 (74.1) 39,653 (73.9) 888 (79.8) < 0.001 32,427 (74.1) 8114 (74.1) 0.89

 Hypertension 48,328 (88.3) 47,482 (88.5) 846 (76) < 0.001 38,711 (88.4) 9617 (84.8) 0.105

 Liver disease 1888 (3.5) 1712 (3.2) 176 (15.8) < 0.001 1504 (3.4) 384 (3.5) 0.708

 Peripheral vascular disease 13,220 (24.2) 12,859 (24) 361 (32.4) < 0.001 10,486 (24) 2734 (25) 0.025

 Pulmonary circulation disorder 7001 (12.8) 6777 (12.6) 224 (20.1) < 0.001 5607 (12.8) 1394 (12.7) 0.842

 Valvular disease 53,831 (98.3) 52,760 (98.4) 1071 (96.2) < 0.001 43,048 (98.3) 10,783 (98.5) 0.165

 Family history of CAD 3778 (6.9) 3735 (7) 43 (3.9) < 0.001 3028 (6.9) 750 (6.9) 0.813

Hospital location

 Rural 536 (1) 524 (1) 12 (1.1) 0.926 414 (1) 122 (1.1) 0.237

 Urban nonteaching hospital 4880 (8.9) 4779 (8.9) 101 (90.7) 3920 (9) 960 (8.8)

 Urban teaching hospital 49,323 (90.1) 48,323 (90.1) 1000 (89.9) 39,457 (90.1) 9866 (90.1)

Hospital region

 Northeast 13,432 (24.6) 13,193 (24.6) 239 (21.5) < 0.001 10,813 (24.7) 2619 (23.9) 0.146

 Midwest 11,765 (21.5) 11,512 (21.5) 253 (22.7) 9415 (21.5) 2350 (21.5)

 South 18,742 (34.2) 18,304 (34.1) 438 (39.4) 14,998 (34.3) 3744 (34.2)

 West 10,800 (19.7) 10,617 (19.8) 183 (16.4) 8565 (19.6) 2235 (20.4)

 Other 879 (1.6) 866 (1.6) 13 (1.2) 667 (1.5) 153 (1.4)

 Transapical TAVR 45,078 (82.4) 44,308 (82.6) 770 (69.2) < 0.001 36,010 (82.2) 9068 (82.8) 0.143

 Endovascular TAVR 9681 (17.7) 9335 (17.4) 346 (31.1) < 0.001 7781 (17.8) 1880 (17.2) 0.143
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able cardioverter defibrillator (ICD), peripheral vascular disease, cardiac arrhythmias, chronic kidney disease, 
anemia, pulmonary circulation disorder, atrial fibrillation and flutter, chronic pulmonary disease, liver disease, 
and coagulopathy; and to be admitted to an urban nonteaching hospital in the south. In addition, these patients 
were less likely to have a history of cancer, carotid artery disease, dyslipidemia, valvular disease, smoking, coro-
nary artery bypass graft (CABG), coronary artery disease (CAD), myocardial infarction (MI), permanent pace-
maker (PPM), percutaneous coronary intervention (PCI), and transient ischemic attack (TIA). A total of 43,791 
(80%) and 10,948 (20%) patients were randomly assigned to the development and validation cohorts, respec-
tively. Patient characteristics were similar between the development and validation cohorts. A total of 39,820 
(74.5%) and 13,982 (25.5%) patients were split based on the time from 2012 to 2018 and 2019, respectively. The 
characteristics were similar between the two sets (see Supplementary Table S1 for the full list and question 2).

ML classifiers’ performance for in‑hospital mortality prediction based on preoperative infor‑
mation. Table 2 presents the baseline results from the dummy model along with the testing/holdout results 
of our top five classification models with varying (5/10/20/30/40/all) feature sets and different holdout datasets 
for our first (preoperative predictors and random sampling) and second (preoperative predictors and time-based 
sampling) research questions. Irrespective of the model, the AUC, balanced accuracy, sensitivity, precision, and 
F1 score improved as more features were used for prediction. Figure 1 depicts the improvement in the AUC as 
more features were made available to the model.

