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Abstract

It can be difficult to further scientific understanding oferar endangered species that live in inaccessible
habitat using traditional methods, such as probabilistic modbhisgd on field data collection. Remote
sensing (RS) can be an important source of information forttidy of these animals. A key advantage
of RS is its ability to provide information over an animaisnplete range, but models incorporating RS
data are limited by RS’s ability to detect important habgatures. In this study, we focus on the rare,
poorly-understood mountain bongo antelopeadel aphus euryceros isaaci) which survives in the wild in
isolated pockets of montane forest in Kenya. We hypothesize thataimobohgo habitat is multi-scaled.
We analyzed field and RS data (derived from SPOT, ASTE®RM@DIS) ranging in scale from 0.02-
85.93 ha to test our hypothesis. Important microhabitat features idenéified through logistic
regression models of vegetation structure data collected in(plot ha) of bongo presenae= 36) and
absence ( = 90). Models were selected using an information theoreticoappr We analyzed the
correlations between microhabitat (four canopy and four understiragture measures) and RS
variables derived using spectral mixture (SMA) and textaadyais; most ASTER and SPOT variables
were significantly related with canopy structure variablesx | = 0.56), but correlations between
understorey structure and all but two RS variables were insigniffearther logistic regression modeling
showed that combining field microhabitat (primarily understorey streictariables) and larger-scaled RS
measures (ASTER spectral mixture analysis variables gaggek to 450 m (20.25 ha)) provided superior
models of bongo habitat selection than those based on field or R&dat&he results demonstrate that:
1) forest canopy characteristics at scales of ~20 ha and wrdgrstructural conditions at the micro-
scale of 0.04 ha were the most important features influencingobloalgitat selection; 2) models for
predicting bongo habitat distribution must incorporate both micronawto-habitat variables; 3) optical
RS data may characterize important micro-scale canopyblesiavith reasonable accuracy, but are
ineffective for detecting understorey features (unlesgnaltwe techniques such as forest structural
indices can be successfully applied); 4) RS and field datdatte essential for understanding bongo
habitat selection. The technique employed here for understandingathigntelope’s habitat selection
may also be applied in studies of other large herbivores.

1. Introduction
Rare species are a preeminent concern of conservation biolloigy, i the “biology of scarcity”
(Soule 1986, pg. 10). Successfully conserving a rare species depenngleratanding interactions

between the organism and its environment. Spatially-explicit, praiabidistribution models are
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important tools for examining this relationship, which is @nto ecology (Guisan & Zimmermann
2000). Such models are increasingly used to map species’ actual amdigbatistributions, and to
understand the factors influencing these (Guisan and Zimmer2@2@ Rushtomt al. 2004). However,

the insight drawn from such models depends on the quality and quehiityput data. Collecting a
dataset that is adequate in both senses is difficult wherespae rare (Rushtanhal. 2004), thus habitat
modeling studies are skewed towards more abundant organisms (&uas&006).

Rare species pose logistical (cost) and statistical (®amsigk, independence) problems for
distribution modeling studies (Guisan and Zimmermann 2000; Rustt@h. 2004). Furthermore,
predicted distribution patterns and the factors influencing tlbam vary according to the scale of
investigation, as most organisms’ habitats are determinedaiyrés defined at different scales (Wiens
1989; Brown 1995). Choosing appropriate sampling scales is diffioultrare organisms, whose
ecological requirements are often poorly understood (Rughtyn2004).

Remote sensing (hereafter RS) is increasingly used itahabhodeling studies to overcome the
problems of sample size and scale; RS provides the most efficient technigoléefding large quantities
of habitat data over extensive areas at multiple spatales (Kerr and Ostrovsky 2003; Turrerl.
2003; Rushtoret al. 2004; Wulderet al. 2004). Modern sensors offer the ability to collect information
throughout the electromagnetic spectrum at sub-meter to niohidter resolutions, and can be directly
related to a number of field-based ecological measures (Tatratr 2003). The advances in sensor
technology and related analytical techniques have facditdte increasing use of spatial distribution
models in ecological and conservation applications, as high qudditys can be collected and
meaningfully interpreted in habitats where field surveys tachnically or financially impractical
(Rushtoret al. 2004; Wulderet al. 2004).

Despite this trend, many ecologists and biologists remainiskfiiat RS data are suitable for
fine-scale ecological studies (Turngtral. 2003). Furthermore, since most sensors are not designed to
provide input for distribution models, the ability of RS to deteapdrtant habitat features varies

according to the characteristics of a species and its ecosybtga determine whether RS measurements



describe the driving habitat variables or their proxies (Truebel. 2003; Rushtoret al. 2004). For
instance, high resolution RS data may detect shrubs browsed by #wpeante an open savanna
woodland, but would fail to do so if these shrubs were located whakd canopy forest. In the latter
case, the RS data might correlate with a proxy variable, such as canopy cover

Many RS-based habitat modeling studies rely on such proxies, whéclofi@n categorical
variables that describe land cover or vegetation types (eljndkéet al. 1999; Saveraidt al. 2001,
Schadtet al. 2002). Categorical variables can be poor predictors of tretespleabitat relationship, since
they cannot account for within-class variability and streggl distinguish ecotones (St-Louds al.
2006). More informative proxy variables can be established bglaj@ng continuous relationships
between RS data and relevant habitat features, such as vegetatiames{iuatneret al. 2003; Rushtoet
al. 2004; St-Louist al. 2006). The use of continuous, RS-derived proxies is growing irahatdtdeling
studies (e.g. Gibsod al.2004; Jeganathagt al.2004), but ecologists have yet to embrace many of the
techniques developed for quantifying such variables (Twinhar.2003). For instance, the RS literature
contains many studies in which RS is used to measure forestusid variables (Wuldeet al. 1998;
Hanseret al. 2001; Peddlet al. 2001; Scartlet al. 2001; Hudalet al. 2002; Wulderet al. 2004). These
methods could be profitably applied in habitat modeling studies of foreslifywgbecies.

The subject of this study is the mountain bongagel aphus euryceros isaaci), a large, elusive
antelope endemic to a handful of high mountain forests in Kenyan®batain bongo (hereafter bongo),
a distinctive sub-species of Central and West Africa’s lowland d@frggel aphus eurycer os euryceros),
was once abundant in the isolated montane forest patches dgsee FA) that represent the limits of its
potential habitat. In the past several decades, however, the naftlmrgos has declined precipitously.
Causes are uncertain, but probably stem from a combinatiompfrda poaching, human encroachment
into Kenya's relatively small forest estate, and diseaseb as rinderpest (Gathaara 1999; Imbernon
1999; Kocket al. 1999; Lambrechtst al. 2003). Less than 100 individuals are believed to remain in the
wild (Reillo 2002; Prettejohn 2004), the majority of which are twmd to the Aberdare Mountains

(Figure 1B). An international reintroduction and conservationeptds now underway, which aims to



recover the extant sub-populations and re-establish a viable ppopgéation on Mount Kenya (Figure
1B), where one of the largest sub-populations used to be found.

This study is part of the ecological research being conductppmort this broader conservation
project, which is crucial because of the near absence ofmafum on bongo ecology. A primary
objective is to determine bongo habitat selection and distributiomghent its range using spatial
distribution models. However, obtaining the necessary data for dawgltipese models is extremely
difficult given the bongo’s rarity; the Aberdares’ bongo sub-populasgatie only one with sufficient
numbers to study, yet even this herd’'s density is low reldtvthe Aberdares’ extensive, rugged forest
estate. These conditions make it impractical to obtaindteos fully-stratified, multi-scale field survey
data needed for successful distribution models (Vaughan and &@mé@03), as collecting just one
observation requires significant investments in time, money, labdr. Furthermore, choosing
appropriate sampling scales is difficult in the absence iof gnowledge, while the high costs of field
work preclude exploratory investigations. These factors inditetethe necessary habitat information
must be provided by RS data trained with a relatively snedtl flataset. Unfortunately, montane forests
challenge the capabilities of optical RS data (the kind mezglily available to conservation ecologists),
as forest reflectance received by the sensor is confounddut byatiable illumination that results from
extreme topography (Gu and Gillespie 1998).

Existing information on the bongo indicates that it is primaailyprowser of forest edge and
understorey plants, and its preferred habitat appears to beaicrabspen glades, secondary re-growth,
and primary forest (Kingdon 1982). Bongo home ranges may be as dard20 — 300 kinand
encompass the variety of floristic types represented within therlanontane forest patches (usually 500-
1,000 kn) that delineate the potential habitat of each bongo sub-populdtingdpn 1982). These
characteristics suggest that bongos respond to vegetation rstkfetatures (best characterized with
continuous variables) more than composition (a categorical deskripanopy structural variations
should influence browse and cover abundance more than the type ofdpatieg the canopy. Such

structural features are likely to be described by scaleging from several hundred square meters (e.g. a



small glade or tree-fall gap) to hundreds or thousands of hedtargs secondary forest patches
containing abundant browse and cover). Multi-scaled habitat seleltis been found in other large
herbivores, including cariboBangifer tarandus (Terry et al. 2000; Johnsost al. 2004) and moosAlces

alces (Maier et al. 2005; Cassingt al. 2006), as well as other mobile species, such as porcupine
Erethizon dorsatum (Morin et al. 2005), red squirreTamiasciurus hudsonicus (Fisheret al. 2005), and
capercaillieTetrao urogallus (Grafet al. 2005).

Based on these insights, we hypothesize that bongo select fzdbitattiple spatial scales. In
order to address this hypothesis, we employ five datasets representngndiipatial scales and levels of
detail. The greatest detail is provided by micro-scalestaipn structure data, collected in 22.6 m
diameter (0.04 ha) field plots centered on areas defined by bonggnpeeor absence. The additional
datasets comprise four RS images, ranging in spatial resolution from 5@202486 ha), and varying in
spectral resolution from one panchromatic band to nine bands in the vigilhear infrared.

