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Abstract: Traditional smallholder farming systems dominate the savanna range countries of 

sub-Saharan Africa and provide the foundation for the region’s food security. Despite 

continued expansion of smallholder farming into the surrounding savanna landscapes, food 

insecurity in the region persists. Central to the monitoring of food security in these countries, 

and to understanding the processes behind it, are reliable, high-quality datasets of cultivated 

land. Remote sensing has been frequently used for this purpose but distinguishing crops 

under certain stages of growth from savanna woodlands has remained a major challenge. 

Yet, crop production in dryland ecosystems is most vulnerable to seasonal climate 

variability, amplifying the need for high quality products showing the distribution and extent 

of cropland. The key objective in this analysis is the development of a classification protocol 

for African savanna landscapes, emphasizing the delineation of cropland. We integrate 

remote sensing techniques with probabilistic modeling into an innovative workflow. We 
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present summary results for this methodology applied to a land cover classification of 

Zambia’s Southern Province. Five primary land cover categories are classified for the study 

area, producing an overall map accuracy of 88.18%. Omission error within the cropland class 

is 12.11% and commission error 9.76%. 

Keywords: cropland; agriculture; savanna; food security; spectral mixture analysis;  

multi-temporal; logistic regression; land cover; classification; Landsat 

 

1. Introduction 

Savanna biomes cover roughly one-fifth of the planet’s terrestrial surface with the largest spatial extents 

found in sub-Saharan Africa. Among the savanna-range countries, agricultural activity constitutes a large 

segment of the economic sector, employing 70% of labor and accounting for 32% of GDP [1]. Traditional 

smallholder farming systems dominate the agricultural landscape where smallholders play an integral part in 

shaping the socioeconomic and ecological fabric of the region and provide the foundation for food security. 

Despite increasing agricultural production over the last 30 years, yield has not kept pace with exponential 

population growth and food insecurity remains prevalent [2]. The response of cultivating more land to 

increase productivity has put savannas under intense pressure [3,4] with little improvement in yield [2]. To 

meet the rapidly growing food demands of the projected doubling of the region’s population by 2050 [5], 

and the growing interest in using the capacity for additional cropland to enhance economic development 

in the region [6,7], conversion of savanna to cropland is expected to continue at an advancing pace. In 

addition to this concern, this region’s high climate variability, and vulnerability to drought, pose a significant 

and increasing risk to agriculturally-based livelihoods [8,9]. A mechanism that can support the monitoring 

and assessment of food security and improve understanding of how climate variability affects regional 

crop production could offer a valuable tool to the region.  

Reliable cropland maps are fundamental to informing both local and global development and natural 

resource management policies [6], being an essential input for evaluating food security, land use/land 

cover dynamics, investment priorities, conservation policies, and a host of other factors [10–12]. Yet, 

there is little agreement of the cropland baseline, reflected by the lack of consensus among regional and 

global land cover products. Global estimates of total cropland area differ by as much as 40% [13], and 

estimates within semi-arid regions of Africa have even greater uncertainty, largely attributable to the 

difficulty of mapping cropland in smallholder systems [12,14]. 

This difficulty is pronounced in savannas, where smallholder systems predominate, and the 

characteristics of savanna vegetation make it particularly hard to distinguish from small-scale farms. 

Smallholders use low intensity practices to cultivate small fields, and often preserve large fruit-bearing 

trees within their field boundaries [15]. The combination of field size, residual tree canopies, and crop 

diversity magnify the within-class variability of crop field while blurring the spectral distinction between 

croplands and savannas. The difficulty in distinguishing cropland from savanna is evidenced by the 

disagreement between products derived from remote sensing and statistical inventories of African 

agriculture [16,17]. Given these discrepancies, and the absence of a single reliable dataset to inform 
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policy decisions regarding food security issues and land use, an effective and rigorous methodology for 

mapping croplands from satellite images is much needed for sub-Saharan savanna landscapes [18].  

1.1. Objectives 

In this paper, we integrate remote sensing techniques of classification and error detection with logistic 

regression into an innovative workflow. Although we categorize multiple primary land covers, the key 

objective is the development of a classification protocol to effectively capture cropland in a savanna 

landscape. The workflow combines statistical clustering, supervised classification, proportional 

sampling, and targeted error detection with a probabilistic reclassification technique (logit models), 

incorporating elements of phenology and physically-based fraction estimates of land cover. While the 

set of analytical techniques utilized here has been part of the existing toolkit of remote sensing 

researchers, the innovation in this approach is the combination of sequence and strict application of 

techniques. We demonstrate this methodology with results derived from a land cover classification of 

the smallholder-dominated, semi-arid province of Southern Zambia. Land cover is classified into five 

primary categories over a study area covered by three adjacent Landsat 5 Thematic Mapper (TM) 

footprints, producing an overall accuracy of 88.18% and reducing errors of omission and commission 

within the cropland class to 12% and 10% respectively. 

