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Chemical Epitope Targeting: Review of a Novel
Screening Technology

Qurrat Ul-Ain, Rene Kandler, Dylan Gillespie, Arundhati Nag

ABSTRACT

Chemical Epitope Targeting is a novel technology developed for designing peptide
ligands with high affinity and specificity against specific regions of a protein that may be
inaccessible to small molecules or antibodies. In this review, we summarize the key steps and
significant applications of this technology. Operating on the same principles as antibody-
antigen interactions, this technique involves chemically synthesizing the region of interest on
the protein, called the epitope, as a polypeptide with a biotin detection tag and a strategically
placed alkyne or azide presenting amino acid. The constructed epitope is screened against a
comprehensive linear or cyclic One Bead One Compound library of the corresponding azide
or alkyne presenting peptides with approximately 2 million unique members. Binders in the
correct orientation undergo proximity catalyzed azide-alkyne cycloaddition reaction and are
detected using this copper free in situ click chemistry. Subsequent binding assays against the
full protein identify high affinity peptide binders with dissociation constants in the nanomolar
range. These monoligand peptides can be further developed into biligands and triligands, larger
macromolecules with two or three peptide ligands connected by linkers, which have improved
binding affinity for continuous or discontinuous epitopes. Application of this technology
has yielded protease-resistant and cell-permeable compounds for potential therapeutic and
diagnostic putposes. In this review, we highlight the different Chemical Epitope Targeted
ligands developed for a range of applications, from differential detection of biomarkers and
receptor isoforms to the inhibition of enzyme functions and stabilization of protein folding
states.

Introduction or linear. Conformational epitopes are composed of

Chemical Epitope Targeting allows for the isola-
tion of linear and macrocyclic peptide ligands against
a specific region of the protein referred to as the epi-
tope. The term “epitope” is borrowed from the anti-
body-antigen interaction lexicon.! When attacked by an
invading foreign particle or antigen, organisms produce
glycoproteins called antibodies as an immunogenic re-
sponse against the antigen.” Antigens can be proteins
such as receptors expressed on cancer cells’ or small
molecules and peptides such as hormones.* The ami-
no acid sequence of the antigen that interacts with the
antigen-specific receptor or antibody is called the epi-
tope.” Epitopes can be categorized as conformational

discontinuous sections of the antigens amino acids
that interact with the antibodies based on their ter-
tiaty structures.® Linear epitopes, on the other hand,
are formed by a continuous sequence of amino acids
from the antigen that interact with antibodies based on
their primary structure.” While a monoclonal antibody
1s a large, 150 kilodalton (kDa) protein, only a specific
part of the antibody containing unique hypervariable
loops called the Complementarity-Determining Re-
gion (CDR) binds to the antigen. Non-covalent inter-
actions like electrostatic and hydrophobic interactions,
hydrogen bonds, and van der Waals forces between the
amino acid side chains dictate the binding of the anti-
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Figure 1. Libraries and screening procedute for Chemical Epitope Targeting. 1A: Macrocyclic peptide library A used
in monoligand screen and linear peptide library B used in biligand screen, with Xn representing vatiable amino acids!"?. 1B:
Target region of protein chemically synthesized as a peptide with a terminal azide and a biotin tag"®. 1C: I. Pre-Screen: Cyclic

library A is screened against a biotinylated scrambled version of the epitope containing an azide group. Colorimetric changes
are observed in the binders after subsequent treatments with a—biotin antibody conjugated with horseradish peroxidase (HRP)
enzyme and BCIP, a HRP substrate. The rest of the libraty is treated with denaturant guanidium hydrochloride (GuHCI) and
re-equilibrated in buffer. II. Monoligand Screen: The library is screened against the biotinylated tatget epitope and detected using
biotin antibody-HRP conjugate. The hit peptides are sequenced by Edman sequencing, re-synthesized and tested for binding
to the full protein. The best peptide binder 1 is modified with a terminal azide and a biotin tag to 1’ and used to screen for a
biligand. III Biligand-Screen: 1 is screened against library B to identify and discard non-specific binders following pre-screen
procedute discussed eatlier. Remaining library members are screened against the protein preincubated with 1°. The hit peptides
are identified after in-situ click reaction using the biotin tag. Similar steps as the monoligand screen are followed to identify the