In our analysis, we use logistic regression to identify therahabitat structural variables most
influencing bongo habitat selection. We then examine the correkitemgth between these features and
continuous RS variables derived from spectral mixture asa(@VIA) and texture analysis, which are
techniques useful for measuring forest structure and thegamsent of species’ habitats (Wuldgral.
1998; Sabokt al. 2002; Luet al. 2003; Theatet al. 2005; Kayitakireet al. 2006; St-Louiset al. 2006).
This step allows us to effectively determine both the physieaning of the RS data and its usefulness
for characterizing the microhabitat features important to bmn@ée then use logistic regression to 1)
assess the relative ability of each RS dataset to disatienbetween bongo and non-bongo habitats, and
2) to determine which combination of data—and therefore which szt (s)—provides the best
bongo habitat selection model.

The methods we use to address our hypothesis offer valualglbtimtb 1) the scale and nature
of habitat features selected by bongos, 2) the ability of advaR&dechniques to provide useful

predictor variables for modeling bongo habitat selection, and 3etative merits of several optical RS



datasets and field data for studying a rare organism in aenbady environment. Our procedure is
transportable to studies of other large, rare herbivores worldwide.

2. Methods

2.1. Background

2.1.1. Sudy area

This study focuses on the Aberdare Mountains (3,998 m), home oartest remaining wild
bongo population. The Aberdares comprise an equatorial massif hd0llen from the geologically and
ecologically similar Mount Kenya (Figure 1B), which was formieg Miocene and Pliocene-era

volcanism and tectonic activity, and shaped by Pleistocene glaciatiazhat bievations (Schmitt 1991).

The Aberdares climate is characterized by two rainy ssa@0ctober-December and March-
May) interspersed with dry seasons, reflecting shiftshe Inter-Tropical Convergence zone (Schmitt
1991). Mean annual rainfall increases from north (~950 mm) to sout?5Q-Bym), where exposure to
prevailing Indian Ocean winds is greatest (Schmitt 1991). Temperé& linked to elevation, with a
yearly average of 18°C at 1,800 m and 9°C at 3,000 m. Diurnal tetongesavings of 11-16°C represent

the largest thermal variation (Schmitt 1991).

The Aberdares’ main habitat types include closed-canopy foresthldrah high altitude
grassland, and bare rock (Schmitt 1991). The Aberdares range hagtswadlife populations,
particularly buffalo Byncerus caffer), elephant l(oxodonta africana), and hyena Qrocuta crocuta).
Bongo are found primarily within the ~1,120 kfarest zone, and avoid the higher, non-forested habitats
(Kingdon 1982). Lower forests are dominated by conifeieagocarpus andJuniperus species in drier
habitats, and the flowering hardwoodassipourea, Neoboutonia, Macaranga, andOlea in more humid
locations. Extensive, near monotypic stands of bamboo are found bet&@@@+8200 m, and the narrow
belt of forest above this (~3,000-3,300 m) is dominateHidmyenia abyssinica, which gives way to heath
and grassland (Schmitt 1991). Lower forest margins are definedobscigd area boundaries at ~2,000

m, below which lie dense rural settlements.



The Aberdares are protected as a national park above 3,000 m anagtesin spur that extends
down to 2,100 m, with the remaining area between the national park b@sndad human settlements
designated as forest reserve (Lambreehtal. 2003; KWS 2006). A project to fence the Aberdare
National Park and parts of the forest reserve has encidlsbdt ~65 km along the Aberdares western
escarpment (Rhino-Ark 2006). This study focuses on the Aberdarestdprexcluding those lying
outside the fence (Figure 1C).

2.1.2. Background on bongo ecology

Most of the information on bongo ecology is found in studies of thtahbongo (Hillman and
Gwynne 1987; Klaust al. 1998; Turkalo and Klaus-Hugi 1999; Klaus-Hugjial. 2000; Elkan 2003),
which occurs in Central and West Africa. The lowland bongo’'sagiegsness sets it apart from other,
typically solitary, forest ungulates (Estes 1974; Klaus-Hiigi. 1999). Herds of female and young may
aggregate into concentrations of 50 or more animals, althoulgs mee more solitary, wider-ranging,
and non-territorial (Hillman 1986; Estes 1991; Klaus-Hagial. 1999). Lowland bongo habitat is a
mosaic of mineral-rich forest glades, secondary forest,naature forest (Klaus-Huegt al. 1999; Klaus-
Hugi et al. 2000). Home ranges are organized around glades, which providal cnireéral supplements
and grasses that account for up to 30 percent of a lowland bongiKs fiitillman and Gwynne 1987;
Klauset al. 1998; Klaus-Hugkt al. 1999; Klaus-Hugkt al. 2000). Secondary forest provides cover and
the browse (primarily tall forbs, understorey shrubs, and lighes)forms the majority of the animal’s
diet (Klaus-Hugiet al. 1999). Mature forest constitutes a less-utilized matrix, agtrigsture inhibits the

growth of typical bongo food plants (Klaus-Huaial. 1999).

The mountain bongo shares the same social characteristics aapparent preference for
secondary forests and glade habitats (Kingdon 1982). However, lowalathdmontane forests are
substantially different, as the latter are charactertzgdxtensive stands of bambo&narundinaria
alpine) and an altitudinal stratification of vegetation typesh{8itt 1991; Bussmann 1994). The bongo is
believed to migrate along the elevation gradient as seasons changdo(Kir#2). These factors indicate

that mountain bongo habitat is configured differently than the lowland bongo’s.



2.2. Data
2.2.1. Remotely-sensed data

We used four RS datasets in this study: 1) two 5 m resoluti@T P panchromatic scenes,

acquired on February 17, 2006 (source: Terra Image W8Av.terraimageusa.com?2) the three

visual/near infrared (VNIR) bands (0.52-0.86, 15 m resolution) and six shortwave infrared (SWIR)
bands (1.60-2.43m, 30 m resolution) of two ASTER L1A scenes collected on M2&h2005; 3) a
MODIS surface reflectance image from March 29, 2005 (463 mg 927 m MODIS nadir BRDF-
adjusted 16-day reflectance image from March 22, 2005. Each Bl@hRdge consisted of seven bands
ranging from 0.46-2.1m. ASTER and MODIS data were provided by the US Geologicale$ur

(edcimswww.cr.usgs.gov/pub/imswelcomeA 90 m resolution SRTM (version 2) digital elevation

model (DEM) was also acquired (source: CGIgBn.csi.cgiar.orjy

SPOT and ASTER images were ortho-rectified to removaifiignt geometric distortions
caused by the rugged topography. Accuracy was assessed usirac@iit8d control points (3-5 m
precision) and an independently ortho-rectified Landsat 7 ETMhes¢source: Global Land Cover

Facility, www.landcover.orjwith sub-50 m precision (Tucket al. 2004). The root mean square error

(RMSE) between the corrected SPOT data and control pointdeasghan 10 m, while the RMSE
between matched ASTER and SPOT image features was 7 m. Bgeh seta were more precise than the

Landsat scene. MODIS images were not ortho-rectified.

We converted the ASTER images from at-sensor radiance to tamosphere reflectance using
available conversion coefficients (Smith 2006), and used daglki subtraction to remove atmospheric
effects (Jensen 1996). The SPOT imagery was left in digiwahber format and did not require
atmospheric correction, because the subsequent analyticalgieeHitéxture analysis) is insensitive to
atmospheric effects. The MODIS data were already atmospledoarected, although it was necessary

to remove striping in two bands of the 463 m image using Fouaiesform filters, which corrected most



of this error. Minor cloud cover was manually digitized and reds&ut of the SPOT, ASTER, and

MODIS 463 m data.

All data required topographic correction to remove terrain shadbies SCS+C correction was
applied to SPOT and ASTER scenes (Soeateah. 2005), while the SCS correction (Gu and Gillespie
1998) was used for MODIS images. Both corrections normalifectahce (L) by adjusting for slope)(
the solar zenith angle, and the solar incidence angle &) STS+C correction differs in that it includes a
term (derived from a regression of i and L) to account for the poor performaB8&Sovheny is extreme
(Soeneret al. 2005). The DEM aggregated to MODIS scales did not producechiglues. To provide
for SPOT and ASTER images, the 90 m DEM was re-sampled to 5nd530am resolution using a

splining function.

The off-nadir look angles of the ASTER, SPOT, and 463 m MODI®iescaeequired the

following adjustment te:
A4 =a - Sin(y_ ¢)w 1)

Where:a,q iS adjusted slope, is terrain aspectp is the sensor track azimuth, ands the sensor look
angle (positive for right of nadir on a descending orbit, and negfdr left). An author of the SCS+C

correction confirmed the modification’s validity (Coburn, Pers. Comm. 2006).
2.2.2. Field data

We collected field data over three periods representatitleeoiberdares climate: the cool, misty
long dry season (June-August, 2005), the hot, short dry season (e¥darah, 2006), and the end of
the long rains (May-June, 2006). Field work was conducted with expedemackers from the local
Bongo Surveillance Program and Kenya Wildlife Service ran@eespark authority). Over the course of
12 expeditions covering 92 days, forests were surveyed for bongo, tchokg and other signs that
indicated habitat use (e.g. feeding, lying). A “reconnaissamggioach was used, where a general

heading was maintained while following paths of least resist@¥Walsh and White 1999). Plots of 22.6



m diameter (the nominal diameter of 1/25 ha circular plotsg wentered on bongo habitat-use sign that
could be confidently identified. Following James and Shugart (1970)fottwaving variables were
recorded: diameter at breast height (DBH) of trees ldhgar 7.5 cm; top height of the three highest trees
(using a clinometer); the number and species of breast-hdigitiss(< 7.5 cm DBH) and herbaceous
plants (forbs) within two 22.6 X 1.2 m transects; canopy and ground posportions (based on 20
readings for each); the average herbaceous layer hdé@hte@dings). The same habitat data were
recorded at pre-assigned plots centered in f duid cells laid over the study area. These points,
representing bongo absence, were sampled if surveys passed@fithimand no bongo sign were found.
Plots were located and geo-referenced using a global positiorstgrsyGPS) with an antenna. Error
caused by dense canopy and steep terrain was reduced by raisimigtina ®@n a 5 m pole and averaging

positional fixes for 30-120 minutes.

