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a Rare Species Conservatory Foundation, P.O. Box 1371, Loxahatchee, FL 33470 USA 
bCenter for Regional Environmental Studies, Department of Environmental Science, University of Virginia, 291 

McCormick Road Charlottesville, VA 22903 USA 
cDepartment of Geography, University of California Los Angeles, Box 951524, Los Angeles, CA 90095 USA 

dSchool of Natural Resource Management, Moi University, P.O. Box 3900, 30100 Eldoret, Kenya  

Abstract 
It can be difficult to further scientific understanding of rare or endangered species that live in inaccessible 
habitat using traditional methods, such as probabilistic modeling based on field data collection. Remote 
sensing (RS) can be an important source of information for the study of these animals. A key advantage 
of RS is its ability to provide information over an animal’s complete range, but models incorporating RS 
data are limited by RS’s ability to detect important habitat features. In this study, we focus on the rare, 
poorly-understood mountain bongo antelope (Tragelaphus euryceros isaaci) which survives in the wild in 
isolated pockets of montane forest in Kenya. We hypothesize that mountain bongo habitat is multi-scaled. 
We analyzed field and RS data (derived from SPOT, ASTER, and MODIS) ranging in scale from 0.02-
85.93 ha to test our hypothesis. Important microhabitat features were identified through logistic 
regression models of vegetation structure data collected in plots (0.04 ha) of bongo presence (n = 36) and 
absence (n = 90). Models were selected using an information theoretic approach. We analyzed the 
correlations between microhabitat (four canopy and four understorey structure measures) and RS 
variables derived using spectral mixture (SMA) and texture analysis; most ASTER and SPOT variables 
were significantly related with canopy structure variables (max |r| = 0.56), but correlations between 
understorey structure and all but two RS variables were insignificant. Further logistic regression modeling 
showed that combining field microhabitat (primarily understorey structure variables) and larger-scaled RS 
measures (ASTER spectral mixture analysis variables aggregated to 450 m (20.25 ha)) provided superior 
models of bongo habitat selection than those based on field or RS data only. The results demonstrate that: 
1) forest canopy characteristics at scales of ~20 ha and understorey structural conditions at the micro-
scale of 0.04 ha were the most important features influencing bongo habitat selection; 2) models for 
predicting bongo habitat distribution must incorporate both micro- and macro-habitat variables; 3) optical 
RS data may characterize important micro-scale canopy variables with reasonable accuracy, but are 
ineffective for detecting understorey features (unless alternative techniques such as forest structural 
indices can be successfully applied); 4) RS and field data are both essential for understanding bongo 
habitat selection. The technique employed here for understanding this rare antelope’s habitat selection 
may also be applied in studies of other large herbivores.     

1. Introduction  

Rare species are a preeminent concern of conservation biology, which is the “biology of scarcity” 

(Soule 1986, pg. 10). Successfully conserving a rare species depends on understanding interactions 

between the organism and its environment. Spatially-explicit, probabilistic distribution models are 
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important tools for examining this relationship, which is central to ecology (Guisan & Zimmermann 

2000). Such models are increasingly used to map species’ actual and potential distributions, and to 

understand the factors influencing these (Guisan and Zimmermann 2000; Rushton et al. 2004). However, 

the insight drawn from such models depends on the quality and quantity of input data. Collecting a 

dataset that is adequate in both senses is difficult when species are rare (Rushton et al. 2004), thus habitat 

modeling studies are skewed towards more abundant organisms (Guisan et al. 2006). 

Rare species pose logistical (cost) and statistical (sample size, independence) problems for 

distribution modeling studies (Guisan and Zimmermann 2000; Rushton et al. 2004). Furthermore, 

predicted distribution patterns and the factors influencing them can vary according to the scale of 

investigation, as most organisms’ habitats are determined by features defined at different scales (Wiens 

1989; Brown 1995). Choosing appropriate sampling scales is difficult for rare organisms, whose 

ecological requirements are often poorly understood (Rushton et al. 2004). 

Remote sensing (hereafter RS) is increasingly used in habitat modeling studies to overcome the 

problems of sample size and scale; RS provides the most efficient technique for collecting large quantities 

of habitat data over extensive areas at multiple spatial scales (Kerr and Ostrovsky 2003; Turner et al.

2003; Rushton et al. 2004; Wulder et al. 2004). Modern sensors offer the ability to collect information 

throughout the electromagnetic spectrum at sub-meter to multi-kilometer resolutions, and can be directly 

related to a number of field-based ecological measures (Turner et al. 2003). The advances in sensor 

technology and related analytical techniques have facilitated the increasing use of spatial distribution 

models in ecological and conservation applications, as high quality data can be collected and 

meaningfully interpreted in habitats where field surveys are technically or financially impractical 

(Rushton et al. 2004; Wulder et al. 2004).   

Despite this trend, many ecologists and biologists remain skeptical that RS data are suitable for 

fine-scale ecological studies (Turner et al. 2003). Furthermore, since most sensors are not designed to 

provide input for distribution models, the ability of RS to detect important habitat features varies 

according to the characteristics of a species and its ecosystem; these determine whether RS measurements 
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describe the driving habitat variables or their proxies (Turner et al. 2003; Rushton et al. 2004). For 

instance, high resolution RS data may detect shrubs browsed by an antelope in an open savanna 

woodland, but would fail to do so if these shrubs were located under closed canopy forest. In the latter 

case, the RS data might correlate with a proxy variable, such as canopy cover.  

Many RS-based habitat modeling studies rely on such proxies, which are often categorical 

variables that describe land cover or vegetation types (e.g. Debinski et al. 1999; Saveraid et al. 2001; 

Schadt et al. 2002). Categorical variables can be poor predictors of the species-habitat relationship, since 

they cannot account for within-class variability and struggle to distinguish ecotones (St-Louis et al.

2006). More informative proxy variables can be established by developing continuous relationships 

between RS data and relevant habitat features, such as vegetation structure (Turner et al. 2003; Rushton et 

al. 2004; St-Louis et al. 2006). The use of continuous, RS-derived proxies is growing in habitat modeling 

studies (e.g. Gibson et al.2004; Jeganathan et al.2004), but ecologists have yet to embrace many of the 

techniques developed for quantifying such variables (Turner et al.2003). For instance, the RS literature 

contains many studies in which RS is used to measure forest structural variables (Wulder et al. 1998; 

Hansen et al. 2001; Peddle et al. 2001; Scarth et al. 2001; Hudak et al. 2002; Wulder et al. 2004). These 

methods could be profitably applied in habitat modeling studies of forest-dwelling species.    

The subject of this study is the mountain bongo (Tragelaphus euryceros isaaci), a large, elusive 

antelope endemic to a handful of high mountain forests in Kenya. The mountain bongo (hereafter bongo), 

a distinctive sub-species of Central and West Africa’s lowland bongo (Tragelaphus euryceros euryceros), 

was once abundant in the isolated montane forest patches (see Figure 1A) that represent the limits of its 

potential habitat. In the past several decades, however, the number of bongos has declined precipitously. 

Causes are uncertain, but probably stem from a combination of rampant poaching, human encroachment 

into Kenya’s relatively small forest estate, and diseases such as rinderpest (Gathaara 1999; Imbernon 

1999; Kock et al. 1999; Lambrechts et al. 2003). Less than 100 individuals are believed to remain in the 

wild (Reillo 2002; Prettejohn 2004), the majority of which are confined to the Aberdare Mountains 

(Figure 1B). An international reintroduction and conservation project is now underway, which aims to 



4

recover the extant sub-populations and re-establish a viable bongo population on Mount Kenya (Figure 

1B), where one of the largest sub-populations used to be found. 

This study is part of the ecological research being conducted to support this broader conservation 

project, which is crucial because of the near absence of information on bongo ecology. A primary 

objective is to determine bongo habitat selection and distribution throughout its range using spatial 

distribution models. However, obtaining the necessary data for developing these models is extremely 

difficult given the bongo’s rarity; the Aberdares’ bongo sub-population is the only one with sufficient 

numbers to study, yet even this herd’s density is low relative to the Aberdares’ extensive, rugged forest 

estate. These conditions make it impractical to obtain the sort of fully-stratified, multi-scale field survey 

data needed for successful distribution models (Vaughan and Ormerod 2003), as collecting just one 

observation requires significant investments in time, money, and labor. Furthermore, choosing 

appropriate sampling scales is difficult in the absence of prior knowledge, while the high costs of field 

work preclude exploratory investigations. These factors indicate that the necessary habitat information 

must be provided by RS data trained with a relatively small field dataset. Unfortunately, montane forests 

challenge the capabilities of optical RS data (the kind most readily available to conservation ecologists), 

as forest reflectance received by the sensor is confounded by the variable illumination that results from 

extreme topography (Gu and Gillespie 1998). 

Existing information on the bongo indicates that it is primarily a browser of forest edge and 

understorey plants, and its preferred habitat appears to be a mosaic of open glades, secondary re-growth, 

and primary forest (Kingdon 1982). Bongo home ranges may be as large as 120 – 300 km2, and 

encompass the variety of floristic types represented within the larger montane forest patches (usually 500-

1,000 km2) that delineate the potential habitat of each bongo sub-population (Kingdon 1982). These 

characteristics suggest that bongos respond to vegetation structural features (best characterized with 

continuous variables) more than composition (a categorical descriptor); canopy structural variations 

should influence browse and cover abundance more than the type of species forming the canopy. Such 

structural features are likely to be described by scales ranging from several hundred square meters (e.g. a 
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small glade or tree-fall gap) to hundreds or thousands of hectares (e.g. secondary forest patches 

containing abundant browse and cover). Multi-scaled habitat selection has been found in other large 

herbivores, including caribou Rangifer tarandus (Terry et al. 2000; Johnson et al. 2004) and moose Alces 

alces  (Maier et al. 2005; Cassing et al. 2006), as well as other mobile species, such as porcupine 

Erethizon dorsatum (Morin et al. 2005), red squirrel Tamiasciurus hudsonicus (Fisher et al. 2005), and 

capercaillie Tetrao urogallus (Graf et al. 2005).  