best biligand.
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gen to the antibody, its specificity, and its affinity.® The
crystal structure of antibody with antigen shows 5-10
non-covalent interactions of the CDR of the antibody
with the epitope.” In the Chemical Epitope Targeting
strategy, we sought to find similar non-covalent interac-
tions with the epitope using a peptide macrocycle as an
alternative for the antibody variable region. Akin to an-
tibodies, Chemical Epitope Targeted macrocycles can
reach areas inaccessible to small molecule binders of
proteins and detect subtle changes in protein structure
such as phosphorylation at a single residue of a kinase'
or a single point mutation."

Before the development of the Chemical Epitope
Targeting strategy, prior research focused on target-
ing specific areas and post-translational modifications
on proteins. Kodakek et al developed a genetic selec-
tion protocol to screen for peptides that could act as
specific receptors for other peptides.”” They isolated
a binder against the interleukin-18 (IL-18) hormone
site at which the prohormone was cut by Interleukin
Converting Enzyme (ICE) 17. This was done through
a lambda-reconstitution assay. Two plasmids were gen-
erated, one expressing DNA-Binding Domain (DBD)
fused to the target interleukin-13 hormone peptide and
the other expressing a variable peptide library fused to
a second DBD. The plasmids were co-transformed into
Escherichia coli (E.Coli) cells and challenged with lambda
phage. The interaction of the correct library-encoded
peptide with the target peptide brought together the
two DBDs to reconstitute the lambda repressor. This
enabled lambda repressor-operator binding, which ren-
dered the corresponding E. Co/ cells immune to the
infection. The peptide binders to the hormone site of
IL-18 were identified from the colonies formed in the
presence of phage lambda. Lin et al used a different
approach to generate a DNA aptamer that can select
for histone H4-protein acetylated at lysine 16, which is
implicated in the regulation of gene expression, with
a 60% recognition efficiency on-target."” This aptamer
was created to be used as a recognition ligand in sin-
gle-molecule atomic force microscope imaging of syn-
thetic nucleosomal arrays. None of these prior meth-
ods have been used as widely as the Chemical Epitope
Targeting technology.

The general method for Chemical Epitope Target-
ing involves screening biotin-tagged small fragments of
the target protein to isolate peptide ligands for the full-
length protein. The peptides developed are specific to
the targeted region of the protein and have a small mo-
lecular footprint compared to a large antibody. These
peptides can selectively detect phosphorylated epitopes
and single amino acid point mutations, determine a

species-specific sequence of malarial protein biomark-
ers, and detect a universally conserved small region of
a geographically-variable malarial biomarker protein."
In this review, we outline the general method for the
Chemical Epitope Targeting screens and its application
in three areas: modulation of protein function, differ-
ential detection, and protein stabilization.

Macrocyclic Peptide Libraries and
the Chemical Epitope Targeting
Screen

For screens using the Chemical Epitope Tatgeting
strategy, cyclic One-Bead-One- Compound (OBOC)
peptide libraries ate typically employed.” The library
most commonly used is a heptapeptide library on Tent-
aGel SNH2 bead (0.3 mmol/g amine loading) with the
side chains (azide and alkyne) of terminal amino acids
cyclized on bead by Copper (I)- catalyzed Azide-Alkyne
Cycloaddition (CuAAC) reaction.'® The library is usu-
ally comprised of a five residue variable region. The
amino acids in the variable region can be any of the
natural amino acids excluding cysteine and methionine.
Since cysteine and methionine may be oxidized during
Trifluoroacetic Acid cleavage, they are not included
in the library. Thus, using 18 of the 20 natural amino
acids, there are 1.88 million unique sequences in this
heptapeptide library. To ensure that all sequences in the
library are represented, the library is made in ten-fold
excess. When compared to phage display, this library
has a lower diversity but can contain D-amino acids and
other unnatural amino acids."” Incorporation of unnat-
ural amino acids adds synthetic flexibility and increased
protease stability. Additionally, the free amine terminal
on the cyclic peptide allows the library to be sequenced
by Edman degradation without further modifications."®
A methionine-incorporated variant of this library has
also been made which is cleavable by cyanogen bro-
mide cleavage' and compatible with single bead se-
quencing by MaldiTOF/TOE?>