We collected 150 field plots, eight of which were recorded usingriabhle plot method; these
were reconciled to the fixed plots using photo-interpretation. toted count included 36 plots where
bongo were indicated, 90 non-bongo plots (Figure 1C), and 24 plots withrbuckeKobus
elipsiprymnus sign. The waterbuck plots wensed only to assess correlations between field and RS
variables. The identity of the 36 bongo plots was confirmed usitachandrial DNA extracted from
dung specimens within or in the vicinity of sample plots. Theexeack plots were initially thought to be
bongo-use sites but were eliminated by mitochondrial DNA evidétmece, these plots were included in
a calibration data set but eliminated from any formal analysis of bongathsdigction.

In a study of radio-collared White-tailed deg@docoileus virginianus, Dunn (1978) found that
positional observations were effectively uncorrelated afteaverage of 13.5 hours (min 7.9, max 22.6).
In this study, the times at which neighboring pairs of bongo habitasigas were made differed by an
average of 57 days (range: ~24 hours-284 days). Although neighboring kiabitsigns were closely-
spaced (mean nearest neighbor distance = 715.3 m), their temgpagaton is sufficient for their

corresponding data plots to be considered independent under Dunnia.cFibertrial removal of several

10



samples with the least temporal separation during the subséagistit regression analyses (see section

2.4 and following) showed that results were not altered appreciably.

2.3. Derived variables

We derived a total of 60 variables from the field and remetehsed data, ranging in spatial
scale from 0.02-85.93 ha. Table 1 provides a list of these vamjabttuding their derivation techniques,
spatial scales, units of measure, and relevant transformalldferences between mean variable values
in bongo and non-bongo plots were assessed using a two-sided Wilcoxaumaidst, a non-parametric
equivalent of the t-test used because most variables were nmoaflyodistributed. Descriptions of the

methodologies used to derive these variables follow in sections 2.3.1-2.
2.3.1. Remotely-sensed variables

We used two techniques to derive variables from the remsggiged data: spectral mixture and
texture analysis. Spectral mixture analysis is a linear hmgdéechnique that estimates the fractional
abundance of specified constituents (endmembers) within a pixel thgir spectral profiles (Adanes
al. 1989). This technique is particularly useful for ascribing physim@aning to RS data, since it
establishes a direct and easily interpretable link betwlee signal received by the sensor and the surface
features shaping it (Sabet al. 2002). Although designed for hyperspectral imagery, spectral mixture
analysis is also applicable to multispectral data (elgol®hal. 2002; Luet al. 2003). In texture analysis,
information is obtained by measuring the spatial variatiomrinimage’s tonal values (Baraldi and
Parmiggiani 1995). Texture analysis of optical RS has been sidbesised to quantify forest structural
properties (Wuldeet al. 1998; Kayitakireet al. 2006) and the spatial arrangement of species’ habitats

(St-Louiset al. 2006).
2.3.1.1. Spectral Mixture Analysis

We chose four endmembers useful for discriminating foresttasre for the spectral mixture
analysis: green vegetation (GREENVEG), nonphotosynthetictattge (NPVEG), soil (SOIL) and

shade (SHADE) (Sabol et al. 2002; ketial. 2003). The endmembers were selected from available

11



spectral libraries (ENVI 2006) and averaged, then compared to theaspiedpresentative pixels located
in known image features or in reflectance scatter-plots faitagity of shape and magnitude. Photometric
(spectrally flat) shade was used for the endmember SHABIBWing Robertset al. 1998), thus the
mixture model was unconstrained. Fractional endmembers resutiinguhconstrained spectral mixture
analysis can be negative or greater than one, which genemdibates a poor model fit (Robessal.
1998). Robertst al. (1998) allowed endmember fractions to vary between 1.01 and -0.01, prdvided t
all endmembers sum to one. For this analysis, we toleratedeentakn fractions between -0.05 and 1.05
to accommodate topographically-induced errors and the lack ofpstdfic reference spectra. We
applied spectral mixture analysis to the ASTER and two MOmages. The final model for each sensor
was selected if: 1) >99 % of RMS values were below 0.03; 2) >98& %actional values for each

endmember were between -0.05 and 1.05.
2.3.1.2. Texture analysis

Image texture measures can be classified into two groups:clijreace, which relates to the
frequency of tonal values in a specified neighborhood around eadh(pixeouis et al. 2006); 2) co-
occurrence, which measures the frequency of associationsdretwightness value pairs within a given
area (Baraldi and Parmiggiani 1995). We applied two occurrenasumes (mean and standard deviation)
and one co-occurrence measure, angular second moment, to the SPOd@ndtdgethree ASTER VNIR
bands. Mean and standard deviation are simple and useful forrimsting different habitat structures
(St-Louiset al. 2006) or forest biophysical properties (Wuldeal. 1998). We selected angular second
moment (which describes image textural uniformity) because utcorrelated with standard deviation

and is one of the most informative co-occurrence measures (Baraldi amddtani 1995).
2.3.1.3. Saling and transformation

In their native 30 m resolution, the ASTER spectral mixtuadyais endmember fractions are of
similar scale to the field data plots. These ASTER vagghvere further aggregated to three coarser

resolutions (Table 1). The 105 m resolution allowed comparison hetsystral mixture analysis and

12



the largest-scaled texture analyses, while the 450 m pixelvgs selected to compare ASTER and
MODIS at similar resolutions. The 225 m aggregation provided anriatBate scale between the two
previous forest patch-sized aggregations. Texture analysepedormed on the SPOT image using four
window sizes (Table 1). The first two window sizes brackeffigldd plot scale, while the two largest are

equivalent in scale to the window sizes applied to the ASTER VNIR bands.

The number of RS-derived variables was large in relation toamaple size, and a humber of RS
measures were strongly correlated with one another. We treegiptied principal components analysis
(PCA) to each set of variables representing a unique seceer-sombination (e.g. 30 m ASTER
endmember fractions). The SHADE fraction was dropped from geszitiral mixture analysis variable set
because it is a linear combination of the other three endmeimdations. We retained the principal
components (PCs) accounting for at least 90 percent of totaheari®CA allowed us to maximize
degrees of freedom (by decreasing the number of parameters)Xaocd neter-variable correlations (and
thus minimize variance inflation) while retaining the e$iséfnformation in the RS variables used as

predictors in subsequent logistic regression analyses (desoriBection 2.4.2).

2.3.2. Micro-scale vegetation structure

We derived nine measures of micro-scale vegetation steufrtumn the field data: five measures
of canopy structure, and four of understorey structure (TableAdart from bamboo density—an
important vegetation type in the Aberdares—we chose thesaurasasecause: 1) they account for the
range of structural types found in Aberdares forests, 2) thpgaa in previous RS studies of forest
structure (e.g. Hansest al. 2001; Luet al. 2004; Peddlet al. 2004) or investigations of similar large

herbivores (e.g. Terrgt al. 2000), or 3) they describe the range of potential variation in cover and.forage

2.4. Satistical analysis
2.4.1 Remote detection of microhabitat structure

The first portion of our analysis followed Jeganateaial.'s (2004) “two-step procedure” for

modeling rare species’ distributions. This approach entaildeh}ifying the most important microhabitat
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variables by modeling the species’ relationship with fieldected habitat data, and 2) relating these

directly to RS data to generate physically meaningful, spatially éxéehabitat variables.

For the first step, we used logistic regression to determhiedfield variables most likely to
influence bongo habitat selection at the plot scale. Logisticession, a form of the generalized linear
model that applies the logit transformation to account for biabmeriror distribution in a categorical
response variable (Trexler and Travis 1993), was most appmmieen that our field plots were
segregated according to bongo presence or absence (Table Inoshdikely set of bongo habitat
predictors was selected using Akaike’s Information Criterion modifiednatlsample sizes (Al

n
¢ = -2l K| ———
AIC. = -2lod. + (n_K_lj )

Where:L is a model’s likelihoodK is the number of parameters, amds sample size (Burnham and
Anderson 2002). This information theoretic method yields more olgectionsistent models than
conventional hypothesis testing techniqueg. (stepwise regression) by minimizing bias and maximizing
precision (Burnham and Anderson 2002). Al€ a relative measure, and is useful for comparing a pre-
specified set of candidate models drawn from a common global ri®aeiham and Anderson 2002).
The best fitting model is that which has the lowest Al&lue, and its relative plausibility is assessed with
the associated measurgsandw;, the Akaike difference and weight (Burnham and Anderson 2002). The
former measures the difference between the. AfGnodeli and the best model, and can be interpreted as
follows: the most likely model, given the data, has;.af zero, values between 0 and 2 indicate strong
support for a model, values between 4 and 7 show that a model hessfaupport, while models with
values of 10 or higher are extremely unlikely (Burnham and #sote2002). The Akaike weight is
inversely proportioned ta;, and expresses the odds (as a ratio) that a given model ieghef the

candidate set of models, given the data (Burnham and Anderson 2002).