Based on these insights, we hypothesize that bongo select habitat at multiple spatial scales. In 

order to address this hypothesis, we employ five datasets representing different spatial scales and levels of 

detail. The greatest detail is provided by micro-scale vegetation structure data, collected in 22.6 m 

diameter (0.04 ha) field plots centered on areas defined by bongo presence or absence. The additional 

datasets comprise four RS images, ranging in spatial resolution from 5-927 m (0.02-86 ha), and varying in 

spectral resolution from one panchromatic band to nine bands in the visible and near infrared. 

In our analysis, we use logistic regression to identify the microhabitat structural variables most 

influencing bongo habitat selection. We then examine the correlation strength between these features and 

continuous RS variables derived from spectral mixture analysis (SMA) and texture analysis, which are 

techniques useful for measuring forest structure and the arrangement of species’ habitats (Wulder et al.

1998; Sabol et al. 2002; Lu et al. 2003; Theau et al. 2005; Kayitakire et al. 2006; St-Louis et al. 2006). 

This step allows us to effectively determine both the physical meaning of the RS data and its usefulness 

for characterizing the microhabitat features important to bongos. We then use logistic regression to 1) 

assess the relative ability of each RS dataset to discriminate between bongo and non-bongo habitats, and 

2) to determine which combination of data—and therefore which spatial scale(s)—provides the best 

bongo habitat selection model.   

The methods we use to address our hypothesis offer valuable insight into 1) the scale and nature 

of habitat features selected by bongos, 2) the ability of advanced RS techniques to provide useful 

predictor variables for modeling bongo habitat selection, and 3) the relative merits of several optical RS 
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datasets and field data for studying a rare organism in a challenging environment. Our procedure is 

transportable to studies of other large, rare herbivores worldwide.

2. Methods

2.1. Background 

2.1.1. Study area 

This study focuses on the Aberdare Mountains (3,998 m), home of the largest remaining wild 

bongo population. The Aberdares comprise an equatorial massif that lies 40 km from the geologically and 

ecologically similar Mount Kenya (Figure 1B), which was formed by Miocene and Pliocene-era 

volcanism and tectonic activity, and shaped by Pleistocene glaciation at higher elevations (Schmitt 1991).  

The Aberdares climate is characterized by two rainy seasons (October-December and March-

May) interspersed with dry seasons, reflecting shifts in the Inter-Tropical Convergence zone (Schmitt 

1991). Mean annual rainfall increases from north (~950 mm) to south (~2,250 mm), where exposure to 

prevailing Indian Ocean winds is greatest (Schmitt 1991). Temperature is linked to elevation, with a 

yearly average of 18°C at 1,800 m and 9°C at 3,000 m. Diurnal temperature swings of 11-16°C represent 

the largest thermal variation (Schmitt 1991).  

The Aberdares’ main habitat types include closed-canopy forest, heathland, high altitude 

grassland, and bare rock (Schmitt 1991). The Aberdares range hosts large wildlife populations, 

particularly buffalo (Syncerus caffer), elephant (Loxodonta africana), and hyena (Crocuta crocuta). 

Bongo are found primarily within the ~1,120 km2 forest zone, and avoid the higher, non-forested habitats 

(Kingdon 1982). Lower forests are dominated by coniferous Podocarpus and Juniperus species in drier 

habitats, and the flowering hardwoods Cassipourea, Neoboutonia, Macaranga, and Olea in more humid 

locations. Extensive, near monotypic stands of bamboo are found between 2,500-3,000 m, and the narrow 

belt of forest above this (~3,000-3,300 m) is dominated by Hagenia abyssinica, which gives way to heath 

and grassland (Schmitt 1991). Lower forest margins are defined by protected area boundaries at ~2,000 

m, below which lie dense rural settlements.  
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The Aberdares are protected as a national park above 3,000 m and in an eastern spur that extends 

down to 2,100 m, with the remaining area between the national park boundaries and human settlements 

designated as forest reserve (Lambrechts et al. 2003; KWS 2006). A project to fence the Aberdare 

National Park and parts of the forest reserve has enclosed all but ~65 km along the Aberdares western 

escarpment (Rhino-Ark 2006). This study focuses on the Aberdares’ forests, excluding those lying 

outside the fence (Figure 1C).    

2.1.2. Background on bongo ecology 

Most of the information on bongo ecology is found in studies of the lowland bongo (Hillman and 

Gwynne 1987; Klaus et al. 1998; Turkalo and Klaus-Hugi 1999; Klaus-Hugi et al. 2000; Elkan 2003), 

which occurs in Central and West Africa. The lowland bongo’s gregariousness sets it apart from other, 

typically solitary, forest ungulates (Estes 1974; Klaus-Hugi et al. 1999). Herds of female and young may 

aggregate into concentrations of 50 or more animals, although males are more solitary, wider-ranging, 

and non-territorial (Hillman 1986; Estes 1991; Klaus-Hugi et al. 1999). Lowland bongo habitat is a 

mosaic of mineral-rich forest glades, secondary forest, and mature forest (Klaus-Hugi et al. 1999; Klaus-

Hugi et al. 2000). Home ranges are organized around glades, which provide crucial mineral supplements 

and grasses that account for up to 30 percent of a lowland bongo’s intake (Hillman and Gwynne 1987; 

Klaus et al. 1998; Klaus-Hugi et al. 1999; Klaus-Hugi et al. 2000). Secondary forest provides cover and 

the browse (primarily tall forbs, understorey shrubs, and lianes) that forms the majority of the animal’s 

diet (Klaus-Hugi et al. 1999). Mature forest constitutes a less-utilized matrix, as its structure inhibits the 

growth of typical bongo food plants (Klaus-Hugi et al. 1999).  

The mountain bongo shares the same social characteristics and an apparent preference for 

secondary forests and glade habitats (Kingdon 1982). However, lowland and montane forests are 

substantially different, as the latter are characterized by extensive stands of bamboo (Sinarundinaria 

alpine) and an altitudinal stratification of vegetation types (Schmitt 1991; Bussmann 1994). The bongo is 

believed to migrate along the elevation gradient as seasons change (Kingdon 1982). These factors indicate 

that mountain bongo habitat is configured differently than the lowland bongo’s.
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2.2. Data 

2.2.1. Remotely-sensed data 

We used four RS datasets in this study: 1) two 5 m resolution SPOT 5 panchromatic scenes, 

acquired on February 17, 2006 (source: Terra Image USA www.terraimageusa.com); 2) the three 

visual/near infrared (VNIR) bands (0.52-0.86 µm, 15 m resolution) and six shortwave infrared (SWIR) 

bands (1.60-2.43 µm, 30 m resolution) of two ASTER L1A scenes collected on March 29, 2005; 3) a 

MODIS surface reflectance image from March  29, 2005 (463 m); 4) a 927 m MODIS nadir BRDF-

adjusted 16-day reflectance image from March 22, 2005. Each MODIS image consisted of seven bands 

ranging from 0.46-2.16 µm. ASTER and MODIS data were provided by the US Geological Survey 

(edcimswww.cr.usgs.gov/pub/imswelcome/). A 90 m resolution SRTM (version 2) digital elevation 

model (DEM) was also acquired (source: CGIAR srtm.csi.cgiar.org). 

 SPOT and ASTER images were ortho-rectified to remove significant geometric distortions 

caused by the rugged topography. Accuracy was assessed using GPS-acquired control points (3-5 m 

precision) and an independently ortho-rectified Landsat 7 ETM+ scene (source: Global Land Cover 

Facility, www.landcover.org) with sub-50 m precision (Tucker et al. 2004). The root mean square error 

(RMSE) between the corrected SPOT data and control points was less than 10 m, while the RMSE 

between matched ASTER and SPOT image features was 7 m. Both image sets were more precise than the 

Landsat scene. MODIS images were not ortho-rectified.  

We converted the ASTER images from at-sensor radiance to top of atmosphere reflectance using 

available conversion coefficients (Smith 2006), and used dark-target subtraction to remove atmospheric 

effects (Jensen 1996). The SPOT imagery was left in digital number format and did not require 

atmospheric correction, because the subsequent analytical technique (texture analysis) is insensitive to 

atmospheric effects. The MODIS data were already atmospherically corrected, although it was necessary 

to remove striping in two bands of the 463 m image using Fourier transform filters, which corrected most 
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of this error. Minor cloud cover was manually digitized and masked out of the SPOT, ASTER, and 

MODIS 463 m data.   

All data required topographic correction to remove terrain shadows. The SCS+C correction was 

applied to SPOT and ASTER scenes (Soenen et al. 2005), while the SCS correction (Gu and Gillespie 

1998) was used for MODIS images. Both corrections normalize reflectance (L) by adjusting for slope (α), 

the solar zenith angle, and the solar incidence angle (i). The SCS+C correction differs in that it includes a 

term (derived from a regression of i and L) to account for the poor performance of SCS when α is extreme 

(Soenen et al. 2005). The DEM aggregated to MODIS scales did not produce high α values. To provide α

for SPOT and ASTER images, the 90 m DEM was re-sampled to 5, 15, and 30 m resolution using a 

splining function. 

The off-nadir look angles of the ASTER, SPOT, and 463 m MODIS scenes required the 

following adjustment to α:   

( )ωϕγαα −−= sinadj     (1) 

Where: αadj is adjusted slope, γ is terrain aspect, φ is the sensor track azimuth, and ω is the sensor look 

angle (positive for right of nadir on a descending orbit, and negative for left). An author of the SCS+C 

correction confirmed the modification’s validity (Coburn, Pers. Comm. 2006).   