Another on-bead macrocyclic peptide library that
has been used is an octapeptide library, containing ter-
minal allyl side chains that allow for on bead cycliza-
tion through RulV-catalyzed Ring-Closing Metathesis
reaction (RCM).*' Duting the RCM reaction, howevet,
excess catalyst is adsorbed in the TentaGel beads and
the brown color of the beads is difficult to remove
even after repeated washes with chelating reagents like
sodium diethyldithiocarbamate. This makes the colori-
metric detection and manual separation of the binders
difficult during screens.

After the cyclization of the library, a terminal azide
or alkyne is coupled to the on-bead cyclic peptide for
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screening (Figure 1A). The epitope of the target pro-
tein--typically a 9-30 amino acid long peptide--is syn-
thesized with the corresponding alkyne or azide (Fig-
ure 1B). The alkyne or azide containing amino acid is
either added to the C- or N-terminus of the epitope,
ot substitutes a natural amino acid of similar structure
or hydrophobicity. The epitope is also appended with a
biotin tag, separated from the peptide by a Polyethylene
Glycol (PEG) linker.

There are two stages in a Chemical Epitope Tar-
geting screen. The first stage or pre-screen involves
screening the library against a scrambled version of
the epitope sequence that has the amino acids shuffled
in a random order. Non-specific binders are identi-
fied by treatment with anti-biotin antibody conjugated
to Horseradish Peroxidase (HRP) and HRP substrate

5-Bromo-4-Chloro-3-Indolyl ~ Phosphate  (BCIP),”
which creates a turquoise colored precipitate on the
bead (Figure 1C:I). The remaining library is washed with
protein-denaturing solutions such as guanidium hydro-
chloride and dimethylformamide and re-equilibrated in
buffer. For the second stage or monoligand screen, the
library is incubated with the epitope for several hours at
room temperature. After removing the non-covalently
bound epitope through stringent washes under dena-
turing conditions, the hit beads are identified by treat-
ment with anti-biotin antibody-HRP conjugate and
subsequent BCIP treatment. After sequencing the hit
binder peptides using Edman sequencing, the peptides
are synthesized without the azide or alkyne functional-
ity. Eventually, they are tested for binding to the target
epitope and full protein (Figure 1C:II). Selectivity and
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Figure 2. Architectures of different epitope targeting peptide ligands. A: Linear triligand for the C-terminal epitope
of Akt2 (adjacent to pS474 residue)!"! B: Cyclic monoligand for the detection of biomarker protein Lactate Dehydrogenase
for malarial virus subtype Plasmodium faliiparnn™®.C: Biligand compzised of a cyclic and a linear peptide selectively binding
human Akt2"!. D: Bicyclic ligand with optimized PEG linker for cooperative binding of discontinuous epitopes of interleu-
kin receptor 17K



Scholatly Undergraduate Research Journal At Clatk University | Volume V. 47

affinity assays are done to determine the best binder.”?

A biligand or triligand, i.e. a ligand containing two
or more peptide ligands connected by a triazole linker, is
developed through multiple screens of peptide libraries
(Figure 1C:1II). The biligands and triligands have im-
proved affinities and selectivities for the target protein
due to the avidity principle, which states that combin-
ing two binders with moderate dissociation constants
gives a bi- or tri-ligand with a low dissociation constant
due to cooperative interactions.? The shift from lin-
ear to macrocyclic peptide libraries has yielded single
macrocyclic binders with good affinities, without the
need to further create biligands and triligands. Howev-
er, ligands developed to affect enzyme function or to
detect subtle changes like a single residue phosphoryla-
tion typically still need to be developed into biligands.”
During the biligand screen, the full-length active pro-
tein is used as the target instead of the peptide epitope
so the tertiary structure of the folded protein plays a
role in isolating a specific, high affinity binder. Figure
2 shows the different architectures of various peptide
ligands that have been developed to date.”