We selected candidate models representing likely combinatibnsanopy and understorey

structure variables from the 10 parameter (including &ugession intercept) global model, the fit of
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which was assessed using the Hosmer-Lemeshow test (Hosmdemmedhow 1989). This measure
partitions observations into equally sized groups, and compdfessdces in observed and expected
values against thg? distribution—an acceptance of the null hypothesis indicates aruatgetit. An
additional pseudo?rmeasure was included with the information theoretic stgigt provide a more
understandable metric of variance explained by the predictors—robasis for model selection. This
measure, the adjusted sum of squar%e?l%syad), is described by Mittlbéck and Schemper (1999), and is

analogous to the Pf least squares regression.

In the second step, we used Spearman rank correlation analgssess the relationship between
RS-derived measures and the most influential field-based raigitah variables in order to determine 1)
how well RS data can detect the microhabitat variables cwrstlated with bongo presence, and 2) the
physical meaning of each RS variable. We applied the sequBotiférroni adjustment (Holm 1979) to
reduce the likelihood of spurious significant correlations usingfaihewing procedure: the p-values
resulting from each RS-field predictor comparison (segeeghy sensor type) were ordered from most
significant to least; the p-value of the most significaritipg was adjusted (g = 0.05h, wheren =
variables per sensor*field variables); successive pairimgse assessed against p < 093) p <
0.05/0-2), p < 0.05/¢-3), etc., until a comparison failed to reject the null hypoth&¥gesutilized all 150
field data points for this portion of the analysis, excluding ABFER, two SPOT, and three MODIS

points falling within cloud-shadowed areas.
2.4.2. Multi-scaled modeling of bongo habitat selection

Using the logistic regression and model selection methods iggeicifsection 2.4.1, we assessed
the relative abilities of the different datasets and thesioeiated scales to explain bongo habitat selection.
This analysis was undertaken in two parts. In the first pagttested the ability of each set of PCA-
transformed variables representing a unique sensor-scalenatiobito predict bongo habitat selection.
Our primary aim was to reduce the large number of RS vasaldr the second part, in which we

combined the resulting three most likely RS variable seth wie most important field-derived
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microhabitat predictors identified in the analysis describeddtian 2.4.1. This final analysis allowed us
to assess 1) the habitat features and spatial scalesnfioshcing bongo habitat selection, and 2) the

relative explanatory power of the best field and RS predictors.

3. Results
3.1. Derived RSvariables

For the spectral mixture analysis performed on the three isgtgethe resulting root mean
squared errors (RMS), RMS standard deviations, and percentgggslsffalling outside the endmember
fraction threshold of -0.05 and 1.05 for the best models were: 0.009, 0.003, aftl (AGTER); 0.014,
0.004, and 0.36 % (MODIS 463 m); 0.014, 0.0034, and 0.16 % (MODIS 927 m). The ASTER
endmember fractions produced sensible results when compared to kelolaonhditions, as seen at sites
1, 2, and 3 in Figures 2C-F. Site 1 is in mature, semi-open foreshatech by the treddagenia
abyssinica, which has spreading crowns with large, bright green leavesting abundant canopy
shadows. A co-dominant shrublypericum revolutum, occupies much of the understorey, and the
herbaceous layer is well developed. Bright green vegetatitrelisfore a dominant feature in this forest
type, while bare soil is generally not visible. The endmember fractiotthrids pattern: GREENVEG is
high, NPVEG and SOIL are low, and SHADE is generally high. Site 2 is an open shenylgdes where
the usually green rhizomatous grasses mix with tussockegrahat are composed of both live and
senesced material. Animal activity and incomplete grass cogate abundant bare soil patches. The low
SHADE, moderate GREENVEG, and high NPVEG and SOIL fractipmear reasonable given these
conditions. Site 3 is in an area surrounded by extensive bamboo foriest,tyyhcally form monotypic,
dense canopies of uniform height ranging from 4-16 m. The perpghtade under bamboo canopies
tends to suppress understorey growth, while the ground is covelmrioo leaf litter. The endmember
patterns make sense for these conditions; GREENVEG is Fagity(bamboo appears as a uniform sea of
green from above), NPVEG and SOIL are moderate to low (deadsleand soil are abundant under

bamboo, but are less evident from above because of the closed canopy), and SHARE is hig

16



A total of 12 SPOT and 18 ASTER texture images were prad(icable 1). Figure 2 B is a sub-
scene of the SPOT 9X9 standard deviation image. Sites 4 anceFagerded in small forest openings,
and thus have high standard deviations because of their close iprdrithe much darker mature forest.
Plots 1, 2, and 3 have low values because they are not close to the edgeseastbeiive habitats.

3.2. Remote detection of microhabitat structure

The univariate statistics show that the means of four-&lefidvzed microhabitat measures were
significantly different between bongo and non-bongo plots (Table lthe&fanopy measures, basal area
was significantly higher at bongo than non-bongo sites, as was cae@byt. Among the understorey
variables, woody shrub density was significantly lower in bongtspivhile the density of tall forbs was
significantly higher. This simple analysis indicating roitabitat selection set the stage for the more
complex assessment of each variable’s relative influasitey logistic regression, in which we tested 27
models representing different combinations of the five canopy andufaierstorey variables (ranging
from four to nine parameters, including the intercept). TahpeeBents the information measures of the
seven most likely models, the global model, and the highest rankeélsnemploying canopy or
understorey variables only.

The results show that each of the top seven models has strppgrt for being the most likely
given the data, as indicated by their sub-twealues and similaw terms. Although this tight ranking
indicates substantial model selection uncertajBtynham and Anderson 2002), these models have
two common features: basal area is present in all severg as laast three (and usually all four) of the
understorey measures. This suggests that basal area and thenfmrstorey variables are the
fundamental measures for characterizing bongo habitat.

Of the remaining canopy measures, bamboo density and canopy covelsmaye important
predictors, as each appears three (canopy cover) or foubgbaaensity) times in the top seven models,
and once each in the first and second ranked models. Stem density possitilydiase, as it is found in

models 5 and 7Canopy height appears in none of the top models, and is therefore unimportant
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Models based on understorey or canopy variables only are highkglynlgiven the low rankings and
high A values of the top performers for these model types.

We selected the four canopy and four understorey variabbes tine top seven models for
correlation analysis with the 42 RS variables (excluding tigeeggated ASTER spectral mixture analysis
endmember fractions). Figure 3 provides a graphical displayeofresulting correlation coefficients,
excluding 10 RS variables (ASTER Band 2 and 3 angular second m@xénand 7X7); ASTER Band
3 3X3 and 7X7 SD; MODIS 463 and 927 NPVEG and SOIL fractions) that hadigmificant
relationships with any microhabitat variables after sequential Bomieadjustment.

The general pattern of the results shows that the RS dawaterfairly well with canopy
structure (with 60 of the 168 comparisons being significamd)rather poorly with understorey structure
(only two significant comparisons), as might be expected for optical RS data.

The RS data are most strongly related with basal ardatletASTER and SPOT texture means
producing the only seven correlations with absoiutalues greater than 0.5. Canopy cover is the next
most strongly correlated with RS variables, despite ha2hgignificant correlations with RS variables
compared to basal area’s 23. The SPOT 3X3 and 5X5 texture meamshe best correlates of canopy
cover ¢ = -0.49), while ASTER texture measures were slightly weakéheir relationships with this
variable. Stem density and bamboo density follow in decreasing iortlerms of number of significant
correlations with RS variables (15 and 5) and correlation strength (absalxit@umr = 0.45 and 0.42).

Overall canopy structural variables were best detectedSHER and SPOT texture measures
(particularly mean texture) derived using the window sizes glosely matched in scale to that of field
plot. The finer resolution SPOT imagery produced slightly strongeelations with canopy cover than
ASTER, but the spectrally deeper ASTER succeeds where $#I0Th correlating significantly with
bamboo density (two texture variables and the GREENVEG fraction).

Correlations between the 30 m ASTER spectral mixture amagrsdmember fractions and
canopy structure were generally weaker than those found @singe measures derived from the 15 m

ASTER VNIR and 5 m SPOT imagery. However, nine of the 16 (5@df)parisons between ASTER
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endmember fractions and canopy variables were significant, whitipares favorably to the 32 and 42
percent significance rates achieved by ASTER and SPOT teduopy variable correlations,
respectively. The coarse resolution MODIS SMA fractions skiaive weakest relationships with canopy
structure variables, with the stronge$teing -0.36.

3.3. Multi-scaled modeling of bongo habitat selection

Having established the RS data’s physical meaning by examitsngelationships with
microhabitat structure, the next step was to determine the&dsaind scales that influence bongo habitat
selection. To do this, we tested combinations of the mostiluR&fand field predictors of bongo habitat
selection in multiple logistic regression models.

We selected the most likely RS predictors of bongo habitattsah in a preliminary logistic
regression analysis of PCA-transformed RS variable sets Table 1) representing unique sensor-scale
combinations. This analysis (presented in Appendix 1) showed th&QGbkeof the 450 m (20.25 ha)
ASTER spectral mixture analysis endmember fractions wereniost likely predictors of bongo habitat
selection, as they provided the only two models with subAwa@lues. The next best predictors were
provided by PCs of the 225 m (5.06 ha) ASTER endmember fractions, follywR@s of the SPOT 9X9
(0.2 ha) texture measures, although thealues of the models created using both variable sets were
greater than 10. All other variables, including MODIS endmenflestions and ASTER texture
measures, were highly unlikely predictors.