The importance of the predictors varied primarily with the classification model used. Figure 2 (Supplementary 
Table S2) shows the ranked importance of the features for each model for research question 1. Overall, age was 
the most important feature for all models, except for the GBC model, which had fluid and electrolyte disorders 
as its top feature (the second most important feature for the other four models). The presence of liver disease, 
hypertension, peripheral vascular disease, dyslipidemia, cardiac arrhythmias, and smoking were among the 
features consistently picked as important by the models.

ML model # Input features AUC Balanced accuracy Sensitivity Specificity Precision NPV F1

Question 1

Dummy 0 0.5 0.5 0 1 0 0.979 0

LR

All 0.817 0.743 0.715 0.771 0.063 0.992 0.116

40 0.813 0.741 0.711 0.771 0.062 0.992 0.114

30 0.804 0.735 0.702 0.767 0.060 0.992 0.111

20 0.799 0.711 0.658 0.763 0.056 0.991 0.103

10 0.798 0.716 0.667 0.765 0.057 0.991 0.105

5 0.750 0.679 0.566 0.792 0.055 0.988 0.100

LightGBM

All 0.825 0.740 0.803 0.677 0.052 0.993 0.097

40 0.817 0.730 0.785 0.675 0.049 0.993 0.092

30 0.807 0.717 0.768 0.667 0.047 0.993 0.089

20 0.802 0.717 0.781 0.653 0.048 0.994 0.090

10 0.789 0.705 0.746 0.665 0.045 0.992 0.085

5 0.744 0.678 0.750 0.605 0.039 0.985 0.075

GBC

All 0.824 0.719 0.627 0.810 0.064 0.992 0.116

40 0.810 0.719 0.627 0.810 0.064 0.992 0.117

30 0.803 0.731 0.689 0.773 0.063 0.992 0.115

20 0.804 0.719 0.675 0.763 0.057 0.999 0.105

10 0.801 0.716 0.662 0.769 0.056 0.991 0.104

5 0.752 0.681 0.570 0.791 0.057 0.988 0.104

LDA

All 0.816 0.743 0.702 0.785 0.065 0.992 0.120

40 0.811 0.742 0.697 0.786 0.065 0.992 0.118

30 0.803 0.732 0.684 0.780 0.062 0.991 0.114

20 0.797 0.716 0.654 0.779 0.059 0.991 0.109

10 0.796 0.704 0.627 0.781 0.057 0.990 0.105

5 0.748 0.677 0.526 0.828 0.061 0.988 0.110

CatBoost

All 0.814 0.724 0.654 0.795 0.066 0.983 0.120

40 0.809 0.728 0.662 0.794 0.065 0.983 0.118

30 0.798 0.716 0.654 0.778 0.057 0.982 0.105

20 0.798 0.704 0.640 0.767 0.055 0.984 0.101

10 0.792 0.701 0.640 0.761 0.053 0.984 0.099

5 0.739 0.679 0.575 0.784 0.043 0.986 0.079

Continued
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Table 2.  Predictive performance of the top 5 ML models in the test/holdout datasets. The abbreviations refer 
to: a baseline dummy classifier that predicts outcomes based on the most frequent class, logistic regression 
implementing an L2 penalty (hereafter abbreviated as LR), Light Gradient Boosting Machine (LightGBM), 
Gradient Boosting Classifier (GBC), and the CatBoost Classifier.