Applications of Chemical Epitope
Targeted Peptide Ligands

Peptide macrocyclic ligands obtained using Chem-
ical Epitope Targeting have some of the advantages of
antibodies and small molecules. The Chemical Epitope
Targeted cyclic peptides do not need well-defined hy-
drophobic binding pockets to bind to proteins. One of
the peptides developed can successfully target small,
universally conserved regions of a malarial biomarker
protein whose sequence is varied in different parts of
the world.”” Peptide binders that can distinguish be-
tween subtle sequence differences within highly homol-
ogous protein isoforms have also been isolated.” All
these different ligands can be improved via chemical
modifications to affect potency, stability, and affinity. In
this section, we shall discuss the three main applications
of the Chemical Epitope Targeting, as demonstrated in
various contexts: first, the modulation of protein func-
tion; second, in protein biomarker detection; and third,
its effect on protein folding.

Protein Function Modulation

Peptide ligands developed by Chemical Epitope
Targeting have been used to modulate the function
of oncoproteins® and toxins.™ Several peptide multi-
ligands have been developed to target different areas
ot isoforms of Protein Kinase B (PKB/Akt). Akt is
a serine/threonine protein kinase and a central player

in the Phosphatidylinositol 3-kinase (PI3K) signaling
pathway.’! The overexptression or hyperactivation of
this protein can increase the resistance of tumors to
chemotherapy and radiotherapy.” Thus, hyperphos-
phorylated or E17K mutated Akt functions as an on-
coprotein.

Nag et al” developed peptide triligands that can
both activate and inhibit Akt2* by binding to the hy-
drophobic C-terminal end, where the Ser474 residue is
located. Ser 474 phosphorylation allosterically activates
the protein and enhances the kinase activity 10-fold.”
For constructing the epitope, a peptide consisting of
amino acids 450-481 of Akt2 including phosphorylat-
ed Serd74 (pS474) was first synthesized. Then, a small
molecule containing a zincdipicolylamine complex, an
azide, and a biotin label was synthesized. Coordinate
covalent interaction of the binuclear zinc complex
to the phosphate group on pS474 created a modified
peptide with an azide that was used as the epitope in
the screen. The epitope was screened against an alkyne
containing D-amino acid hexapeptide linear library to
obtain a primary ligand (KD 3uM). The final two tri-
ligands-N-tri and C-tri, which developed through sub-
sequent screens, had a higher affinity and selectivity for
Akt2. The triligand C-tri demonstrated a 10:1 selectiv-
ity for Akt2 over the 85% homologous Aktl. Surface
Plasmon Resonance experiments were performed to
demonstrate the high binding affinity of N-tri for Akt2
(KD 20 nM). Interestingly, the two ligands had reverse
effects on the Akt kinase activity, with C-tri inhibiting
Akt2 (EC50 4 uM) and N-tri increasing the Akt2 kinase
activity.

Henning et al*® further developed N-tri and C-tri*’
into proteolysis targeting chimeric molecules (PROT-
ACs) to promote rapid degradation of Akt in cancer
cells. N-tri was conjugated with a cell penetrating TAT
sequence,” a peptide ligand that binds to the E3 ubiqg-
uitin ligase Von Hippel Lindau protein (VHL) from the
Hypoxia-Inducible Factor (HIF-1) protein,” and in-
duced Akt2 degradation. Treatment of OVCAR3 cells
with this peptide construct showed dose-dependent de-
crease in Akt2 levels with an EC50 of 128 pM.*

Chemical Epitope Targeting technology was gen-
eralized by Das et al'' to eliminate the need for the
epitope to have a specific functionality, for instance, a
phosphate. This was achieved by substituting certain
amino acids like lysine and arginine with an unnatu-
ral amino acid bearing an azide group in the peptide
epitope. For the epitope to present an alkyne instead,
amino acids isoleucine and valine can be replaced with
an alkyne bearing unnatural amino acid.* For develop-
ing binders against single point mutations, the substitu-