Based on this finding, we combined the three 20.25 ha ASTER speittare analysis PCs
with the seven variables used in the three most likely microhaeitattion models (Table 2) for the final
logistic regression analysis. We also included the PCs &fa2han ASTER endmember fractions and the
9X9 SPOT texture measures. Although the previous analysis showed that modklsibthese variables
were unlikely on their own (Appendix 1), we included them in ordeeterchine 1) whether the 0.2 and
5.06 ha scales were important when combined with other scales, dradr@jliti-scaled RS model could
outperform a single-scaled field data model. We tested 79 magekssenting different combinations of

the four datasets and scales. Table 3 presents the infennmagasures of the six best models, the top
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models using field or RS data exclusively, and the global madelell as descriptions of the physical
meanings of the RS PCs appearing in the most likely models.

Similar to the microhabitat selection models (Table I, ibformation measures of the top six
models show that there is no clear best model, as all sixsidavevoA values and similaw terms. Each
model also accounts for roughly the same amount of varianbe negponse variable {R.q= 34-36 %).
However, another parallel between this multi-scale anafysisSection 3.2’s microhabitat assessment is
that the top models’ common features are more telling thanhgations. The six best models each
consist of two fundamental elements: 1) the four micro-scale (0)Q4hdarstorey structural variables; 2)
at least one of the 450 m (20.25 ha) ASTER endmembers PCs, ddsictibe gradients in patch-scale
forest structure (see PC description in Table 3). THPZ is the common thread in all models, and
appears to contain the most essential information on patchuserdiecause its extremes match structural
types found at the upper and lower ends of the north-south precipitation gnadienAberdares.

In comparison, the best model comprised only of microhabitat vesiaihs far less likely than
the hybrid RS-microhabitat models, ranked 3@th aA value of 6.88. The most likely model using RS
data only was even less likely, ranked'4@ith aA value of 8.31. The 0.2 ha scale represented by the PCs
of the SPOT 9X9 texture variables also proved to be relativglypportant, as the top model featuring
this scale was ranked' {SPOT PC 2, ASTER 450 PC 2, and the four understorey variabe®.19,w;
= 0.04). The same holds true of the 5.06 ha scale described by PCs2@6the ASTER endmember
fractions, as its best model was ranked even lower at 31 (RS PC 2, basal area, and the four
understorey variablegd; = 6.02,w; = 0.01).

These results indicate that the 0.04 ha microhabitat saatbshe 20.25 ha patch scales are
dominant. The former is characterized by field data variahieks the latter by the 450 m resolution
ASTER endmember fractions.

4. Discussion

4.1. Habitat features, scale, and RS data
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The first half of our initial two-step analysis (logistiegression analysis of field-derived
microhabitat variables) showed that understorey structuresdbdengo habitat use at the micro-scale, as
understorey variables were constant features of the mobt fikerohabitat selection models (Table 2)
These variables are important because they directly measowese and cover availability. This is
evident in the simple univariate analysis (Table 1), which shitvat bongos prefer micro-sites with
abundant tall forbs (the most heavily browsed life-form) andivelstfew woody shrubs (which are
generally less edible). In comparison, the influential oveegtoneasures (basal area, bamboo density,
and canopy cover) are unlikely to directly influence bongo behalut have importance because they
best describe the canopy conditions that foster the bongo’s preferredamreyeesvironment.

The second step (the correlation analysis) showed that thdaRScould not detect these
important understorey features. Optical sensors are ur@aplenetrate forest canopies, thus understorey
variables were poorly correlated with the RS data. The igoificant RS-understorey relationships
(Figure 3) found are attributable to RS correlations with canapgbles that are in turn correlated with
the understorey, rather than direct RS detection. On the othey fagest canopy features were detected
by the finer-resolution RS data with reasonable success. Althihwgglstrongest RS-canopy variable
correlations showed only moderatevalues, the large number of modestly strong, highly significant
correlations indicates that the finer-scaled RS data disnemo-scale canopy structure characteristics.
This assertion is supported by the proven ability of spectral reidod texture analysis to measure forest
structural properties (Wuldet al. 1998; Peddlet al. 2001; Saboét al. 2002; Kayitakirest al. 2006).

This initial “two-step” analysis revealed the connection betweefirteescaled RS variables and
the most influential microhabitat variables. In doing so, it emhb$eto understand the physical meaning
of the RS measures scaled to coarser resolutions, as mémgsefare either aggregates of finer-scaled
variables (e.g. 105-450 m ASTER endmember fractions) or shovasitoilrelation patterns with canopy
structure (e.g. SPOT 9X9 and 21X21 texture PCs compared taBX%X5). For instance, the 30 m
ASTER endmember fractions detect micro-scale canopy strudtwe it follows that their 450 m

aggregates characterize patch-scale (20.25 ha) canopy conditions.
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The predictor variables used in the final logistic regressiorysisaherefore represent vegetation
structural features at multiple spatial scales. This aisaghowed that micro-scale understorey and patch-
scale canopy structural properties are both important in detiegribongo habitat selection. Our use of
AIC. makes this finding more robust, as this method selects the most infamatilels while penalizing
over-fitting (Burnham and Anderson 2002)he importance of the microhabitat scale can be
explained as follows: since understorey characteristics deenvhether a bongo can meet its
most essential needs (food, water, minerals, cover), bongos contiasisdlys and react to such
features within their immediate surroundings (i.e. at the ngcede).Patch scale canopy structure
is presumably important because it determines the abundancesfefrgal micro-scale understorey
features available to bongos within a broader area. Thiti-seale habitat selection has been seen in
caribou, whose primary winter habitat is stands of sub-alpineesphies lasiocarpa, the species of tree
most likely to create caribou’s preferred micro-scal@ader wind-thrown trees hosting arboreal lichen
(Terryet al. 2000).

Vegetation structure at intermediate scales appears tolitisvénfluence, as the 0.2-5.06 ha
scale RS variables were poor predictors of bongo habitat hisefifiding reflects habitat selection rather
than data discrepancies, as the particular RS variablesceeiparable in their relationships with canopy
structure; they were either aggregates of the 30 m ASarElRember fractions, or texture variables that
were more strongly correlated with canopy variables.

We could not fully assess the importance of vegetation steuatuscales larger than 20.25 ha,
because MODIS data were poor predictors of bongo habitat saléégppendix 1), and cloud cover in
the ASTER scene precluded aggregations coarser than 450 m. AlItM@BKS is comparable to
ASTER in spectral depth, and showed significant correlationsseithral canopy structure measures, the
rugged terrain presumably caused it to fail as a predictdhe highly dissected Aberdares, the MODIS

sensor captures topographical as well as vegetation deatir contrast, the 30 m resolution ASTER
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signal is dominated by vegetation, thus aggregated ASTER pis@l&de truer estimates of patch-scale
canopy structure, which influences bongos more than slope or aspect variations.

ASTER and SPOT are most suited for detecting the hdbaaires that are ecologically relevant
to the bongo. Panchromatic SPOT data correlates most stroitllfine-scale canopy structure (except
bamboo density), but ASTER is more useful because its nine bandsdiijge resolutions capture
information in both the spatial and spectral domains. Band 4 (1.60pmj0s presumably one of
ASTER'’s greatest advantages, as its LANDSAT equivaleah@Bs) has been shown to be particularly
important for discriminating forest structural features ¢tal. 2004).

4.2. Implications for ongoing ecological research and bongo conservation

RS data allowed us to identify important patch-scale straicteatures that we could not feasibly
record in the field. We derived these patch-scale RS vasalding spectral mixture analysis, which is a
more transportable technique because it is directly relatddrest structural properties (Salsblal.
2002), and should thus be less sensitive to area-specific varititeinsan cause other techniques (e.g.
NDVI) to produce widely differing values for similar featur@$is bodes well for mapping patch-scale
canopy structure in other bongo habitats (e.g. Mount Kenya) where fielthtialibdata are unavailable.

It will be harder to use RS data to map predictorshatiimportant microhabitat scale. The
correlation analysis suggests it is possible to developmaby accurate quantitative relationships
between RS data and canopy structure, provided that multipleeRSunes are used to minimize error.
However, the crucial understorey features cannot be mappedapiogl RS dataMore sophisticated
active or hyperspectral sensors could perhaps overcome this problenR laiiAsynthetic aperture radar
can measure three-dimensional structure (Hstds. 2006), and may thus correlate more strongly with
understorey features. Hyperspectral RS has been used to detdowvasive understorey herb by
measuring its impact on the foliar chemistry and water obriaé canopy trees (Asner and Vitousek
2005). However, such tools tend to be costly and are relatively unavailablst ikfiea.

We must therefore rely on the existing RS data to deriveonedle approximations of

understorey structure. It may be possible to model overstoreystodsy associations, and use these
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relationships with RS-derived canopy structure measures pounderstorey features. Another approach
is to compress canopy and understorey structural variablesdit@$ and use RS to map index values.
Structural indices are widely used in forest ecology (e.ginidean and Starlinger 2001; Pommerening
2002; McElhinnyet al. 2006), and have been successfully employed to relate RS datastosfoneture
(Cohen and Spies 1992; Hanstral. 2001) and to characterize mammalian and avian habitats (Coops
and Catling 2002; Gibsaeat al. 2004).
4.3. Potential shortcomings

The relatively small sample size and the distribution ef ¢bllected bongo plots raise the
possibility of bias, and that our models present a flawed piaftifgongo habitat use. Conservation
surveys of rare species are notoriously biased, as theytareiwiproperly randomized and/or stratified
(Guisanet al. 2006). We concede that RS data limitations prevented us fvalnaging scales coarser
than 20.25 ha, but contend that the spatio-temporal distribution of optesaatdequately captures bongo
distribution and the range of forest structural types in thdysarea. We sampled widely throughout the
Aberdares, using a design that 1) was effectively randorel@tion to the landscape (the grid point
system), and 2) accounted for altitudinal and precipitati@aalignts. Our surveys covered most of the
areas occupied by the main surviving bongo herds, as well asareas/ where bongos were not found.
Although our bongo samples were often closely spaced (seeHRigand Section 2.2.2), these plots were
collected over three seasons within apparent home rangesntiraied use of which has been confirmed
during subsequent surveys by our colleagues. These data wereadltected within preferred bongo
habitat, which is supported by the fact that these areas gedylaomprised of the sort of herb-rich open
and secondary forests that bongos are believed to favor (Kingdon 18825-Hugiet al. 2000).