ML model # Input features AUC Balanced accuracy Sensitivity Specificity Precision NPV F1

Question 2

Dummy 0 0.5 0.5 0 1 0 0.987 0

LR

All 0.808 0.732 0.619 0.846 0.049 0.994 0.090

40 0.812 0.730 0.614 0.845 0.048 0.994 0.089

30 0.808 0.716 0.574 0.859 0.049 0.994 0.091

20 0.802 0.717 0.574 0.861 0.050 0.994 0.092

10 0.796 0.722 0.614 0.831 0.044 0.994 0.083

5 0.781 0.709 0.580 0.839 0.044 0.994 0.082

LightGBM

All 0.810 0.717 0.676 0.757 0.034 0.995 0.064

40 0.808 0.722 0.671 0.773 0.034 0.994 0.064

30 0.810 0.730 0.688 0.773 0.036 0.995 0.068

20 0.805 0.728 0.671 0.786 0.036 0.995 0.069

10 0.796 0.718 0.705 0.731 0.032 0.995 0.062

5 0.777 0.706 0.739 0.674 0.027 0.995 0.052

GBC

All 0.810 0.715 0.585 0.846 0.049 0.994 0.091

40 0.793 0.706 0.563 0.850 0.051 0.994 0.094

30 0.808 0.722 0.591 0.854 0.047 0.994 0.087

20 0.792 0.725 0.585 0.865 0.050 0.993 0.091

10 0.784 0.724 0.608 0.840 0.043 0.994 0.079

5 0.775 0.710 0.585 0.834 0.040 0.993 0.074

LDA

All 0.809 0.713 0.585 0.842 0.050 0.994 0.093

40 0.813 0.725 0.591 0.858 0.051 0.994 0.093

30 0.808 0.712 0.557 0.868 0.049 0.994 0.091

20 0.803 0.714 0.557 0.871 0.052 0.994 0.095

10 0.797 0.726 0.608 0.844 0.047 0.994 0.088

5 0.782 0.704 0.557 0.851 0.045 0.993 0.084

CatBoost

All 0.800 0.720 0.574 0.866 0.053 0.990 0.097

40 0.799 0.728 0.597 0.860 0.053 0.991 0.097

30 0.799 0.725 0.580 0.871 0.082 0.990 0.125

20 0.802 0.713 0.568 0.859 0.064 0.991 0.106

10 0.795 0.709 0.591 0.827 0.038 0.991 0.070

5 0.761 0.701 0.557 0.846 0.034 0.992 0.064

Figure 1.  Performance of the top five models by the number of input variables for research question 1. A 
similar figure for question 2 is presented in the supplementary materials.
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Discussion
Herein, we proposed using publicly available administrative data to predict in-hospital mortality post-TAVR 
using 15 classification models. Comparing the results of our top 5 classification models with the baseline dummy 
classification benchmark, five observations were made. First, our classification metrics generally improved as 
more features were made available to the model, with modest improvements after the top 20–30 features. This 
indicates that the use of chi-square tests to select the top variables was suitable for our dataset since it did not 
contradict the results obtained when the boosting-based algorithms and ridge regression were used with all 
features. Second, all five models were able to provide “good” predictive results  per1 definition of an AUC ≥ 0.80 
for both the random and time-based sampling scenarios (Table 2). These AUC values generally corresponded 
when ≥ 30 top features were available for the model. Third, it is important to note that the holdout results were 
consistent with our cross-validation results (see Supplementary Table S3), indicating no evidence of overfitting. 
Fourth, the LR model presented the best overall predictive performance for our two research questions since 
its AUC, balanced accuracy, sensitivity, precision, and F1 score were among the highest values observed across 
all models. For example, it had the highest balanced accuracy of 0.743 and 0.732 (i.e., the arithmetic mean of 
sensitivity and specificity). The other metrics were all significantly higher than those of the dummy classifier 
and practically equivalent to those of the best performing model for each metric. We recommend the LR model 
since it is computationally efficient and is the easiest to interpret among the five top models. Fifth, the precision 
and F1 scores for all the models were relatively low (approximately 10%); however, this was expected given the 
highly imbalanced nature of our dataset. Note that the dummy classifier returned a value of 0 with its default 
setting, and it would have returned a value approximately equal to our survival percentage of ~ 2% if the strati-
fied input was  selected15.

Our feature importance in Fig. 2 is somewhat similar to the top features reported  by3. However, four of their 
top five features (acute kidney injury, cardiogenic shock, cardiac arrest, and sepsis) were not available for selec-
tion by our models since they were all postsurgery complications. Only fluid and electrolyte disorders, which 
were their third most important feature, were available for selection by our model.