2.2.2. Field data  

We collected field data over three periods representative of the Aberdares climate: the cool, misty 

long dry season (June-August, 2005), the hot, short dry season (February-March, 2006), and the end of 

the long rains (May-June, 2006). Field work was conducted with experienced trackers from the local 

Bongo Surveillance Program and Kenya Wildlife Service rangers (the park authority). Over the course of 

12 expeditions covering 92 days, forests were surveyed for bongo tracks, dung and other signs that 

indicated habitat use (e.g. feeding, lying). A “reconnaissance” approach was used, where a general 

heading was maintained while following paths of least resistance (Walsh and White 1999). Plots of 22.6 
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m diameter (the nominal diameter of 1/25 ha circular plots) were centered on bongo habitat-use sign that 

could be confidently identified. Following James and Shugart (1970), the following variables were 

recorded: diameter at breast height (DBH) of trees larger than 7.5 cm; top height of the three highest trees 

(using a clinometer); the number and species of breast-height shrubs (< 7.5 cm DBH) and herbaceous 

plants (forbs) within two 22.6 X 1.2 m transects; canopy and ground cover proportions (based on 20 

readings for each); the average herbaceous layer height (20 readings). The same habitat data were 

recorded at pre-assigned plots centered in 1 km2 grid cells laid over the study area. These points, 

representing bongo absence, were sampled if surveys passed within 200 m and no bongo sign were found. 

Plots were located and geo-referenced using a global positioning system (GPS) with an antenna. Error 

caused by dense canopy and steep terrain was reduced by raising the antenna on a 5 m pole and averaging 

positional fixes for 30-120 minutes. 

We collected 150 field plots, eight of which were recorded using a variable plot method; these 

were reconciled to the fixed plots using photo-interpretation. The total count included 36 plots where 

bongo were indicated, 90 non-bongo plots (Figure 1C), and 24 plots with waterbuck Kobus 

ellipsiprymnus sign. The waterbuck plots were used only to assess correlations between field and RS 

variables. The identity of the 36 bongo plots was confirmed using mitochondrial DNA extracted from 

dung specimens within or in the vicinity of sample plots. The waterbuck plots were initially thought to be 

bongo-use sites but were eliminated by mitochondrial DNA evidence. Hence, these plots were included in 

a calibration data set but eliminated from any formal analysis of bongo habitat selection. 

In a study of radio-collared White-tailed deer Odocoileus virginianus, Dunn (1978) found that 

positional observations were effectively uncorrelated after an average of 13.5 hours (min 7.9, max 22.6). 

In this study, the times at which neighboring pairs of bongo habitat use signs were made differed by an 

average of 57 days (range: ~24 hours-284 days). Although neighboring habitat use signs were closely-

spaced (mean nearest neighbor distance = 715.3 m), their temporal separation is sufficient for their 

corresponding data plots to be considered independent under Dunn’s criteria. The trial removal of several 
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samples with the least temporal separation during the subsequent logistic regression analyses (see section 

2.4 and following) showed that results were not altered appreciably.  

2.3. Derived variables 

 We derived a total of 60 variables from the field and remotely-sensed data, ranging in spatial 

scale from 0.02-85.93 ha. Table 1 provides a list of these variables, including their derivation techniques, 

spatial scales, units of measure, and relevant transformations. Differences between mean variable values 

in bongo and non-bongo plots were assessed using a two-sided Wilcoxon rank-sum test, a non-parametric 

equivalent of the t-test used because most variables were non-normally distributed. Descriptions of the 

methodologies used to derive these variables follow in sections 2.3.1-2. 

2.3.1. Remotely-sensed variables 

We used two techniques to derive variables from the remotely-sensed data: spectral mixture and 

texture analysis. Spectral mixture analysis is a linear modeling technique that estimates the fractional 

abundance of specified constituents (endmembers) within a pixel using their spectral profiles (Adams et 

al. 1989). This technique is particularly useful for ascribing physical meaning to RS data, since it 

establishes a direct and easily interpretable link between the signal received by the sensor and the surface 

features shaping it (Sabol et al. 2002). Although designed for hyperspectral imagery, spectral mixture 

analysis is also applicable to multispectral data (e.g. Sabol et al. 2002; Lu et al. 2003). In texture analysis, 

information is obtained by measuring the spatial variation in an image’s tonal values (Baraldi and 

Parmiggiani 1995). Texture analysis of optical RS has been successfully used to quantify forest structural 

properties (Wulder et al. 1998; Kayitakire et al. 2006) and the spatial arrangement of species’ habitats 

(St-Louis et al. 2006).   

2.3.1.1. Spectral Mixture Analysis 

We chose four endmembers useful for discriminating forest structure for the spectral mixture 

analysis: green vegetation (GREENVEG), nonphotosynthetic vegetation (NPVEG), soil (SOIL) and 

shade (SHADE) (Sabol et al. 2002; Lu et al. 2003). The endmembers were selected from available 
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spectral libraries (ENVI 2006) and averaged, then compared to the spectra of representative pixels located 

in known image features or in reflectance scatter-plots for similarity of shape and magnitude. Photometric 

(spectrally flat) shade was used for the endmember SHADE (following Roberts et al. 1998), thus the 

mixture model was unconstrained. Fractional endmembers resulting from unconstrained spectral mixture 

analysis can be negative or greater than one, which generally indicates a poor model fit (Roberts et al.

1998). Roberts et al. (1998) allowed endmember fractions to vary between 1.01 and -0.01, provided that 

all endmembers sum to one. For this analysis, we tolerated endmember fractions between -0.05 and 1.05 

to accommodate topographically-induced errors and the lack of site-specific reference spectra. We 

applied spectral mixture analysis to the ASTER and two MODIS images. The final model for each sensor 

was selected if: 1) >99 % of RMS values were below 0.03; 2) >99 % of fractional values for each 

endmember were between -0.05 and 1.05.  

2.3.1.2. Texture analysis  

Image texture measures can be classified into two groups: 1) occurrence, which relates to the 

frequency of tonal values in a specified neighborhood around each pixel (St-Louis et al. 2006); 2) co-

occurrence, which measures the frequency of associations between brightness value pairs within a given 

area (Baraldi and Parmiggiani 1995). We applied two occurrence measures (mean and standard deviation) 

and one co-occurrence measure, angular second moment, to the SPOT image and the three ASTER VNIR 

bands. Mean and standard deviation are simple and useful for discriminating different habitat structures 

(St-Louis et al. 2006) or forest biophysical properties (Wulder et al. 1998). We selected angular second 

moment (which describes image textural uniformity) because it is uncorrelated with standard deviation 

and is one of the most informative co-occurrence measures (Baraldi and Parmiggiani 1995). 

2.3.1.3. Scaling  and transformation 

In their native 30 m resolution, the ASTER spectral mixture analysis endmember fractions are of 

similar scale to the field data plots. These ASTER variables were further aggregated to three coarser 

resolutions (Table 1). The 105 m resolution allowed comparison between spectral mixture analysis and 
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the largest-scaled texture analyses, while the 450 m pixel size was selected to compare ASTER and 

MODIS at similar resolutions. The 225 m aggregation provided an intermediate scale between the two 

previous forest patch-sized aggregations. Texture analyses were performed on the SPOT image using four 

window sizes (Table 1). The first two window sizes bracket the field plot scale, while the two largest are 

equivalent in scale to the window sizes applied to the ASTER VNIR bands.

The number of RS-derived variables was large in relation to our sample size, and a number of RS 

measures were strongly correlated with one another. We therefore applied principal components analysis 

(PCA) to each set of variables representing a unique sensor-scale combination (e.g. 30 m ASTER 

endmember fractions). The SHADE fraction was dropped from each spectral mixture analysis variable set 

because it is a linear combination of the other three endmember fractions. We retained the principal 

components (PCs) accounting for at least 90 percent of total variance. PCA allowed us to maximize 

degrees of freedom (by decreasing the number of parameters) and reduce inter-variable correlations (and 

thus minimize variance inflation) while retaining the essential information in the RS variables used as 

predictors in subsequent logistic regression analyses (described in Section 2.4.2).  

2.3.2. Micro-scale vegetation structure 

We derived nine measures of micro-scale vegetation structure from the field data: five measures 

of canopy structure, and four of understorey structure (Table 1). Apart from bamboo density—an 

important vegetation type in the Aberdares—we chose these measures because: 1) they account for the 

range of structural types found in Aberdares forests, 2) they appear in previous RS studies of forest 

structure (e.g. Hansen et al. 2001; Lu et al. 2004; Peddle et al. 2004) or investigations of similar large 

herbivores (e.g. Terry et al. 2000), or 3) they describe the range of potential variation in cover and forage.   

2.4. Statistical analysis  

2.4.1 Remote detection of microhabitat structure 

The first portion of our analysis followed Jeganathan et al.’s (2004) “two-step procedure” for 

modeling rare species’ distributions. This approach entails 1) identifying the most important microhabitat 
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variables by modeling the species’ relationship with field collected habitat data, and 2) relating these 

directly to RS data to generate physically meaningful, spatially extensive habitat variables.

 For the first step, we used logistic regression to determine the field variables most likely to 

influence bongo habitat selection at the plot scale. Logistic regression, a form of the generalized linear 

model that applies the logit transformation to account for binomial error distribution in a categorical 

response variable (Trexler and Travis 1993), was most appropriate given that our field plots were 

segregated according to bongo presence or absence (Table 1). The most likely set of bongo habitat 

predictors was selected using Akaike’s Information Criterion modified for small sample sizes (AICc):  

AICc = -2logL + 








−− 1
2
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n
K     (2) 

Where: L is a model’s likelihood, K is the number of parameters, and n is sample size (Burnham and 

Anderson 2002). This information theoretic method yields more objective, consistent models than 

conventional hypothesis testing techniques (e.g. stepwise regression) by minimizing bias and maximizing 

precision (Burnham and Anderson 2002). AICc is a relative measure, and is useful for comparing a pre-

specified set of candidate models drawn from a common global model (Burnham and Anderson 2002). 

The best fitting model is that which has the lowest AICc value, and its relative plausibility is assessed with 

the associated measures ∆i and wi, the Akaike difference and weight (Burnham and Anderson 2002). The 

former measures the difference between the AICc of model i and the best model, and can be interpreted as 

follows: the most likely model, given the data, has a ∆i.of zero, values between 0 and 2 indicate strong 

support for a model, values between 4 and 7 show that a model has far less support, while models with 

values of 10 or higher are extremely unlikely (Burnham and Anderson 2002). The Akaike weight is 

inversely proportioned to ∆i, and expresses the odds (as a ratio) that a given model is the best of the 

candidate set of models, given the data (Burnham and Anderson 2002).  