Historically, bongos were more widely distributed throughout the ddres (Kingdon 1982;
Prettejohn 2004), which suggests that the few remaining bongos dolizet aiti suitable habitat areas.
Our “non-bongo” grid samples therefore do not necessarily represertiongo absence. This possibility
suggests that our models were more likely to be conservative in discigiimdluential habitat features,

rather than erroneous.
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This study focused on the relationship between bongo and vegetaticturst, and therefore did
not include other factors that are likely to affect bongothaelection. The level of human presence is
an example of a factor that appears to particularly influboogos. The role of such factors should be
investigated and incorporated in subsequent distribution models.

4.4. Implications for the study of other rare animals

This study should interest ecologists and conservation biolagisiying other mobile, forest-
dwelling species, particularly where rarity and environmenthioento make field surveys difficult.
Remote sensing is an important tool to aid species distributialeling in such circumstances (Rushton
et al. 2004), but the more promising remote sensing techniques are usotaiynployed by ecologists
(Turneret al. 2003). There appears to be two broad classes of RS-based ecatgiesd, divided into
those undertaken by remote sensing experts and those undertaken by eqbgists. In the former
case, an advanced RS technique is used to identify habitat $eafupetential importance for certain
organisms, but the authors typically do not use the method to identifygdueism’s habitat requirements
or distributions (e.g. Hydet al. 2006, Theatet al. 2005). In the second category, ecologists use RS to
provide more basic (and fairly limited) input for distribution madeisually in the form of categorical
predictors (e.g. Schadt al. 2002) or simple indices such as NDVI (e.g. Osbatna. 2001). Several
recent studies have generated continuous predictors for distnilmiodels by regressing RS data against
field-collected habitat variables (e.g. Gibseinal.2004; Jeganathagt al.2004). However, such studies
are still relatively rare, and the underlying regression igcles are fairly simple and depend on
substantial field calibration data to be transported to other habitats.

Our study helps to address the gap between applied ecology and sengitey, as it shows how
more advanced RS analysis techniques can be used in habitat mddelsg.contributes by providing
further insight into 1) the ability of RS data to quantify hab#@tmucture, and 2) the performance of
several optical RS datasets in an environment that promotadideterrorsOur use of the information
theoretic approach makes this study more relevant to ecologidts increasingly prefer this

methodology for habitat modeling studies (Burnham and Anderson 2002; Rasalto?004).
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5. Conclusions

This analysis confirmed our hypothesis that bongo habitat is defihenultiple spatial scales.
We found that forest understorey characteristics at the fag@e and canopy structural conditions at a
patch-scale of ~20 ha are important in determining bongo habitdtrther work is needed to assess the
importance of coarser scales. Future distribution models mustporate multi-scaled predictors if
suitable bongo habitat is to be accurately identified, as modaiesenting different, single scales can
generate different distribution patterns (Wiens 1989).

The validation of our hypothesis is an important first step in unaelisi;abongo ecology, given
the near-absence of existing information and the difficulty vdlyshg this animal. Our methodology
improves our confidence in the legitimacy of our central finding:allied field and RS data analyzed
with techniques more advanced than those typically used in ealapdeling studies with the
information theoretic approach to model selection, which provita® ecologically sound models than
those based on conventional null-hypothesis testing (Burnham and An@8&@2n These procedures
also provide valuable insight into how RS benefits ecological studresegpecies.

Our “two-step” approach (Jeganatheiral. 2004) related multi-scaled RS variables to important
microhabitat variables, which allowed us to distinguish largelescforest structural properties that we
could not detect from the ground. This approach is an alteenttithe well-stratified, multi-scaled field
surveys recommended for distribution modeling studies (Vaughan andd@dr2@03). Such surveys are
typically beyond the means of most ecologists, and are unlikefjeld sufficient data on rare species
(Guisanet al. 2006). These limitations and our findings lead us to concluddrtBas indispensable for
habitat modeling studies of the bongo and similar rare, mobildespayiven the multi-scaled nature of
habitat use and the superior scalability of RS data comparigeldadata. ASTER is particularly well-
suited for this task, as its spectral range and multiglelugons permit the derivation of scalable, sub-
pixel estimates of vegetation, as well as information on the spatiijaration of habitats.

Our study also shows that optical RS cannot replace field dathairacterizing micro-scale

habitat structure, particularly the understorey featurgmitant to a rare, mobile forest herbivore. RS
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data can measure the micro-scale canopy features responsibteping understorey conditions, which
suggests it is possible to approximate the understorey envinbrusiag forest structural indices or other
modeling approaches. However, our results emphasize the importamiagfield and RS data together
when modeling rare species’ habitat use (Jeganathah 2004; Rushtoret al. 2004). Field data are
needed to identify important habitat features and to ascribe phys@&aning to RS data, which enable
habitat variables to be extensively mapped at a varietyatfa scales. Spectral mixture analysis is a
more profitable technique to use when field data are limiteds alirect connection to forest properties
permits RS-based habitat models that need less calibration than moréaliieat-reflectance models.
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Tablel

Table 1. The origin, derivation techniques, names, resolutions (res), scales, units, subsequent transformations, and basic statistics (segregated according to bongo presence and absence) of
the 60 RS and field data variables. Significantly different means are indicated in boldface, with asterisks denoting alpha level (*: p <0.05; **: p <0.01; ***: p <0.001; ****: p <(0.0001).

Res Scale Trans- Bongo n = 34, 36' Non-bongo n =83, 90"
Dataset Derivation technique’ Variable Name’ (m) (ha) Units' formed® Mean StdDev Range Mean Std Dev Range
SMA GREENVEG 30 0.09 - PCA1 0.32% 0.10 0.16 - 0.57 0.37* 0.10 0.09 - 0.65
SMA NPVEG 30 0.09 - PCA1 0.06 0.02 0.01-0.14 0.07 0.04 0.02-0.29
SMA SOIL 30 0.09 - PCA1 0.06 0.02 0.01-0.12 0.07 0.03 0.02-0.17
SMA SHADE 30 0.09 - PCA1 0.56%* 0.11 0.30-0.74 0.49%* 0.09 0.28 - 0.69
Aggregation of SMA fractions GREENVEG 105 1.10 - PCA1 0.33* 0.08 0.18- 0.48 0.37* 0.08 0.11-0.54
ASTER Aggregation of SMA fractions NPVEG 105 1.10 - PCA1 0.06* 0.01 0.04 - 0.09 0.07* 0.02 0.02 - 0.18
Bands Aggregation of SMA fractions SOIL 105 1.10 - PCA1 0.06%* 0.02 0.02-0.11 0.07** 0.02 0.03-0.16
1-9 Aggregation of SMA fractions GREENVEG 225 5.06 - PCA1 0.33* 0.07 0.20-0.48 0.37* 0.08 0.10-0.53
Aggregation of SMA fractions NPVEG 225 5.06 - PCA1  0.06%** 0.01 0.04-0.10 0.07%** 0.02 0.03-0.16
Aggregation of SMA fractions SOIL 225 5.06 - PCA1 0.06* 0.02 0.03-0.11 0.07* 0.02 0.03-0.15
Aggregation of SMA fractions GREENVEG 450  20.25 - PCA1 0.34% 0.05 0.23-0.46 0.37* 0.08 0.11-0.52
Aggregation of SMA fractions NPVEG 450  20.25 - PCA1  0.05%*%** 0.01 0.04 - 0.07 0.07%%** 0.02 0.03-0.12
Aggregation of SMA fractions SOIL 450  20.25 - PCA1  0.06** 0.01 0.04 - 0.09 0.07** 0.02 0.04 - 0.15
Mean TF 3X3 3X3BIM 15 0.20 1 PCA2  284.49** 49.44 199.12 - 419.09 316.40%* 67.92 203.99 - 677.10
ASTER Band 1 Standard deviation TF 3X3 3X3 BISD 15 0.20 1 PCA2 2823 13.92 6.36 - 78.38 25.06 14.64 7.71 - 80.48
Angular second moment TF 3X3 3X3 BIASM 15 0.20 - PCA2 1.00* 0.00 1.00 - 1.00 0.95* 0.15 0.26 - 1.00
Mean TF 3X3 3X3 B2M 15 0.20 1 PCA2  236.49** 47.53 158.46 -373.91 272.26%* 81.57 161.90 - 775.13
ASTER Band 2 Standard deviation TF 3X3 3X3 B2SD 15 0.20 1 PCA2 2468 10.88 10.11-51.20 26.61 19.40 6.40 - 114.57
Angular second moment TF 3X3 3X3 B2ASM 15 0.20 - PCA2 0.69 0.27 0.26 - 1.00 0.68 0.27 0.26 - 1.00
Mean TF 3X3 3X3 B3M 15 0.20 1 PCA2 1663.52** 387.70  1008.19 -2720.41  1888.74** 374.74 884.33 -2787.44
ASTER Band 3 Standard deviation TF 3X3 3X3 B3SD 15 0.20 1 PCA2 17932 94.45 31.42 - 535.74 153.25 71.89 32.64 -315.56
Angular second moment TF 3X3 3X3 B3ASM 15 0.20 - PCA2 0.79 0.26 0.28 - 1.00 0.85 0.24 0.28 - 1.00
Mean TF 7X7 7X7 BIM 15 1.10 1 PCA2  284.83** 41.72 198.97 - 386.53 315.88+* 55.55 210.25-601.84
ASTER Band 1 Standard deviation TF 7X7 7X7 BISD 15 1.10 1 PCA2 36.61 13.70 13.45-67.42 37.00 19.46 14.86 - 119.08
Angular second moment TF 7X7 7X7 BIASM 15 1.10 - PCA2  1.00%* 0.00 1.00 - 1.00 0.94%* 0.13 0.44 - 1.00
Mean TF 7X7 7X7 B2M 15 1.10 1 PCA2  237.67*%* 41.23 155.41 - 340.72 270.22%* 63.90 157.16 - 642.10
ASTER Band 2 Standard deviation TF 7X7 7X7 B2SD 15 1.10 1 PCA2 33383 13.01 13.71 - 64.72 39.49 27.34 10.15-172.86
Angular second moment TF 7X7 7X7 B2ASM 15 1.10 - PCA2 057 0.28 0.25-1.00 0.59 0.26 0.16 - 1.00
Mean TF 7X7 7X7 B3M 15 1.10 1 PCA2 1699.67** 35446  1055.95-2511.19 1894.97** 34891 914.95 - 2670.47
ASTER Band 3 Standard deviation TF 7X7 7X7 B3SD 15 1.10 1 PCA2 23245 99.40 76.89 - 422.16 207.66 77.83 60.45 - 462.64
Angular second moment TF 7X7 7X7 B3ASM 15 1.10 - PCA2 0.78 0.25 0.26 - 1.00 0.80 0.25 0.27 - 1.00
MODIS daily SMA GREENVEG 463  21.44 - PCA1  0.33%%* 0.05 0.24-0.44 0.37%%* 0.06 0.22-0.51
surface SMA NPVEG 463  21.44 - PCA1 0.02 0.02 0.00 - 0.08 0.02 0.02 -0.04 - 0.06
reflectance SMA SOIL 463  21.44 - PCA1 0.07 0.06 -0.01-0.22 0.06 0.05 -0.03-0.27
SMA SHADE 463  21.44 - PCA1 0.58* 0.06 0.44 - 0.68 0.56* 0.04 0.41 - 0.68