While several studies have examined the use of statistical and/or machine learning models for TAVR 
 prediction3,16–21, few studies have examined in-hospital  mortality3,16,17. In these papers, the reported AUC scores 
were (a) 0.66 based on 9 preoperative variables  in16, (b) 0.92 based on a combination of pre- and postoperative 
predictors  in3, and (c) not reported  in17 as logistic regression was used to compute the odds ratio for predictors 
of mortality in the adjusted analysis of patients who underwent TAVR with end-stage renal disease. Our origi-
nal sample size of 54,739 was much larger than the 10,891, 20,540, and 6,836 patients used in the other studies. 
Furthermore, our AUC value of > 0.81 was significantly larger than the 0.66 reported  in16. While it is less than 
the 0.92 reported  in3, the differences are attributed to not including postoperative predictors; our top models had 
AUC values of 0.91–0.93 when postoperative predictors were available during model building (Supplementary 
Table S4). We computed the performance of the models with postoperative data only to support our previous 
statement and to show that the models’ predictive performance could reach the values reported  in3 (given that 
our dataset included low-risk patients who were not in their dataset, and the authors did not make their code 
available).

Figure 2.  Ranked feature importance for each of the top five models based on the mean ranking for research 
question 1. A similar figure for question 2 is presented in the supplementary materials.
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This study demonstrated the feasibility of using solely the preoperative information available in administra-
tive data to accurately predict in-hospital mortality post-TAVR. Our study represents the first report in which 
“good” predictive  performance1 could be achieved using solely preoperative, administrative predictors. Our 
results mark a substantial improvement, an increase in the AUC of approximately 0.15, over the results  of16, while 
addressing the main limitation  in3, i.e., “the inability to restrict variables pre-procedure versus post-procedure, 
which provides a dynamic nature to the NIS TAVR score.” Specifically, we showed that by removing any of the 
variables that could have occurred “post-procedure”, a model could still have good predictive performance and 
quantify the impact of not including such variables on the predictive performance (a decrease in the AUC from 
0.91–0.93 to 0.81). Our approach is consistent with the recommendation  in13 who stated that “for decision sup-
port algorithms to be implemented in clinical practice, we would expect them to be accurate and pertinent at the 
time a decision is taken.” Furthermore, we showed that the developed models may not need to be retrained often, 
since the predictive performance for the 2019 holdout dataset in question 2 was similar to that obtained from 
random sampling in our first research question. To our knowledge, this is the first study in which deployment-
related questions were assessed with respect to TAVR operations. In our estimation, our time-based sampling 
approach presents a methodological approach to “subject [decision support models for clinical practice] to the 
test of time” per the recommendation  of13.

Despite the examination of a relatively large number of machine learning models, our study showed that the 
predictive performance of an L2 regularized logistic regression model was equivalent to the results obtained using 
more complex machine learning models. This is also consistent with the results obtained  in13 using postoperative 
predictors. This confirmatory result can accelerate the use/deployment of logistic regression as a preoperative 
risk scoring tool for TAVR procedures. In our estimation, the use of a logistic-type model would be preferable in 
medical practice for four main reasons. First, it is an explainable model, i.e., when the coefficients are exponenti-
ated, we can capture the change in odds when one predictor is increased by one unit, holding other predictors 
constant. Hence, this follows the recommendations  of22, who recommended the use of interpretable models for 
high-stakes decisions,  and13, who stated that “clinicians and patients should also be provided enough informa-
tion to understand the process that led to the decision.” Second, statistical tests for variable significance and 
model goodness-of-fit analyses can be performed to provide additional insight about the model. Third, due to its 
interpretability and good predictive performance, it is meaningful to not only look at the dichotomized predic-
tion but also to extract the underlying survival/death probability from the model. We anticipate that reporting 
a preprocedural survival probability would inform clinical pathway determination and provide a structured, 
data-driven risk adjustment of expected outcomes. Fourth, regularized logistic regression can be performed 
using multiple software programs that are currently used in medical  settings23.