48 Chemical Epitope Targeting: Review of a Novel Screening Technology

tion of the unnatural amino acids bearing the azide or
alkyne group is positioned 3 to 4 residues away from
the mutated residue. This generalized technique was
employed to develop an inhibitor against E17K mu-
tated Aktl that exhibited a 10:1 selectivity for the mu-
tant protein over the Wild-Type (WT) protein.” E17K
Aktl is an oncogenic variant of Aktl.* Because this
mutation in the Pleckstrin Homology (PH) domain
of Aktl increases mutant Aktl’s affinity for phospho-
lipid Phosphatidylinositol 4,5- bisphosphate (P1(4,5)
P2) and facilitates membrane binding, it activates the
PI3K-Akt pathway. Deyle et al* synthesized a 33 ami-
no acid long peptide epitope of Aktl containing the
E17K mutation and a biotin tag, and substituted an iso-
leucine with propargylglycine for in situ click screen.
The epitope was screened against an azide containing
D-peptide library with 1.88 million unique sequences.
The hits demonstrated a high affinity for E17K Aktl
(KD 54nM) as opposed to WT Aktl (KD 1.2uM). Li-
gand-directed labeling experiments confirmed that the
ligand bound to the targeted region of the protein.
Multicolor fluorescence microscopy expetriments wete
performed to demonstrate the selective colocalization
of the Cy5 labeled ligand with GFP tagged E17K PH
domain in HEK-293T cells. While the original ligand
could not disrupt the strong interaction between the
PH domain of E17K Aktl and PIP3, the triligand, de-
veloped through multiple screens against Aktl PH do-
main as a target, had enough steric hindrance to inhibit
the interaction.

Taking advantage of the dynamic nature of Bot-
ulinum Neurotoxin (BoNT) and its entry mechanism,
Farrow et al'® developed a competitive inhibitor for
BoNT serotype A targeted at its occluded active site.
BoNT is a chemodenervating zinc-dependent protease
that intoxicates the cell by selectively binding to neural
receptors, entering the cell through receptor-mediated
endocytosis, escaping the endosome using pH-induced
translocation, and cleaving its SNAP-25 substrate in
the cytosol.” The protein contains a teceptot-bind-
ing heavy chain which is disulfide-linked to a catalytic
Light Chain (LC). This disulfide bond needs to be in-
tact for the toxin to enter the cell, at which stage the
LC 1s structurally occluded. In the cytosol, the disulfide
link is reduced and the LC can catalytically cleave the
SNAP25 substrate,' exposing and making the active
site druggable only inside the cell.”” This biological
mechanism was harnessed by Farrow et al”’ to develop
a substrate-mimicking bicyclic peptide inhibitor with an
IC50 of 165 pM.”" The first cycle in the ligand, Inh1,
was a helical substrate mimetic of the SNAP-25 sub-
strate’” that can bind near the Botox active site once

the ligand enters the cell. A second cyclic ligand was
developed against surface-exposed BoN'T LC residues
166-179 that would mediate the entry of the ligand into
the cell. An in situ click screen was performed to reveal
the correct length and nature of the linker, connecting
the two cyclic ligands so that the bicyclic ligand bound
with high affinity to the BoNT. The bicyclic ligand was
modified with a spontaneously translocating peptide
sequence for BoNT independent penetration of the
cells.”® The final ligand demonstrated significant pro-
tective effects to BoNT intoxication of neurons at low
nanomolar concentrations.’*

Differential Detection of Proteins

In addition to affecting protein function, Chemical
Epitope Targeting has been used for differential detec-
tion, such as distinguishing between receptor isoforms™
ot homologous proteins of different malarial species.”®
This technique has been applied to identify ligands that
can detect malarial biomatkers found in infected hu-
man blood, namely Lactate Dehydrogenase (LDH) and
Histidine Rich Protein 2 (HRP2). By screening against
an epitope that was distinct in LDH of different ma-
larial species, Plasmodium falciparum (Pf) and Plasmo-
dium vivax (Pv), Das et al’’ developed peptide ligands
that could distinguish between Pf LDH and Pv LDH.
A binder with a 13:1 selectivity for Pf LDH over Pv
LDH was isolated that did not show any cross-reactive
binding to human LDH.