Res Scale Trans- Bongo n = 34, 36" Non-bongo n =83, 90"

Dataset Derivation technique2 Variable Name® (m) (ha) Units' formed® Mean StdDev Range Mean Std Dev Range
MODIS SMA GREENVEG 927  85.93 - PCA1 0.38% 0.05 0.26 - 0.45 0.41* 0.06 0.24-0.54
BRDF Nadir- SMA NPVEG 927  85.93 - PCA1 0.03 0.01 0.01 -0.07 0.03 0.02 0.00 - 0.10
adjusted SMA SOIL 927  85.93 - PCA1 0.05 0.02 -0.01-0.11 0.06 0.04 -0.01-0.17
reflectance SMA SHADE 927  85.93 - PCA 1  0.54%%** 0.06 0.46 - 0.67 0.50%*=* 0.05 0.43 - 0.65
Mean TF 3X3 3X3M 5 0.02 DN PCA3 731632 748.86  5918.00 - 10154.00  7681.94 1112.56  5959.00 - 13490.00
Standard deviation TF 3X3 3X3SD 5 0.02 DN PCA3  490.38 224.67 129.00 - 1169.00  408.06 262.18 106.00 - 1406.00
Angular second moment TF 3X3 3X3 ASM 5 0.02 DN PCA3  0.17* 0.06 0.11-0.38 0.22* 0.11 0.11-0.63
Mean TF 5X5 SX5M 5 0.06 DN PCA4 732135 681.64  6102.00 - 9850.00  7697.41 1055.84  5975.00 - 13399.00
Standard deviation TF 5X5 5X5SD 5 0.06 DN PCA4  579.24* 212.77 143.00-1137.00  505.69* 327.09 145.00 - 1729.00
SPOT Angular second moment TF 5X5 5X5 ASM 5 0.06 DN PCA4  0.10* 0.06 0.06 - 0.36 0.14* 0.08 0.05-0.35
panchromatic Mean TF 9X9 9X9M 5 0.20 DN PCA4  7284.50* 582.94  6307.00 - 9093.00  7703.31* 995.44  6015.00 - 13465.00
Standard deviation TF 9X9 9X9 SD 5 0.20 DN PCA4  677.50 254.27 206.00 - 1497.00  581.45 335.53 212.00 - 1795.00
Angular second moment TF 9X9 9X9 ASM 5 0.20 DN PCA4 0.07* 0.05 0.03-0.27 0.10* 0.07 0.03 - 0.38
Mean TF 21X21 21X21 M 5 1.10 DN PCA4  7298.68%* 498.50  6330.00 - 8617.00  7692.92** 812.92  6408.00 - 12370.00
Standard deviation TF 21X21 21X21SD 5 1.10 DN PCA4  744.15 237.45 268.00 - 1289.00  722.12 396.63 240.00 - 2397.00
Angular second moment TF 21X21 ASM 5 1.10 DN PCA 4  0.05*% 0.05 0.01 - 0.30 0.07* 0.05 0.01 - 0.25
1 Basal Area® 22.6 0.04 m*ha’! - 39.45%%* 37.50 0.00 - 141.36 16.80%** 21.28 0.00 - 98.04
2 Stem density® 22.6 0.04 nha’! - 297.06 301.35 0.00 - 1171.63 232.66 281.04 0.00 - 1096.85
3 Canopy height® 22.6 0.04 m - 17.36** 9.09 1.55-42.41 12.13%* 6.17 0.90 - 26.10
4 Canopy cover® 22.6 0.04 - - 0.80 0.25 0.00 - 1.00 0.73 0.29 0.00 - 1.00
Field Data 2 Bamboo density” 22.6 0.04 nha’! - 13874.10  22828.02 0.00 - 110687.9 9186.36 15493.33 0.00 - 72932.51
2 Shrub densityb 22.6 0.04 nha’! - 1474.36* 1819.39 0.00 - 7366.92 4308.43* 5215.52 0.00 - 24815.91
2 Tall forb densityb 22.6 0.04 nha’! - 6178.03* 5861.21  133.72-20259.03  3494.03* 4112.13 0.00 - 23266.51
4 Ground cover® 22.6 0.04 - - 0.83 0.14 0.35-1.00 0.78 0.18 0.10 - 1.00
4 Herbaceous heightb 22.6 0.04 - - 3.10 0.82 1.00 - 4.70 2.86 0.99 0.90 - 5.70

"Total number of plots varies by data type. The first value indicates the number of field plot localities that were not obscured by cloud cover (34 bongo and 83 non-bongo) that could be
used to extract RS-derived variables. The second refers to the number of available presence/absence field data plots (36 bongo and 90 non-bongo).

*Key to derivation techniques: SMA - Spectral mixture analysis; Aggregation of SMA fractions — Obtained by averaging the 30 m SMA endmember fractions, excluding the SHADE
fraction because it is a linear combination of the other fractions, which prevents the unique solution required for logistic regression models; TF - Texture filter; 3X3,5X5,7X7,9X9,21X21 -
The window sizes used in texture analysis; 1 - Plot basal area = ) (n trees per 5 cm DBH class X (II(DBH/200)?); 2 - Plot stem density = > (n trees per 5 cm DBH class per plot X (10000
m?/Plot area)). Other plot density measures = n (shrubs, tall forbs, or bamboo) X (10,000 m?/Area of plot strip transects); 3 — Plot canopy height = mean height of the 3 tallest trees/shrubs;
4 - Cover variables are the proportion of plant to non-plant cover taken from 20 readings; 5 - Herbaceous height = the mean of 20 height measurements based on 7 different height classes.
*Variable name: GREENVEG - the green vegetation endmember fraction; NPVEG - the nonphotosynthetic vegetation endmember fraction; SOIL - the soil endmember fraction; SHADE -
the SHADE endmember fraction; *Canopy structure variable; "Understorey structure variable.

*Key to units: 1 = Reflectance X 10000; DN = digital numbers X 1000.

’Refers to subsequent transformations of the variables sets. Principal components analysis (PCA) was performed on each RS variable set representing a unique sensor-scale combination in
order to 1) orthogonalize the data, and 2) to reduce the compress the number of variables for subsequent logistic regression analyses (provided that at least 90 % of explained variance could
be retained): PCA 1 = the GREENVEG, NPVEG, and SOIL fractions of each SMA dataset were PC transformed—all three PCs were retained to account for 90 % of variance; PCA 2 =
The values of the 3 texture measures for all 3 ASTER VNIR bands were PC transformed (separated by window size), with PCs 1-5 retained; PCA 3 = The 3 3X3 SPOT texture measures
were PC transformed, with all three PCs retained; PCA 4 = the first two PCs of each set of the transformed 5X5, 9X9, and 21X21 SPOT texture measures were retained.




Tables 2-3

Table 2. Selected results of the multiple logistic regression models based on specified combinations of the field-
collected microhabitat variables (canopy structure variables are presented in bold; understorey variables in plain
text). The results of the five best models, the best models using canopy and understorey variables only, and the
global model (denoted by the boldface, underlined model rank) are presented. Models were ranked and
evaluated using the modified Akaike’s Information Criterion (AIC,), the Akaike difference (4;), and Akaike
weights (w;). The adjusted sum of squares R* (sts,adj) indicates the proportion of variance explained in the
response.