While this study utilized only administrative, preoperative variables in model building, it is interesting to 
note that our reported predictive accuracy metrics were, at a minimum, similar to (if not exceeding) a large 
amount of the TAVR risk assessment literature in which clinical data were utilized (often for a slightly longer 
30-day prediction period). In 2015, the American College of Cardiology (ACC) and the Society of Transthoracic 
Surgeons (STS) developed an in-hospital mortality risk score based on STS/ACC transcatheter valve therapy 
(TVT) registry  data16. This risk score took into account the patient’s baseline serum creatinine (sCr, mg/dL) level, 
dialysis status, New York Heart Association (NYHA) classification, urgency of the procedure, presence of severe 
lung disease, and type of access (femoral vs. nonfemoral) with a 30-day mortality AUC of 0.66. Since then, other 
TAVR-specific risk models have been developed to predict 30-day mortality, such as FRANCE-2 (AUC = 0.67)18, 
OBSERVANT (AUC = 0.71)19, and CoreValve U.S. (AUC = 0.75)21. More recently, a deep learning-based approach 
was used  in24 to predict cerebrovascular events (CVEs) post-TAVR using both clinical and imaging data. Their 
approach resulted in an AUC of 0.79, and they showed that CVEs increased the odds of death by 2.62 and were 
most likely to occur on the first day post-TAVR. Based on the aforementioned studies, we conclude that our 
findings are informative since we showed that the use of administrative, preoperative variables with a simple L2 
logistic regression model was sufficient to predict in-hospital mortality (with results similar to those of state-of-
the-art studies that utilized clinical data, albeit for a 30-day prediction period).

In our estimation, there are three scenarios that can be used to deploy our model in practice. First, practi-
tioners may want to utilize our developed models as is. To assist them in such an instance, we have developed a 
web  app25 where they can input the values for the predictor variables based on their patient, and we return both 
the predicted outcome and the associated probability for survival. Note that the model deployed in the app is 
trained on the entire NIS data sample based on the recommendation  in26. Second, the model can be deployed as 
is using a different snapshot of the NIS database. In this case, we recommend following our five-step approach 
highlighted in the central illustration. Once satisfactory predictive performance is achieved, the best model 
should be retrained on all the data prior to model  deployment26. To assist practitioners in such a scenario, we 
provide our code  in27, which they can reuse for their dataset. Third, in large hospital system settings, there may 
be access to pertinent clinical predictors in addition to NIS variables. Penalized logistic regression (e.g., LASSO, 
ridge, elastic net, etc.) can be used to model such data. The research question in such a case would be whether 
clinical data would provide more information when compared to the out-of-network patients whose data would 
be deleted due to the absence of clinical data.

Limitations. There are several limitations in this study that need to be highlighted. First, our models were 
based on the HCUP NIS database. The database was not designed for clinical decision support, and the deriva-
tion of clinical information from ICD codes is a limitation since “some nonrelated clinical diagnoses may be 
omitted and may not represent the true prevalence of risk factors”3, and the encoding of such raw health data 
may be inconsistent across hospitals/providers/time. Second, our models’ predictions were limited to in-hospital 
mortality. While the post-TAVR survival probability should monotonically decrease over time, the decision to 
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operate on a patient is based on a longer survival time frame and clinical data that were not observed in our 
study. Third, innovations in TAVR procedures (e.g., an increased prevalence of robot-assisted surgeries) and pre/
postprocedural care were not captured in our analyses. Such innovations can significantly improve survival out-
comes and deem the historical data used in model training obsolete. Thus, incorporating this domain expertise 
in training/retraining our statistical/machine learning models would be an important  consideration28 if they are 
deployed for decision support.

Conclusions
Despite the complexity of TAVR procedures and the variability in patient mix, post-TAVR survival and death 
can be somewhat predicted using only administrative, preoperative data and several standard statistical/machine 
learning models. Our study illustrates that administrative data can be used to predict and/or risk adjust complex 
medical procedures, such as TAVR, without the need for frequent retraining.