We selected candidate models representing likely combinations of canopy and understorey 

structure variables from the 10 parameter (including the regression intercept) global model, the fit of 
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which was assessed using the Hosmer-Lemeshow test (Hosmer and Lemeshow 1989). This measure 

partitions observations into equally sized groups, and compares differences in observed and expected 

values against the χ2 distribution—an acceptance of the null hypothesis indicates an adequate fit. An 

additional pseudo r2 measure was included with the information theoretic statistics to provide a more 

understandable metric of variance explained by the predictors—not as a basis for model selection. This 

measure, the adjusted sum of squares R2 (R2
SS,adj), is described by Mittlböck and Schemper (1999), and is 

analogous to the R2 of least squares regression.  

In the second step, we used Spearman rank correlation analysis to assess the relationship between 

RS-derived measures and the most influential field-based microhabitat variables in order to determine 1) 

how well RS data can detect the microhabitat variables most correlated with bongo presence, and 2) the 

physical meaning of each RS variable. We applied the sequential Bonferroni adjustment (Holm 1979) to 

reduce the likelihood of spurious significant correlations using the following procedure: the p-values 

resulting from each RS-field predictor comparison (segregated by sensor type) were ordered from most 

significant to least; the p-value of the most significant pairing was adjusted (padj = 0.05/n, where n = 

variables per sensor*field variables); successive pairings were assessed against p < 0.05/(n-1), p < 

0.05/(n-2), p < 0.05/(n-3), etc., until a comparison failed to reject the null hypothesis. We utilized all 150 

field data points for this portion of the analysis, excluding one ASTER, two SPOT, and three MODIS 

points falling within cloud-shadowed areas.  

2.4.2. Multi-scaled modeling of bongo habitat selection 

Using the logistic regression and model selection methods specified in section 2.4.1, we assessed 

the relative abilities of the different datasets and their associated scales to explain bongo habitat selection. 

This analysis was undertaken in two parts. In the first part, we tested the ability of each set of PCA-

transformed variables representing a unique sensor-scale combination to predict bongo habitat selection. 

Our primary aim was to reduce the large number of RS variables for the second part, in which we 

combined the resulting three most likely RS variable sets with the most important field-derived 
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microhabitat predictors identified in the analysis described in section 2.4.1. This final analysis allowed us 

to assess 1) the habitat features and spatial scales most influencing bongo habitat selection, and 2) the 

relative explanatory power of the best field and RS predictors. 

3. Results  

3.1. Derived RS variables 

For the spectral mixture analysis performed on the three image-sets, the resulting root mean 

squared errors (RMS), RMS standard deviations, and percentages of pixels falling outside the endmember 

fraction threshold of -0.05 and 1.05 for the best models were: 0.009, 0.003, and 0.01 % (ASTER); 0.014, 

0.004, and 0.36 % (MODIS 463 m); 0.014, 0.0034, and 0.16 % (MODIS 927 m). The ASTER 

endmember fractions produced sensible results when compared to known field conditions, as seen at sites 

1, 2, and 3 in Figures 2C-F. Site 1 is in mature, semi-open forest dominated by the tree Hagenia 

abyssinica, which has spreading crowns with large, bright green leaves creating abundant canopy 

shadows. A co-dominant shrub, Hypericum revolutum, occupies much of the understorey, and the 

herbaceous layer is well developed. Bright green vegetation is therefore a dominant feature in this forest 

type, while bare soil is generally not visible. The endmember fractions match this pattern: GREENVEG is 

high, NPVEG and SOIL are low, and SHADE is generally high. Site 2 is an open short grass glade, where 

the usually green rhizomatous grasses mix with tussock grasses that are composed of both live and 

senesced material. Animal activity and incomplete grass cover create abundant bare soil patches. The low 

SHADE, moderate GREENVEG, and high NPVEG and SOIL fractions appear reasonable given these 

conditions. Site 3 is in an area surrounded by extensive bamboo forest, which typically form monotypic, 

dense canopies of uniform height ranging from 4-16 m. The perpetual shade under bamboo canopies 

tends to suppress understorey growth, while the ground is covered by bamboo leaf litter. The endmember 

patterns make sense for these conditions; GREENVEG is fairly high (bamboo appears as a uniform sea of 

green from above), NPVEG and SOIL are moderate to low (dead leaves and soil are abundant under 

bamboo, but are less evident from above because of the closed canopy), and SHADE is high.  
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A total of 12 SPOT and 18 ASTER texture images were produced (Table 1). Figure 2 B is a sub-

scene of the SPOT 9X9 standard deviation image. Sites 4 and 5 were recorded in small forest openings, 

and thus have high standard deviations because of their close proximity to the much darker mature forest. 

Plots 1, 2, and 3 have low values because they are not close to the edges of their respective habitats.  

3.2. Remote detection of microhabitat structure 

The univariate statistics show that the means of four field-derived microhabitat measures were 

significantly different between bongo and non-bongo plots (Table 1). Of the canopy measures, basal area 

was significantly higher at bongo than non-bongo sites, as was canopy height. Among the understorey 

variables, woody shrub density was significantly lower in bongo plots, while the density of tall forbs was 

significantly higher. This simple analysis indicating microhabitat selection set the stage for the more 

complex assessment of each variable’s relative influence using logistic regression, in which we tested 27 

models representing different combinations of the five canopy and four understorey variables (ranging 

from four to nine parameters, including the intercept). Table 2 presents the information measures of the 

seven most likely models, the global model, and the highest ranked models employing canopy or 

understorey variables only.  

The results show that each of the top seven models has strong support for being the most likely 

given the data, as indicated by their sub-two ∆ values and similar w terms. Although this tight ranking 

indicates substantial model selection uncertainty (Burnham and Anderson 2002), these models have 

two common features: basal area is present in all seven, as are at least three (and usually all four) of the 

understorey measures. This suggests that basal area and the four understorey variables are the 

fundamental measures for characterizing bongo habitat.  

Of the remaining canopy measures, bamboo density and canopy cover may also be important 

predictors, as each appears three (canopy cover) or four (bamboo density) times in the top seven models, 

and once each in the first and second ranked models. Stem density possibly has influence, as it is found in 

models 5 and 7.Canopy height appears in none of the top models, and is therefore unimportant. 
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Models based on understorey or canopy variables only are highly unlikely, given the low rankings and 

high ∆ values of the top performers for these model types.  

 We selected the four canopy and four understorey variables from the top seven models for 

correlation analysis with the 42 RS variables (excluding the aggregated ASTER spectral mixture analysis 

endmember fractions). Figure 3 provides a graphical display of the resulting correlation coefficients, 

excluding 10 RS variables (ASTER Band 2 and 3 angular second moment (3X3 and 7X7); ASTER Band 

3 3X3 and 7X7 SD; MODIS 463 and 927 NPVEG and SOIL fractions) that had no significant 

relationships with any microhabitat variables after sequential Bonferroni adjustment.  

The general pattern of the results shows that the RS data correlate fairly well with canopy 

structure (with 60 of the 168 comparisons being significant) and rather poorly with understorey structure 

(only two significant comparisons), as might be expected for optical RS data. 

 The RS data are most strongly related with basal area, with the ASTER and SPOT texture means 

producing the only seven correlations with absolute r values greater than 0.5. Canopy cover is the next 

most strongly correlated with RS variables, despite having 23 significant correlations with RS variables 

compared to basal area’s 23. The SPOT 3X3 and 5X5 texture means were the best correlates of canopy 

cover (r = -0.49), while ASTER texture measures were slightly weaker in their relationships with this 

variable. Stem density and bamboo density follow in decreasing order in terms of number of significant 

correlations with RS variables (15 and 5) and correlation strength (absolute maximum r = 0.45 and 0.42).   

 Overall canopy structural variables were best detected by ASTER and SPOT texture measures 

(particularly mean texture) derived using the window sizes most closely matched in scale to that of field 

plot. The finer resolution SPOT imagery produced slightly stronger correlations with canopy cover than 

ASTER, but the spectrally deeper ASTER succeeds where SPOT fails in correlating significantly with 

bamboo density (two texture variables and the GREENVEG fraction).  

 Correlations between the 30 m ASTER spectral mixture analysis endmember fractions and 

canopy structure were generally weaker than those found using texture measures derived from the 15 m 

ASTER VNIR and 5 m SPOT imagery. However, nine of the 16 (56 %) comparisons between ASTER 



19

endmember fractions and canopy variables were significant, which compares favorably to the 32 and 42 

percent significance rates achieved by ASTER and SPOT texture-canopy variable correlations, 

respectively. The coarse resolution MODIS SMA fractions showed the weakest relationships with canopy 

structure variables, with the strongest r being -0.36.    

3.3. Multi-scaled modeling of bongo habitat selection 

 Having established the RS data’s physical meaning by examining its relationships with 

microhabitat structure, the next step was to determine the features and scales that influence bongo habitat 

selection.  To do this, we tested combinations of the most useful RS and field predictors of bongo habitat 

selection in multiple logistic regression models.  

 We selected the most likely RS predictors of bongo habitat selection in a preliminary logistic 

regression analysis of PCA-transformed RS variable sets (see Table 1) representing unique sensor-scale 

combinations. This analysis (presented in Appendix 1) showed that the PCs of the 450 m (20.25 ha) 

ASTER spectral mixture analysis endmember fractions were the most likely predictors of bongo habitat 

selection, as they provided the only two models with sub-two ∆ values. The next best predictors were 

provided by PCs of the 225 m (5.06 ha) ASTER endmember fractions, followed by PCs of the SPOT 9X9 

(0.2 ha) texture measures, although the ∆ values of the models created using both variable sets were 

greater than 10. All other variables, including MODIS endmember fractions and ASTER texture 

measures, were highly unlikely predictors.   