Rank Model (R =27, n=126) *

T AIC, A w; R’

K ssadi
1 BA, Bamb, Shrub, Forb, HH 6 125.00 0.00 0.14 0.24
2 BA, CC, Shrub, Forb, HH 6 125.20 0.21 0.13 0.23
3 BA, Shrub, Forb, GC, HH 6 125.22 0.22 0.13 0.24
4 BA, Bamb, Shrub, Forb, GC, HH 7 125.42 0.42 0.12 0.24
5 BA, SD, CC, Bamb, Shrub, Forb, GC, HH 9 126.34 1.34 0.07 0.25
6 BA, CC, Shrub, Forb, GC, HH 7 126.89 1.89 0.06 0.23
7 BA, SD, Bamb, Shrub, Forb, GC, HH 8 126.92 1.93 0.06 0.25
9 BA,SD, HGT, CC, Bamb, Shrub, Forb, GC, HH! 10 127.18  2.19  0.05 0.26
21 Shrub, Forb, GC 4 133.22 8.22 0.00 0.17
24 BA, HGT, Bamb 4 138.50  13.50 0.00 0.13

*R = number of candidate models, BA = basal area; SD = stem density; HGT = canopy height; CC = proportion
canopy cover; Bamb = bamboo density; Shrub = shrub density; Forb = tall forb density; GC = proportion
ground cover; HH = relative height of herbaceous layer.

K = number of predictors plus regression intercept.

*Hosmer-Lemeshow test result: ° = 3.68, df = 8, p < 0.88.



Table 3. Selected results of the multiple logistic regression models based on specified combinations of the field and RS data
variables that provide the most likely explanation of bongo habitat selection. The results of the seven best models, the global
model (denoted by the boldface, underlined model rank number) and the best RS and field data only models are presented, as
well as the spatial scales they represent. Models were ranked and evaluated using the modified Akaike’s Information
Criterion (AIC,), the Akaike difference (A;), and Akaike weights (w;). The adjusted sum of squares R* (sts,adj) indicates the
variance in the response data explained by each model. Interpretations of the physical meanings of the principal components
(PCs) of the RS variables are provided, together with their eigen values and dominant eigen vectors.

Rank Model (R=79,n=117)* K' Scales (ha) AIC, A w; Rzm_
1 Shrub, Forb, GC, HH, ASTER SMA 450 PC1, PC2 7 0.04,20.25 105.39 0.00 0.12 0.36
2 Shrub, Forb, GC, HH, ASTER SMA 450 PC2 6 0.04,20.25 105.62 023 0.11 0.35
3 BA, Shrub, Forb, GC, HH, ASTER SMA 450 PC2 7 0.04,20.25 106.85 1.46 0.06 0.35
4 Shrub, Forb, GC, HH, ASTER SMA 450 PC1-3 8 0.04,20.25 10696 1.57 0.05 0.36
5 Shrub, Forb, GC, HH, ASTER SMA 450 PC2, PC3 7 0.04,20.25 107.10 1.71 0.05 0.34
6 BA, Shrub, Forb, GC, HH, ASTER SMA 450 PC1, PC2 8 0.04,20.25 107.19 1.80 0.05 0.36

33 BA, CC, Shrub, Forb, HH 6 0.04 11227 6.88 0.00 0.29

38  BA, Bamb, CC, Shrub, Forb, GC, HH, ASTER SMA 225 16 0.04,0.20, 11232 693 0.00 045
PC1- PC3, 450 PC1-PC3; SPOT 9X9 PC1,PC2* 5.06, 20.25

49  ASTER SMA 450 PC1,PC2; SPOT 9X9 PC1 4 0.20,20.25 113.70 831 0.00 0.27

Meaning of RS PCs: a = Eigen value proportion; b = dominant eigen vectors; ¢ = interpretation of PC gradient

o ASTER SMA 450 PC1: a=0.54; b =-0.40 GV, 0.63 NPV, 0.67 Soil; ¢ = Closed forest with higher stem and/or bamboo

densities to shrubby, more open areas.

e ASTER SMA 450 PC2: a=10.30; b=10.90 GV, 0.41 NPV; ¢ = Drier (conifer rich) forests to moister (often bamboo-

dominated) forests.

o ASTER SMA 450 PC3: a=0.16; b =-0.66 NPV, 0.73 Soil; ¢ = Lower elevation open or secondary forest with abundant

broad-leaved shrubs and tall forbs to high altitude forest/grassland/sclerophyllous shrubland mosaic.

*R = number of candidate models, including the global model; BA = basal area; CC = proportion canopy cover; Shrub =
shrub density; Forb = tall forb density; GC = proportion ground cover; HH = relative height of herbaceous layer. SMA
225/450 = spectral mixture analysis endmember fractions aggregated to 225 or 450 m resolution; PC = principal component;

9X9 = window sizes used in texture analysis.
'K = number of predictors plus regression intercept.
*Hosmer-Lemeshow test result: y* = 3.60 df = 8, p < 0.89.



Figure 1

erdares

Figure 1. A) The mountain bongo’s potential distribution (dark grey areas) within Kenya. Mount Kenya
and the Aberdares fall within the black square. B) The Aberdares in relation to Mount Kenya. C)
Detailed view of the Aberdares, with potential bongo habitat shaded dark grey. The position of the
fenceline is indicated by the heavy black line. Field sample plot locations are denoted by black
diamonds (1% season bongo samples), grey diamonds (2™ season bongo samples), white diamonds (3"
season bongo samples), and black crosses (grid points).



Figure 2

Figure 2. Selected results of RS image analyses. A portion of the study area is illustrated by A) the
SPOT 5 m panchromatic image, and B) the SPOT 9X9 standard deviation texture image. The same area
is shown in the four right-hand images, which are the C) GV, D) soil, E) NPV, and F) shade fractional
end-members resulting from SMA of the 30 m ASTER image. The numbered crosses indicate the
locations of field sample plots: site 1 is located in mature, semi-open Hagenia forest; site 2 falls within
a large short-grass glade; site 3 lies in bamboo forest; sites 4 and 5 are in small, partially shrubby
clearings within a larger Hagenia forest.



Figure 3
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Figure 3. A graphical presentation of Spearman Rank correlation coefficients, indicating the strength and direction of
relationships between the RS and microhabitat variables. Coefficient bars are coded according to the microhabitat
variable assessed; the upper graph contains canopy structure variables, while the lower graph contains understorey
variables. Bars extending outside the grey-shaded area are significant at the indicated sequential Bonferroni-adjusted
alpha levels; those within the shaded area are not. RS variables appear on the X axes, and are segregated by sensor.
SMA variables are denoted by their endmember fraction names (GREENVEG, NPVEG, SOIL, SHADE), while
texture variables are listed according to window size and measure: M = mean; SD = standard deviation; ASM =
angular second moment. Variables that showed no significant relationship with any microhabitat feature are not
listed. These are: ASTER 3X3 Band 2 ASM, Band 3 SD, Band 3 ASM; ASTER 7X7 Band 2 ASM, Band 3 SD, Band
3 ASM; MODIS 463 m NPV & soil, MODIS 927 m NPV & soil.



Appendix 1

Appendix 1. Selected results of the multiple logistic regression models employing RS-derived predictor variables
segregated by sensor type and scale. The results of the five best models, the highest ranked models from each
individual dataset, and the global model (denoted by the boldface, underlined model rank) are presented, as well as
the spatial scales they represent. Models were ranked and evaluated using the modified Akaike’s Information
Criterion (AIC,), the Akaike difference (A;), and Akaike weights (w;). The adjusted sum of squares R’ (sts,adj)
indicates the proportion of variance explained in the response.

Rank Model (R =50, n =117)* K’ Scale (ha) AIC, A wi R

1 ASTER SMA 450 PC1, PC2 20.25 113.32  0.00 0.72 0.26

2 ASTER SMA 450 PC1, PC2, PC3 20.25 115.27 1.94 0.27 0.25
3 ASTER SMA 450 PC2, PC3 20.25 125.64 12.32 0.00 0.16
4 ASTER SMA 225 PC1, PC2 5.06 12772 14.39 0.00 0.16
5 ASTER SMA 225 PC1, PC2, PC3 5.06 128.88  15.55 0.00 0.15
6 SPOT 9X9 Texture PCI1, PC2 0.20 129.64 16.31 0.00 0.15
8 SPOT 21X21 PC1, PC2 1.10 133.16 19.83 0.00 0.13
9

10  ASTER SMA 105 PC1, PC2 1.10 13424 2091 0.00 0.11

0.09 13436  21.04 0.00 0.11
0.02 135.16 21.84 0.00 0.09
0.20 135.61 22.29 0.00 0.09
85.93 13588  22.56 0.00 0.07
19  ASTER VNIR 7X7 PC1, PC2, PC3 1.10 136.52  23.19 0.00 0.08
22 MODIS 463 PC1, PC3 21.44 136.93  23.61 0.00 0.06
50 ASTER: 1) SMA: 30 m (PC1-3), 105 m (PC1- 38 0.02-85.93 166.36 53.03 0.00 0.47
3), 225 m (PC1-3), 450 m (PC1-3); 2) VNIR
Texture: 3X3 (PC1-5), 7X7 (PC1-5). MODIS
SMA: 463 m (PC1-3); 927 m (PC1-3). SPOT
Texture: 3X3 (PC1-3); 5X5 (PCI1-2); 9X9
(PC1-2); 21X21 (PC1-2)*
*R = number of candidate models, including the global model; SMA = spectral mixture analysis; PC = principal
component; 3X3, 5X5, 7X7, 9X9, 21X21 = window sizes used in texture analyses.
'K = number of predictors plus regression intercept.
*Hosmer-Lemeshow test result: (y* = 7.16, df =7, p < 0.41).

12 ASTER SMA 30 PC2, PC3
14 SPOT 3X3 PC1, PC2
17 ASTER VNIR 3X3 PC1,PC2, PC3

3
4
3
3
4
3
3
SPOT 5X5 PC1, PC2 3 0.06 134.09 20.76 0.00 0.10
3
3
3
4
18 MODIS 927 PC2, PC3 3
4
3
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