Methods
Data source. The dataset used was acquired from the NIS/HCUP  database5. The unit of analysis was the 
discharge record. ICD-9-CM (International Classification of Diseases, Ninth Revision, Clinical Modification) 
codes 3505 and 3506 were used to identify all patients ≥ 18 years who underwent a TAVR procedure between 
January 01, 2012, and September 30, 2015. Furthermore, the ICD-10-CM codes 02RF4xx and 02RF3xx were 
used to identify all patients ≥ 18  years who underwent a TAVR procedure between October 01, 2015, and 
December 31, 2019.

A total of 54,739 TAVR records were obtained using the aforementioned ICD codes, filtering nonadult patients 
and removing missing data for age, race, sex, income, elective surgery, and in-hospital mortality. The data were 
divided into two groups: those who survived the procedure (alive; n = 53,626) and those who died during the 
same hospitalization (deceased; n = 1113). For each procedure, the ICD-9-CM (prior to October 01, 2015) or 
ICD-10-CM (starting from October 01, 2015) was used to identify comorbidities and the TAVR approach (see 
Supplementary Table S5 for utilized codes).

Ethical approval. Per the HCUP  site5, “HCUP databases conform to the definition of a limited data set. 
A limited data set is healthcare data in which 16 direct identifiers, specified in the Privacy Rule, have been 
removed. Under HIPAA [the Health Insurance Portability and Accountability Act], review by an institutional 
review board (IRB) is not required for use of limited data sets.”

Study design. Figure 3 shows the workflow of this study from data extraction to the use of machine learning 
techniques to address our two research questions: (a) the utility of NIS preoperative variables alone in predict-
ing TAVR survival and (b) the deployment of such predictive models without frequent retraining. The workflow 
consisted of five major steps. First, we extracted all TAVR procedures that occurred in 2012–2019 from the NIS 
database using SAS software (version 9.4, SAS Institute Inc., USA). Second, Python 3.9 was used to prepare 
the data into a tabular dataset for machine learning, i.e., generate the predictor set that would be used to pre-
dict TAVR outcomes. The predictors were divided into patient demographics (age, sex, race, pay information 
and ZIP code quartile), hospital information (region, bed size, urban/rural/teaching hospital, etc.), and binary 
indicators of comorbidities. The dataset had 54,739 rows/procedures and 45 columns/variables. The last three 
steps of training, evaluating, and interpreting the machine learning models were performed separately for each 
question.

For our first research question, the TAVR dataset was randomly split into an 80% training dataset (n = 43,791, 
with 42,906 alive and 885 deceased individuals) and a 20% test dataset (n = 10,948, with 10,720 alive and 228 
deceased individuals). On the other hand, for the second research question, the training set contained 40,757 
procedures from 2012 to 2018 (39,820 alive and 937 deceased individuals), and the test dataset contained 13,982 
procedures from 2019 (13,806 alive and 176 deceased individuals). The training–test split for the second ques-
tion was 74.5–25.5%.

Given the imbalance between the living and deceased patients in both training samples, we examined the 
use of random undersampling, random oversampling, and combined resampling to create balanced training 
 datasets29 using the imbalance-learn Python library (version 0.9.1). Based on our preliminary analyses, random 
oversampling resulted in the best prediction performance and hence was used. The resulting training sizes for 
questions 1 and 2 were 85,812 and 79,640, respectively, each containing an equal number of living and deceased 
patients.

Similar  to3, a feature ranking approach was used to examine the top 5/10/20/30/40/all features as inputs in 
our machine learning models. While the use of external variable/feature selection is not optimal for machine 
learning models with built-in feature  selection30, we used this approach to be consistent  with3 since some of 
our examined models did not have a built-in feature selection technique (e.g., support vector machines). The 
external feature selection used was the “classic”  method31, with a 0.80 threshold, from the PyCaret (version 2. 
3.6) Python  library26.