Based on this finding, we combined the three 20.25 ha ASTER spectral mixture analysis PCs 

with the seven variables used in the three most likely microhabitat selection models (Table 2) for the final 

logistic regression analysis. We also included the PCs of the 225 m ASTER endmember fractions and the 

9X9 SPOT texture measures. Although the previous analysis showed that models based on these variables 

were unlikely on their own (Appendix 1), we included them in order to determine 1) whether the 0.2 and 

5.06 ha scales were important when combined with other scales, and 2) if a multi-scaled RS model could 

outperform a single-scaled field data model. We tested 79 models representing different combinations of 

the four datasets and scales. Table 3 presents the information measures of the six best models, the top 
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models using field or RS data exclusively, and the global model, as well as descriptions of the physical 

meanings of the RS PCs appearing in the most likely models.  

  Similar to the microhabitat selection models (Table 2), the information measures of the top six 

models show that there is no clear best model, as all six have sub-two ∆ values and similar w terms. Each 

model also accounts for roughly the same amount of variance in the response variable (R2
ss,adj = 34-36 %). 

However, another parallel between this multi-scale analysis and Section 3.2’s microhabitat assessment is 

that the top models’ common features are more telling than their variations. The six best models each 

consist of two fundamental elements: 1) the four micro-scale (0.04 ha) understorey structural variables; 2) 

at least one of the 450 m (20.25 ha) ASTER endmembers PCs, which describe gradients in patch-scale 

forest structure (see PC description in Table 3). The 2nd PC is the common thread in all models, and 

appears to contain the most essential information on patch structure because its extremes match structural 

types found at the upper and lower ends of the north-south precipitation gradient in the Aberdares. 

In comparison, the best model comprised only of microhabitat variables was far less likely than 

the hybrid RS-microhabitat models, ranked 33rd with a ∆ value of 6.88. The most likely model using RS 

data only was even less likely, ranked 49th with a ∆ value of 8.31. The 0.2 ha scale represented by the PCs 

of the SPOT 9X9 texture variables also proved to be relatively unimportant, as the top model featuring 

this scale was ranked 7th (SPOT PC 2, ASTER 450 PC 2, and the four understorey variables: ∆i = 2.19, wi

= 0.04). The same holds true of the 5.06 ha scale described by PCs of the 225 m ASTER endmember 

fractions, as its best model was ranked even lower at 31 (ASTER 225 PC 2, basal area, and the four 

understorey variables: ∆i = 6.02, wi = 0.01).   

  These results indicate that the 0.04 ha microhabitat scales and the 20.25 ha patch scales are 

dominant. The former is characterized by field data variables and the latter by the 450 m resolution 

ASTER endmember fractions.            

4. Discussion 

4.1. Habitat features, scale, and RS data   
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The first half of our initial two-step analysis (logistic regression analysis of field-derived 

microhabitat variables) showed that understorey structure drives bongo habitat use at the micro-scale, as 

understorey variables were constant features of the most likely microhabitat selection models (Table 2). 

These variables are important because they directly measure browse and cover availability. This is 

evident in the simple univariate analysis (Table 1), which shows that bongos prefer micro-sites with 

abundant tall forbs (the most heavily browsed life-form) and relatively few woody shrubs (which are 

generally less edible). In comparison, the influential overstorey measures (basal area, bamboo density, 

and canopy cover) are unlikely to directly influence bongo behavior, but have importance because they 

best describe the canopy conditions that foster the bongo’s preferred understorey environment.    

The second step (the correlation analysis) showed that the RS data could not detect these 

important understorey features. Optical sensors are unable to penetrate forest canopies, thus understorey 

variables were poorly correlated with the RS data. The two significant RS-understorey relationships 

(Figure 3) found are attributable to RS correlations with canopy variables that are in turn correlated with 

the understorey, rather than direct RS detection. On the other hand, forest canopy features were detected 

by the finer-resolution RS data with reasonable success. Although the strongest RS-canopy variable 

correlations showed only moderate r values, the large number of modestly strong, highly significant 

correlations indicates that the finer-scaled RS data discern micro-scale canopy structure characteristics. 

This assertion is supported by the proven ability of spectral mixture and texture analysis to measure forest 

structural properties (Wulder et al. 1998; Peddle et al. 2001; Sabol et al. 2002; Kayitakire et al. 2006).  

This initial “two-step” analysis revealed the connection between the finer-scaled RS variables and 

the most influential microhabitat variables. In doing so, it enabled us to understand the physical meaning 

of the RS measures scaled to coarser resolutions, as many of these are either aggregates of finer-scaled 

variables (e.g. 105-450 m ASTER endmember fractions) or show similar correlation patterns with canopy 

structure (e.g. SPOT 9X9 and 21X21 texture PCs compared to 3X3 and 5X5). For instance, the 30 m 

ASTER endmember fractions detect micro-scale canopy structure, thus it follows that their 450 m 

aggregates characterize patch-scale (20.25 ha) canopy conditions.  
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The predictor variables used in the final logistic regression analysis therefore represent vegetation 

structural features at multiple spatial scales. This analysis showed that micro-scale understorey and patch-

scale canopy structural properties are both important in determining bongo habitat selection. Our use of 

AICc makes this finding more robust, as this method selects the most informative models while penalizing 

over-fitting (Burnham and Anderson 2002). The importance of the microhabitat scale can be 

explained as follows: since understorey characteristics determine whether a bongo can meet its 

most essential needs (food, water, minerals, cover), bongos continually assess and react to such 

features within their immediate surroundings (i.e. at the micro-scale). Patch scale canopy structure 

is presumably important because it determines the abundance of preferred micro-scale understorey 

features available to bongos within a broader area. This multi-scale habitat selection has been seen in 

caribou, whose primary winter habitat is stands of sub-alpine spruce Abies lasiocarpa, the species of tree 

most likely to create caribou’s preferred micro-scale forage: wind-thrown trees hosting arboreal lichen 

(Terry et al. 2000).

Vegetation structure at intermediate scales appears to have little influence, as the 0.2-5.06 ha 

scale RS variables were poor predictors of bongo habitat use. This finding reflects habitat selection rather 

than data discrepancies, as the particular RS variables were comparable in their relationships with canopy 

structure; they were either aggregates of the 30 m ASTER endmember fractions, or texture variables that 

were more strongly correlated with canopy variables.  

 We could not fully assess the importance of vegetation structure at scales larger than 20.25 ha, 

because MODIS data were poor predictors of bongo habitat selection (Appendix 1), and cloud cover in 

the ASTER scene precluded aggregations coarser than 450 m. Although MODIS is comparable to 

ASTER in spectral depth, and showed significant correlations with several canopy structure measures, the 

rugged terrain presumably caused it to fail as a predictor. In the highly dissected Aberdares, the MODIS 

sensor captures topographical as well as vegetation features. In contrast, the 30 m resolution ASTER 
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signal is dominated by vegetation, thus aggregated ASTER pixels provide truer estimates of patch-scale 

canopy structure, which influences bongos more than slope or aspect variations.  

ASTER and SPOT are most suited for detecting the habitat features that are ecologically relevant 

to the bongo. Panchromatic SPOT data correlates most strongly with fine-scale canopy structure (except 

bamboo density), but ASTER is more useful because its nine bands and multiple resolutions capture 

information in both the spatial and spectral domains. Band 4 (1.60-1.70 µm) is presumably one of 

ASTER’s greatest advantages, as its LANDSAT equivalent (Band 5) has been shown to be particularly 

important for discriminating forest structural features (Lu et al. 2004).   

4.2. Implications for ongoing ecological research and bongo conservation 

RS data allowed us to identify important patch-scale structural features that we could not feasibly 

record in the field. We derived these patch-scale RS variables using spectral mixture analysis, which is a 

more transportable technique because it is directly related to forest structural properties (Sabol et al.

2002), and should thus be less sensitive to area-specific variations that can cause other techniques (e.g. 

NDVI) to produce widely differing values for similar features. This bodes well for mapping patch-scale 

canopy structure in other bongo habitats (e.g. Mount Kenya) where field calibration data are unavailable.    

 It will be harder to use RS data to map predictors at the important microhabitat scale. The 

correlation analysis suggests it is possible to develop reasonably accurate quantitative relationships 

between RS data and canopy structure, provided that multiple RS measures are used to minimize error. 

However, the crucial understorey features cannot be mapped using optical RS data. More sophisticated 

active or hyperspectral sensors could perhaps overcome this problem. LIDAR and synthetic aperture radar 

can measure three-dimensional structure (Hyde et al. 2006), and may thus correlate more strongly with 

understorey features. Hyperspectral RS has been used to detect an invasive understorey herb by 

measuring its impact on the foliar chemistry and water content of canopy trees (Asner and Vitousek 

2005). However, such tools tend to be costly and are relatively unavailable in East Africa.  

We must therefore rely on the existing RS data to derive reasonable approximations of 

understorey structure. It may be possible to model overstorey-understorey associations, and use these 
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relationships with RS-derived canopy structure measures to map understorey features. Another approach 

is to compress canopy and understorey structural variables into indices and use RS to map index values. 

Structural indices are widely used in forest ecology (e.g. Neumann and Starlinger 2001; Pommerening 

2002; McElhinny et al. 2006), and have been successfully employed to relate RS data to forest structure 

(Cohen and Spies 1992; Hansen et al. 2001) and to characterize mammalian and avian habitats (Coops 

and Catling 2002; Gibson et al. 2004).  

4.3. Potential shortcomings 

The relatively small sample size and the distribution of the collected bongo plots raise the 

possibility of bias, and that our models present a flawed picture of bongo habitat use. Conservation 

surveys of rare species are notoriously biased, as they are often improperly randomized and/or stratified 

(Guisan et al. 2006). We concede that RS data limitations prevented us from evaluating scales coarser 

than 20.25 ha, but contend that the spatio-temporal distribution of our samples adequately captures bongo 

distribution and the range of forest structural types in the study area. We sampled widely throughout the 

Aberdares, using a design that 1) was effectively random in relation to the landscape (the grid point 

system), and 2) accounted for altitudinal and precipitation gradients. Our surveys covered most of the 

areas occupied by the main surviving bongo herds, as well as many areas where bongos were not found. 