Furthermore, Das et al screened for a binder selec-
tive for a universally conserved motif of the PfHRP2
protein.”® PEHRP2 protein is an intrinsically disordered
protein whose sequence is varied in different geograph-
ical regions of the world.” It consists of repetitive mo-
tifs containing numerous histidine and alanine residues.
Two conserved motifs near the C-terminus were used
as a target epitope, which was screened against a cyclic
peptide library. A binder with a strong affinity (IKD 54.3
nM) and selectivity for PfHRP2 was identified.”

Polypeptide macrocycles have been developed for
the differential detection of the cytokines interleu-
kin-17A (IL-17A) and intetleukin-17F (IL-17F).%" These
two pro-inflammatory cytokines share a sequence ho-
mology of about 55%% and are secreted by immune
cells. They are also associated with multiple immune
and autoimmune diseases.”” Lai et al synthesized two
discontinuous epitopes for IL-17F and one continuous
epitope for IL-17A and screened for binders.”* They
isolated a binder with a 3:1 selectivity for IL-17A over
IL-17F The two binders for the two IL-17F epitopes
were linked with a Polyethylene Glycol (PEG) linker to
give a cooperative bicyclic biligand that bound to the
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discontinuous epitopes. Fluorescence polarization ex-
periments demonstrated the biligand (KD 252 pM) had
an improved affinity (17 fold higher) and specificity (2.5
fold higher) compared to the individual monoligands.®®

Protein Folding

Another application of the Chemical Epitope Tar-
geting technology has been to generate a cyclic peptide
that influences protein folding in Superoxide Dismutase
1 (SOD1). Stress factors in the cell produce free radi-
cals. SOD1 converts the highly reactive oxygen radical
into hydrogen peroxide and oxygen.® About 160 point
mutations are known to occur in SOD, which lower its
stability and promote misfolding.*” These often lead to
neurological diseases like Amyotrophic Lateral Sclero-
sis (ALS).”® Bunck et al targeted an electrostatic loop
of SOD (residues 121-141) involved in destabilization
of SODL1 structure® and identified a ligand (EC50 8
uM) that bound to the loop.” Ligand binding to the
electrostatic loop resulted in a tightening of the over-
all structure and stabilized the folded W' apoprotein.
Interestingly, incubating the ligand with the apoforms
of mutant G85R, G93A, or DIOA SOD1 also led to
stabilization of the folded protein structures. This was
seen in the lowering of hydrodynamic adii in Dynamic
Light Scattering experiments. The peptide ligand there-
fore acts as a chemical chaperone for folding of both
WT and mutant SOD."!

Conclusion

Initially developed with the aim of targeting a
peptide epitope adjacent to phosphate functionality,
Chemical Epitope Targeting has now evolved into a
universally applicable technique. It has been successful
in detecting very specific regions of a protein, a goal
rarely achieved by any other library screening process
of peptides, small molecules, and nucleic acid aptam-
ers. Peptide binders have been developed for a host of
proteins, including proteins belonging to families as
varied as intracellular kinases (Aktl, Aktl PH domain,
phosphorylated Akt2),” essential enzymes (SOD),”
sectreted blood proteins (PfLDH, PvL.DH, PfHRP2),™
toxins (BoNT),” viral envelope proteins (L1R),” and
cell surface receptors (IL17A and IL17F).”” Chemical
Targeting Technology has been utilized for sophisticat-
ed applications, such as increasing or decreasing Akt2
kinase activity, rescuing neurons from BoNT toxin ef-
tect, and stabilizing protein folding state for apoforms
of mutant SOD.

Successful application of Chemical Epitope Tar-
geting technology in tandem with PROTAC technology

is an important development with wide implications.”
When used together, these technologies can isolate a
peptide binder for the protein and turn it into a PROT-
AC, allowing for the selective degradation of a mutated
protein. Another important development has been the
successful targeting of discontinuous epitopes,”” which
may play a major role in further applications of this
technology.
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