Using PyCaret, stratified fivefold cross-validation was used to train 15 popular binary classification models 
for question 1 and 2 training datasets with the aforementioned 5/10/20/30/40/all top features. The 15 models 
included: (a) traditional statistical models: logistic regression with an L2 penalty (hereafter denoted as LR for 
conciseness), ridge regression, linear discriminant analysis (LDA), quadratic discriminant analysis, and naïve 
Bayes; (b) single machine learning classifiers: support vector machines with a linear kernel, k-nearest neighbor 
classifiers, and decision trees; and (c) ensemble classifiers: gradient boosting classifier (GBC), light gradient 
boosting machine (LightGBM), CatBoost, Ada Boost classifier, extreme gradient boosting, random forests, and 



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10252  | https://doi.org/10.1038/s41598-023-37358-9

www.nature.com/scientificreports/

extra trees classifier. Fivefold cross-validation allowed us to select and tune the top five performing models for 
each question based on the mean AUC. The top five models for the two research questions were the LR, LDA, 
GBC, LightGBM, and CatBoost models. Both  LR32 and  LDA32 are traditional statistical methods/single clas-
sifiers. On the other hand,  GBC32,  LightGBM33 and  CatBoost34 are tree-based ensemble methods for binary 
classification where the predicted class is computed from the mode of predictions from all generated trees. The 
predictive performance of the top five models was benchmarked against the dummy classifier from PyCaret/
scikit-learn, which captures a classifier’s performance when no features/predictors are used. We used the default 

Figure 3.  Overview of the modeling workflow of this study.
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strategy for the dummy classifier, i.e., prior, which predicted the most frequent class in our training set for all 
test samples without regard to features. This allowed us to understand the predictive gains obtained from using 
our administrative features and machine learning models when compared to a dummy classifier. Note that the 
baselining in a regression problem is somewhat similar since the  r2 metric captures the improvement in predictive 
performance compared to just using a dummy model (with the average of the response for prediction irrespective 
of the values of any potential features).

The five classification models were trained in PyCaret for each of the sets of features and questions. The 
parameters of the tuned classification models are described in Supplementary Table S6. Furthermore, the dummy 
model was trained once for each question since it predicted the majority class (i.e., survival post-TAVR for all 
patients). All of the models were evaluated on the separate (i.e., step 4, not part of training) test sets for ques-
tions 1 and 2 using the following performance  measures35,36: accuracy, AUC, balanced accuracy, sensitivity 
(recall), specificity, precision (i.e., positive predictive value (PPV)), negative predictive value (NPV), and F1 
score. For the sake of conciseness, we did not further describe these models. We refer the reader to the scikit-
learn  documentation36 for a detailed introduction to LR, LDA, and GBC. Similarly, the LightGBM and CatBoost 
documentation are available from their respective  frameworks37,38.

In the fifth step of our workflow, we utilized PyCaret to create diagnostic plots of each model’s performance. 
Due to space limitations, we only show the feature importance plot in this paper.

Statistical analysis. Following the approach  of3, a two-tailed t test was used to compare the differences 
within continuous variables, and chi-square tests were utilized for categorical data. These tests were performed 
using Minitab software (version 19, Minitab Inc., USA), and p < 0.05 was considered statistically significant. The 
performance of the classification models was assessed using the AUC; however, we also reported other met-
rics, including accuracy, balanced accuracy, sensitivity/recall, specificity, and precision, as is customary in the 
 literature29,34. The training and evaluation of the models were performed using the PyCaret  library26 in Python.

Data availability
The NIS can be purchased from the U.S. Agency for Healthcare Research and Quality (AHRQ). Per their data 
usage  agreement5, “I will not redistribute HCUP data by posting on any website or publishing in any other pub-
licly accessible online repository. If a journal or publication requests access to data or analytic files, I will cite 
restrictions on data sharing in this Data Use Agreement and direct them to AHRQ HCUP (www. hcup- us. ahrq. 
gov) for more information on accessing HCUP data.”
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