Although our bongo samples were often closely spaced (see Figure 1 and Section 2.2.2), these plots were 

collected over three seasons within apparent home ranges, the continued use of which has been confirmed 

during subsequent surveys by our colleagues. These data were thus collected within preferred bongo 

habitat, which is supported by the fact that these areas are largely comprised of the sort of herb-rich open 

and secondary forests that bongos are believed to favor (Kingdon 1982; Klaus-Hugi et al. 2000).

Historically, bongos were more widely distributed throughout the Aberdares (Kingdon 1982; 

Prettejohn 2004), which suggests that the few remaining bongos do not utilize all suitable habitat areas. 

Our “non-bongo” grid samples therefore do not necessarily represent true bongo absence. This possibility 

suggests that our models were more likely to be conservative in discriminating influential habitat features, 

rather than erroneous.  
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This study focused on the relationship between bongo and vegetation structure, and therefore did 

not include other factors that are likely to affect bongo habitat selection. The level of human presence is 

an example of a factor that appears to particularly influence bongos. The role of such factors should be 

investigated and incorporated in subsequent distribution models.   

4.4. Implications for the study of other rare animals 

This study should interest ecologists and conservation biologists studying other mobile, forest-

dwelling species, particularly where rarity and environment combine to make field surveys difficult. 

Remote sensing is an important tool to aid species distribution modeling in such circumstances (Rushton 

et al. 2004), but the more promising remote sensing techniques are usually not employed by ecologists 

(Turner et al. 2003). There appears to be two broad classes of RS-based ecological studies, divided into 

those undertaken by remote sensing experts and those undertaken by applied ecologists. In the former 

case, an advanced RS technique is used to identify habitat features of potential importance for certain 

organisms, but the authors typically do not use the method to identify the organism’s habitat requirements 

or distributions (e.g. Hyde et al. 2006, Theau et al. 2005). In the second category, ecologists use RS to 

provide more basic (and fairly limited) input for distribution models, usually in the form of categorical 

predictors (e.g. Schadt et al. 2002) or simple indices such as NDVI (e.g. Osborne et al. 2001). Several 

recent studies have generated continuous predictors for distribution models by regressing RS data against 

field-collected habitat variables (e.g. Gibson et al.2004; Jeganathan et al.2004). However, such studies 

are still relatively rare, and the underlying regression techniques are fairly simple and depend on 

substantial field calibration data to be transported to other habitats.  

Our study helps to address the gap between applied ecology and remote sensing, as it shows how 

more advanced RS analysis techniques can be used in habitat modeling. It also contributes by providing 

further insight into 1) the ability of RS data to quantify habitat structure, and 2) the performance of 

several optical RS datasets in an environment that promotes detection errors. Our use of the information 

theoretic approach makes this study more relevant to ecologists, who increasingly prefer this 

methodology for habitat modeling studies (Burnham and Anderson 2002; Rushton et al. 2004).  
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5. Conclusions 

This analysis confirmed our hypothesis that bongo habitat is defined at multiple spatial scales. 

We found that forest understorey characteristics at the micro-scale and canopy structural conditions at a 

patch-scale of ~20 ha are important in determining bongo habitat, but further work is needed to assess the 

importance of coarser scales. Future distribution models must incorporate multi-scaled predictors if 

suitable bongo habitat is to be accurately identified, as models representing different, single scales can 

generate different distribution patterns (Wiens 1989).  

The validation of our hypothesis is an important first step in understanding bongo ecology, given 

the near-absence of existing information and the difficulty of studying this animal. Our methodology 

improves our confidence in the legitimacy of our central finding: we allied field and RS data analyzed 

with techniques more advanced than those typically used in ecological modeling studies with the 

information theoretic approach to model selection, which provides more ecologically sound models than 

those based on conventional null-hypothesis testing (Burnham and Anderson 2002). These procedures 

also provide valuable insight into how RS benefits ecological studies of rare species.  

Our “two-step” approach (Jeganathan et al. 2004) related multi-scaled RS variables to important 

microhabitat variables, which allowed us to distinguish larger-scaled forest structural properties that we 

could not detect from the ground. This approach is an alternative to the well-stratified, multi-scaled field 

surveys recommended for distribution modeling studies (Vaughan and Ormerod 2003). Such surveys are 

typically beyond the means of most ecologists, and are unlikely to yield sufficient data on rare species 

(Guisan et al. 2006). These limitations and our findings lead us to conclude that RS is indispensable for 

habitat modeling studies of the bongo and similar rare, mobile species, given the multi-scaled nature of 

habitat use and the superior scalability of RS data compared to field data. ASTER is particularly well-

suited for this task, as its spectral range and multiple resolutions permit the derivation of scalable, sub-

pixel estimates of vegetation, as well as information on the spatial configuration of habitats.          

Our study also shows that optical RS cannot replace field data in characterizing micro-scale 

habitat structure, particularly the understorey features important to a rare, mobile forest herbivore. RS 
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data can measure the micro-scale canopy features responsible for shaping understorey conditions, which 

suggests it is possible to approximate the understorey environment using forest structural indices or other 

modeling approaches. However, our results emphasize the importance of using field and RS data together 

when modeling rare species’ habitat use (Jeganathan et al. 2004; Rushton et al. 2004). Field data are 

needed to identify important habitat features and to ascribe physical meaning to RS data, which enable 

habitat variables to be extensively mapped at a variety of spatial scales. Spectral mixture analysis is a 

more profitable technique to use when field data are limited, as its direct connection to forest properties 

permits RS-based habitat models that need less calibration than more direct habitat-reflectance models.
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Table 1. The origin, derivation techniques, names, resolutions (res), scales, units, subsequent transformations, and basic statistics (segregated according to bongo presence and absence) of 

the 60 RS and field data variables. Significantly different means are indicated in boldface, with asterisks denoting alpha level (*: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001). 

Bongo n = 34, 36
1

Non-bongo n =83, 90
1

Dataset Derivation technique
2

Variable Name
3

Res

(m)

Scale

(ha) Units
4

Trans-

formed
5

Mean StdDev Range Mean Std Dev Range

SMA GREENVEG 30 0.09 - PCA 1 0.32* 0.10 0.16 - 0.57 0.37* 0.10 0.09 - 0.65

SMA NPVEG 30 0.09 - PCA 1 0.06 0.02 0.01 - 0.14 0.07 0.04 0.02 - 0.29

SMA SOIL 30 0.09 - PCA 1 0.06 0.02 0.01 - 0.12 0.07 0.03 0.02 - 0.17

SMA SHADE 30 0.09 - PCA 1 0.56** 0.11 0.30 - 0.74 0.49** 0.09 0.28 - 0.69

Aggregation of SMA fractions GREENVEG 105 1.10 - PCA 1 0.33* 0.08 0.18 -  0.48 0.37* 0.08 0.11 - 0.54

Aggregation of SMA fractions NPVEG 105 1.10 - PCA 1 0.06* 0.01 0.04 - 0.09 0.07* 0.02 0.02 - 0.18

Aggregation of SMA fractions SOIL 105 1.10 - PCA 1 0.06** 0.02 0.02 - 0.11 0.07** 0.02 0.03 - 0.16

Aggregation of SMA fractions GREENVEG 225 5.06 - PCA 1 0.33* 0.07 0.20 - 0.48 0.37* 0.08 0.10 - 0.53

Aggregation of SMA fractions NPVEG 225 5.06 - PCA 1 0.06*** 0.01 0.04 - 0.10 0.07*** 0.02 0.03 - 0.16

Aggregation of SMA fractions SOIL 225 5.06 - PCA 1 0.06* 0.02 0.03 - 0.11 0.07* 0.02 0.03 - 0.15

Aggregation of SMA fractions GREENVEG 450 20.25 - PCA 1 0.34* 0.05 0.23 - 0.46 0.37* 0.08 0.11 - 0.52

Aggregation of SMA fractions NPVEG 450 20.25 - PCA 1 0.05**** 0.01 0.04 - 0.07 0.07**** 0.02 0.03 - 0.12

ASTER

Bands

1-9

Aggregation of SMA fractions SOIL 450 20.25 - PCA 1 0.06** 0.01 0.04 - 0.09 0.07** 0.02 0.04 - 0.15

Mean TF 3X3 3X3 B1M 15 0.20 1 PCA 2 284.49** 49.44 199.12 - 419.09 316.40** 67.92 203.99 - 677.10

Standard deviation TF 3X3 3X3 B1SD 15 0.20 1 PCA 2 28.23 13.92 6.36 - 78.38 25.06 14.64 7.71 - 80.48ASTER Band 1

Angular second moment TF 3X3 3X3 B1ASM 15 0.20 - PCA 2 1.00* 0.00 1.00 - 1.00 0.95* 0.15 0.26 - 1.00

Mean TF 3X3 3X3 B2M 15 0.20 1 PCA 2 236.49** 47.53 158.46 - 373.91 272.26** 81.57 161.90 - 775.13

Standard deviation TF 3X3 3X3 B2SD 15 0.20 1 PCA 2 24.68 10.88 10.11 - 51.20 26.61 19.40 6.40 - 114.57ASTER Band 2

Angular second moment TF 3X3 3X3 B2ASM 15 0.20 - PCA 2 0.69 0.27 0.26 - 1.00 0.68 0.27 0.26 - 1.00

Mean TF 3X3 3X3 B3M 15 0.20 1 PCA 2 1663.52** 387.70 1008.19 - 2720.41 1888.74** 374.74 884.33 - 2787.44

Standard deviation TF 3X3 3X3 B3SD 15 0.20 1 PCA 2 179.32 94.45 31.42 - 535.74 153.25 71.89 32.64 - 315.56ASTER Band 3

Angular second moment TF 3X3 3X3 B3ASM 15 0.20 - PCA 2 0.79 0.26 0.28 - 1.00 0.85 0.24 0.28 - 1.00

Mean TF 7X7 7X7 B1M 15 1.10 1 PCA 2 284.83** 41.72 198.97 - 386.53 315.88** 55.55 210.25 - 601.84

Standard deviation TF 7X7 7X7 B1SD 15 1.10 1 PCA 2 36.61 13.70 13.45 - 67.42 37.00 19.46 14.86 - 119.08ASTER Band 1

Angular second moment TF 7X7 7X7 B1ASM 15 1.10 - PCA 2 1.00** 0.00 1.00 - 1.00 0.94** 0.13 0.44 - 1.00

Mean TF 7X7 7X7 B2M 15 1.10 1 PCA 2 237.67** 41.23 155.41 - 340.72 270.22** 63.90 157.16 - 642.10

Standard deviation TF 7X7 7X7 B2SD 15 1.10 1 PCA 2 33.83 13.01 13.71 - 64.72 39.49 27.34 10.15 - 172.86ASTER Band 2

Angular second moment TF 7X7 7X7 B2ASM 15 1.10 - PCA 2 0.57 0.28 0.25 - 1.00 0.59 0.26 0.16 - 1.00

Mean TF 7X7 7X7 B3M 15 1.10 1 PCA 2 1699.67** 354.46 1055.95 - 2511.19 1894.97** 348.91 914.95 - 2670.47

Standard deviation TF 7X7 7X7 B3SD 15 1.10 1 PCA 2 232.45 99.40 76.89 - 422.16 207.66 77.83 60.45 - 462.64ASTER Band 3

Angular second moment TF 7X7 7X7 B3ASM 15 1.10 - PCA 2 0.78 0.25 0.26 - 1.00 0.80 0.25 0.27 - 1.00

SMA GREENVEG 463 21.44 - PCA 1 0.33*** 0.05 0.24 - 0.44 0.37*** 0.06 0.22 - 0.51

SMA NPVEG 463 21.44 - PCA 1 0.02 0.02 0.00 - 0.08 0.02 0.02 -0.04 - 0.06

SMA SOIL 463 21.44 - PCA 1 0.07 0.06 -0.01 - 0.22 0.06 0.05 -0.03 - 0.27

MODIS daily 

surface

reflectance
SMA SHADE 463 21.44 - PCA 1 0.58* 0.06 0.44 - 0.68 0.56* 0.04 0.41 - 0.68

Table1



Bongo n = 34, 36
1

Non-bongo n =83, 90
1

Dataset Derivation technique
2

Variable Name
3

Res

(m)

Scale

(ha) Units
4

Trans-

formed
5

Mean StdDev Range Mean Std Dev Range

SMA GREENVEG 927 85.93 - PCA 1 0.38* 0.05 0.26 - 0.45 0.41* 0.06 0.24 - 0.54

SMA NPVEG 927 85.93 - PCA 1 0.03 0.01 0.01 - 0.07 0.03 0.02 0.00 - 0.10

SMA SOIL 927 85.93 - PCA 1 0.05 0.02 -0.01 - 0.11 0.06 0.04 -0.01 - 0.17

MODIS      

BRDF Nadir-

adjusted

reflectance SMA SHADE 927 85.93 - PCA 1 0.54**** 0.06 0.46 - 0.67 0.50**** 0.05 0.43 - 0.65

Mean TF 3X3 3X3 M 5 0.02 DN PCA 3 7316.32 748.86 5918.00 - 10154.00 7681.94 1112.56 5959.00 - 13490.00

Standard deviation TF 3X3 3X3 SD 5 0.02 DN PCA 3 490.38 224.67 129.00 - 1169.00 408.06 262.18 106.00 - 1406.00

Angular second moment TF 3X3 3X3 ASM 5 0.02 DN PCA 3 0.17* 0.06 0.11 - 0.38 0.22* 0.11 0.11 - 0.63

Mean TF 5X5 5X5 M 5 0.06 DN PCA 4 7321.35 681.64 6102.00 - 9850.00 7697.41 1055.84 5975.00 - 13399.00

Standard deviation TF 5X5 5X5 SD 5 0.06 DN PCA 4 579.24* 212.77 143.00 - 1137.00 505.69* 327.09 145.00 - 1729.00

Angular second moment TF 5X5 5X5 ASM 5 0.06 DN PCA 4 0.10* 0.06 0.06 - 0.36 0.14* 0.08 0.05 - 0.35

Mean TF 9X9 9X9 M 5 0.20 DN PCA 4 7284.50* 582.94 6307.00 - 9093.00 7703.31* 995.44 6015.00 - 13465.00

Standard deviation TF 9X9 9X9 SD 5 0.20 DN PCA 4 677.50 254.27 206.00 - 1497.00 581.45 335.53 212.00 - 1795.00

Angular second moment TF 9X9 9X9 ASM 5 0.20 DN PCA 4 0.07* 0.05 0.03 - 0.27 0.10* 0.07 0.03 - 0.38

Mean TF 21X21 21X21 M 5 1.10 DN PCA 4 7298.68** 498.50 6330.00 - 8617.00 7692.92** 812.92 6408.00 - 12370.00

Standard deviation TF 21X21 21X21 SD 5 1.10 DN PCA 4 744.15 237.45 268.00 - 1289.00 722.12 396.63 240.00 - 2397.00

SPOT

panchromatic

Angular second moment TF

21X21
21X21 ASM 5 1.10 DN PCA 4 0.05* 0.05 0.01 - 0.30 0.07* 0.05 0.01 - 0.25

1 Basal Areaa 22.6 0.04 m2 ha-1 - 39.45*** 37.50 0.00 - 141.36 16.80*** 21.28 0.00 - 98.04

2 Stem densitya 22.6 0.04 n ha-1 - 297.06 301.35 0.00 - 1171.63 232.66 281.04 0.00 - 1096.85

3 Canopy heighta 22.6 0.04 m - 17.36** 9.09 1.55 - 42.41 12.13** 6.17 0.90 - 26.10

4 Canopy covera 22.6 0.04 - - 0.80 0.25 0.00 - 1.00 0.73 0.29 0.00 - 1.00

2 Bamboo densitya 22.6 0.04 n ha-1 - 13874.10 22828.02 0.00 - 110687.9 9186.36 15493.33 0.00 - 72932.51

2 Shrub densityb 22.6 0.04 n ha-1 - 1474.36* 1819.39 0.00 - 7366.92 4308.43* 5215.52 0.00 - 24815.91

2 Tall forb densityb 22.6 0.04 n ha-1 - 6178.03* 5861.21 133.72 - 20259.03 3494.03* 4112.13 0.00 - 23266.51

4 Ground coverb 22.6 0.04 - - 0.83 0.14 0.35 - 1.00 0.78 0.18 0.10 - 1.00

Field Data

4 Herbaceous heightb 22.6 0.04 - - 3.10 0.82 1.00 - 4.70 2.86 0.99 0.90 - 5.70
1
Total number of plots varies by data type. The first value indicates the number of field plot localities that were not obscured by cloud cover (34 bongo and 83 non-bongo) that could be 

used to extract RS-derived variables. The second refers to the number of available presence/absence field data plots (36 bongo and 90 non-bongo). 
2
Key to derivation techniques: SMA - Spectral mixture analysis; Aggregation of SMA fractions – Obtained by averaging the 30 m SMA endmember fractions, excluding the SHADE 

fraction because it is a linear combination of the other fractions, which prevents the unique solution required for logistic regression models; TF - Texture filter; 3X3,5X5,7X7,9X9,21X21 -

The window sizes used in texture analysis; 1 - Plot basal area = n trees per 5 cm DBH class X (
2
); 2 - Plot stem density = (n trees per 5 cm DBH class per plot X (10000 

m
2
/Plot area)). Other plot density measures = n (shrubs, tall forbs, or bamboo) X (10,000 m

2
/Area of plot strip transects); 3 – Plot canopy height = mean height of the 3 tallest trees/shrubs; 

4 - Cover variables are the proportion of plant to non-plant cover taken from 20 readings; 5 - Herbaceous height = the mean of 20 height measurements based on 7 different height classes.
3
Variable name: GREENVEG - the green vegetation endmember fraction; NPVEG - the nonphotosynthetic vegetation endmember fraction; SOIL - the soil endmember fraction; SHADE -

the SHADE endmember fraction; 
a
Canopy structure variable; 

b
Understorey structure variable.

4
Key to units: 1 = Reflectance X 10000; DN = digital numbers X 1000. 

5
Refers to subsequent transformations of the variables sets.  Principal components analysis (PCA) was performed on each RS variable set representing a unique sensor-scale combination in 

order to 1) orthogonalize the data, and 2) to reduce the compress the number of variables for subsequent logistic regression analyses (provided that at least 90 % of explained variance could 

be retained): PCA 1 = the GREENVEG, NPVEG, and SOIL fractions of each SMA dataset were PC transformed—all three PCs were retained to account for 90 % of variance; PCA 2 = 

The values of the 3  texture measures for all 3 ASTER VNIR bands were PC transformed (separated by window size), with PCs 1-5 retained; PCA 3 = The 3 3X3 SPOT texture measures 

were PC transformed, with all three PCs retained; PCA 4 = the first two PCs of each set of the transformed 5X5, 9X9, and 21X21 SPOT texture measures were retained. 



Table 2. Selected results of the multiple logistic regression models based on specified combinations of the field-

collected microhabitat variables (canopy structure variables are presented in bold; understorey variables in plain 

text). The results of the five best models, the best models using canopy and understorey variables only, and the 

global model (denoted by the boldface, underlined model rank) are presented. Models were ranked and 

evaluated using the modified Akaike’s Information Criterion (AICc), th i), and Akaike 

weights (wi). The adjusted sum of squares R
2
 (R

2
ss,adj) indicates the proportion of variance explained in the 

response.

Rank Model (R = 27, n =126) * K
†

AICc i wi R
2
ss,adj

1 BA, Bamb, Shrub, Forb, HH 6 125.00 0.00 0.14 0.24

2 BA, CC, Shrub, Forb, HH 6 125.20 0.21 0.13 0.23

3 BA, Shrub, Forb, GC, HH 6 125.22 0.22 0.13 0.24

4 BA, Bamb, Shrub, Forb, GC, HH 7 125.42 0.42 0.12 0.24

5 BA, SD, CC, Bamb, Shrub, Forb, GC, HH 9 126.34 1.34 0.07 0.25

6 BA, CC, Shrub, Forb, GC, HH 7 126.89 1.89 0.06 0.23

7 BA, SD, Bamb, Shrub, Forb, GC, HH 8 126.92 1.93 0.06 0.25

9 BA, SD, HGT, CC, Bamb, Shrub, Forb, GC, HH
‡

10 127.18 2.19 0.05 0.26

21 Shrub, Forb, GC 4 133.22 8.22 0.00 0.17

24 BA, HGT, Bamb 4 138.50 13.50 0.00 0.13

*R = number of candidate models, BA = basal area; SD = stem density; HGT = canopy height; CC = proportion 

canopy cover; Bamb = bamboo density; Shrub = shrub density; Forb = tall forb density; GC = proportion 

ground cover; HH = relative height of herbaceous layer.
†
K = number of predictors plus regression intercept. 

‡
Hosmer-Lemeshow test result: 

2
 = 3.68, df = 8, p < 0.88.

Tables 2-3



Table 3. Selected results of the multiple logistic regression models based on specified combinations of the field and RS data 

variables that provide the most likely explanation of bongo habitat selection. The results of the seven best models, the global 

model (denoted by the boldface, underlined model rank number) and the best RS and field data only models are presented, as 

well as the spatial scales they represent. Models were ranked and evaluated using the modified Akaike’s Information 

Criterion (AICc i), and Akaike weights (wi). The adjusted sum of squares R
2
 (R

2
ss,adj) indicates the 

variance in the response data explained by each model.  Interpretations of the physical meanings of the principal components 

(PCs) of the RS variables are provided, together with their eigen values and dominant eigen vectors.  

Rank Model (R = 79, n = 117)* K
†

Scales (ha) AICc i wi R
2
ss,adj

1 Shrub, Forb, GC, HH, ASTER SMA 450 PC1, PC2 7 0.04, 20.25 105.39 0.00 0.12 0.36

2 Shrub, Forb, GC, HH, ASTER SMA 450 PC2 6 0.04, 20.25 105.62 0.23 0.11 0.35

3 BA, Shrub, Forb, GC, HH, ASTER SMA 450 PC2 7 0.04, 20.25 106.85 1.46 0.06 0.35

4 Shrub, Forb, GC, HH, ASTER SMA 450 PC1-3 8 0.04, 20.25 106.96 1.57 0.05 0.36

5 Shrub, Forb, GC, HH, ASTER SMA 450 PC2, PC3 7 0.04, 20.25 107.10 1.71 0.05 0.34

6 BA, Shrub, Forb, GC, HH, ASTER SMA 450 PC1, PC2 8 0.04, 20.25 107.19 1.80 0.05 0.36

33 BA, CC, Shrub, Forb, HH 6 0.04 112.27 6.88 0.00 0.29

38 BA, Bamb, CC, Shrub, Forb, GC, HH, ASTER SMA 225 

PC1- PC3, 450 PC1-PC3; SPOT 9X9 PC1,PC2
‡

16 0.04, 0.20, 

5.06, 20.25

112.32 6.93 0.00 0.45

49 ASTER SMA 450 PC1,PC2; SPOT 9X9 PC1 4 0.20, 20.25 113.70 8.31 0.00 0.27

Meaning of RS PCs: a = Eigen value proportion; b = dominant eigen vectors; c = interpretation of PC gradient

ASTER SMA 450 PC1: a = 0.54; b = -0.40 GV, 0.63 NPV, 0.67 Soil; c = Closed forest with higher stem and/or bamboo 

densities to shrubby, more open areas. 

ASTER SMA 450 PC2: a = 0.30; b = 0.90 GV, 0.41 NPV; c = Drier (conifer rich) forests to moister (often bamboo-

dominated) forests.

ASTER SMA 450 PC3: a = 0.16; b = -0.66 NPV, 0.73 Soil; c = Lower elevation open or secondary forest with abundant 

broad-leaved shrubs and tall forbs to high altitude forest/grassland/sclerophyllous shrubland mosaic.

*R = number of candidate models, including the global model; BA = basal area; CC = proportion canopy cover; Shrub = 

shrub density; Forb = tall forb density; GC = proportion ground cover; HH = relative height of herbaceous layer. SMA 

225/450 = spectral mixture analysis endmember fractions aggregated to 225 or 450 m resolution; PC = principal component; 

9X9 = window sizes used in texture analysis.
†
K = number of predictors plus regression intercept. 

‡
Hosmer-Lemeshow t

2
 = 3.60 df = 8, p < 0.89.



Figure 1. A) The mountain bongo’s potential distribution (dark grey areas) within Kenya. Mount Kenya 

and the Aberdares fall within the black square. B) The Aberdares in relation to Mount Kenya. C) 

Detailed view of the Aberdares, with potential bongo habitat shaded dark grey. The position of the 

fenceline is indicated by the heavy black line. Field sample plot locations are denoted by black 

diamonds (1
st
 season bongo samples), grey diamonds (2

nd
 season bongo samples), white diamonds (3

rd

season bongo samples), and black crosses (grid points).  
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Mount
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Figure 1



Figure 2. Selected results of RS image analyses. A portion of the study area is illustrated by A) the 

SPOT 5 m panchromatic image, and B) the SPOT 9X9 standard deviation texture image. The same area 

is shown in the four right-hand images, which are the C) GV, D) soil, E) NPV, and F) shade fractional 

end-members resulting from SMA of the 30 m ASTER image. The numbered crosses indicate the 

locations of field sample plots: site 1 is located in mature, semi-open Hagenia forest; site 2 falls within 

a large short-grass glade; site 3 lies in bamboo forest; sites 4 and 5 are in small, partially shrubby 

clearings within a larger Hagenia forest.
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Figure 3. A graphical presentation of Spearman Rank correlation coefficients, indicating the strength and direction of 

relationships between the RS and microhabitat variables. Coefficient bars are coded according to the microhabitat 

variable assessed; the upper graph contains canopy structure variables, while the lower graph contains understorey 

variables. Bars extending outside the grey-shaded area are significant at the indicated sequential Bonferroni-adjusted 

alpha levels; those within the shaded area are not. RS variables appear on the X axes, and are segregated by sensor. 

SMA variables are denoted by their endmember fraction names (GREENVEG, NPVEG, SOIL, SHADE), while 

texture variables are listed according to window size and measure: M = mean; SD = standard deviation; ASM = 

angular second moment. Variables that showed no significant relationship with any microhabitat feature are not 

listed. These are: ASTER 3X3 Band 2 ASM, Band 3 SD, Band 3 ASM; ASTER 7X7 Band 2 ASM, Band 3 SD, Band 

3 ASM; MODIS 463 m NPV & soil, MODIS 927 m NPV & soil.

r
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Sequential Bonferroni adjusted threshold:   p < 0.00035 p < 0.00088 p < 0.00065
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Appendix 1. Selected results of the multiple logistic regression models employing RS-derived predictor variables 

segregated by sensor type and scale. The results of the five best models, the highest ranked models from each 

individual dataset, and the global model (denoted by the boldface, underlined model rank) are presented, as well as 

the spatial scales they represent. Models were ranked and evaluated using the modified Akaike’s Information 

Criterion (AICc), the Ak i), and Akaike weights (wi). The adjusted sum of squares R
2
 (R

2
ss,adj)

indicates the proportion of variance explained in the response.

Rank Model (R = 50, n = 117)* K
†

Scale (ha) AICc i wi R
2
ss,adj

1 ASTER SMA 450 PC1, PC2 3 20.25 113.32 0.00 0.72 0.26

2 ASTER SMA 450 PC1, PC2, PC3 4 20.25 115.27 1.94 0.27 0.25

3 ASTER SMA 450 PC2, PC3 3 20.25 125.64 12.32 0.00 0.16

4 ASTER SMA 225 PC1, PC2 3 5.06 127.72 14.39 0.00 0.16

5 ASTER SMA 225 PC1, PC2, PC3 4 5.06 128.88 15.55 0.00 0.15

6 SPOT 9X9 Texture PC1, PC2 3 0.20 129.64 16.31 0.00 0.15

8 SPOT 21X21 PC1, PC2 3 1.10 133.16 19.83 0.00 0.13

9 SPOT 5X5 PC1, PC2 3 0.06 134.09 20.76 0.00 0.10

10 ASTER SMA 105 PC1, PC2 3 1.10 134.24 20.91 0.00 0.11

12 ASTER SMA 30 PC2, PC3 3 0.09 134.36 21.04 0.00 0.11

14 SPOT 3X3 PC1, PC2 3 0.02 135.16 21.84 0.00 0.09

17 ASTER VNIR 3X3 PC1,PC2, PC3 4 0.20 135.61 22.29 0.00 0.09

18 MODIS 927 PC2, PC3 3 85.93 135.88 22.56 0.00 0.07

19 ASTER VNIR 7X7 PC1, PC2, PC3 4 1.10 136.52 23.19 0.00 0.08

22 MODIS 463 PC1, PC3 3 21.44 136.93 23.61 0.00 0.06

50 ASTER: 1) SMA: 30 m (PC1-3), 105 m (PC1-

3), 225 m (PC1-3), 450 m (PC1-3); 2) VNIR

Texture: 3X3 (PC1-5), 7X7 (PC1-5). MODIS

SMA: 463 m (PC1-3); 927 m (PC1-3). SPOT

Texture: 3X3 (PC1-3); 5X5 (PC1-2); 9X9 

(PC1-2); 21X21 (PC1-2)
 ‡

38 0.02-85.93 166.36 53.03 0.00 0.47

*R = number of candidate models, including the global model; SMA = spectral mixture analysis; PC = principal 

component; 3X3, 5X5, 7X7, 9X9, 21X21 = window sizes used in texture analyses.
†
K = number of predictors plus regression intercept. 

‡
Hosmer-Lemeshow test result: (

2
 = 7.16, df = 7, p < 0.41).

Appendix 1
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