Policy analysts and practitioners note that satellite-derived measures of cropland in Africa, with 

minimum accuracies ranging between 80 and 85 percent, could fill in statistical data gaps and provide 

valuable data for designing development programs and targeting donor investment, as well as 

“monitoring dynamics of agriculture extent and output and evaluating food security in the continent” [18,19]. 

The classification protocol we present in this paper is a practical, flexible, and effective approach to 

cropland mapping in a smallholder savanna environment. It has the potential to provide a valuable 

accounting and decision-making tool, essential for the sustainable agricultural development, food 

security, and ecosystem service provisioning of savanna range countries in Africa.  

1.2. Review of Techniques for Remote Sensing Cropland in Savanna Landscapes 

Savannas are common ecosystems that are distributed globally across the tropic and sub-tropic 

latitudes. Comprised of grasslands interspersed with bushes and trees in varying densities, savannas 

provide essential services in the form of carbon storage and climate regulation, and habitat for many 

mega-fauna species [20]. A variety of remote sensing approaches have been proposed to map cropland 

within savanna landscapes. In the Brazilian Cerrado, land cover was classified into discrete map 

categories, including pasture and cropland, by applying a random forest classifier to Landsat derived 

spectral-temporal statistical metrics [21]. The temporal window of Landsat data used in this study 

spanned a period of several years. This method achieved an overall accuracy of 92%, but the temporal 

depth of 3 years may prohibit the use of this approach in locations where savannas are undergoing rapid 

conversion and more frequent monitoring is desired, such as those on the African continent. Estes et al. [22] 

applied support vector machines (SVM) to temporal Landsat data in a classification of the greater 

Serengeti ecosystem, achieving high accuracies for both stable and conversion categories, however, the 

approach poses some potential challenges related to training and validating the conversion category, 

notably the reliable identification of converted area and the directionality of conversion.  
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Temporal measures of the Normalized Difference Vegetation Index (NDVI), coupled with  

mono-temporal refinement techniques, have also been utilized in a supervised land cover classification 

of a marginal semi-arid region within the Sahelian belt of Niger [23]. Omission and commission errors 

were 5% and 12% respectively for the cultivated category, but this success is largely dependent on having 

images available throughout the entire season. In addition to issues related to data availability, using NDVI 

in savannas can be problematic given that the index is affected by soil color and scale [24–28]. 

Object-based classifiers (OBC) have received increasing attention because of their ability to 

incorporate spatial data into the classification process. Utilized in conjunction with high resolution 

satellite data, OBCs have been used to identify cropland [29] and to differentiate woodland from 

surrounding land cover in a savanna environment [30]. However, research has shown the only significant 

advantage of an OBC over a maximum likelihood classifier (MLC) is discriminating vegetation classes 

with complex forest stand structures [31]. Additionally, cost and data storage are significant logistical 

challenges, particularly when the spatial extent of a study area is large.  

Results from other remote sensing studies in semi-arid environments suggest that fraction cover 

estimates made using unmixing methods are less affected by soil background than NDVI [32–37].There 

are several methods for estimating sub-pixel fractions of land cover, including multi-resolution 

approaches and spectral mixture analysis (SMA). Gessner et al. [38] introduced a method of scaling up 

from an initial classification of high-resolution data to medium and coarse resolution imagery through a 

process of sampling and the use of random forest regression trees. A major limitation of this method is 

that the requisite high-resolution data are often unavailable.  

SMA estimates the fractional composition of land cover within a pixel by using the spectral signatures 

of endmembers, or “pure pixels” [39], treating a pixel’s spectrum as a linear combination of the spectra 

of its physical elements [40]. Spectral unmixing has been suggested to be among the most promising 

techniques for obtaining data on surface cover in savanna environments where there is a large presence 

of non-photosynthetic vegetation (NPV), and reflectance is affected by scattering, mixing, and variability 

in soil composition [34]. The technique has been recommended for semi-arid study sites where there is a 

high frequency of mixed pixels and reflectance is dominated by the soil background [35]. Research has 

shown that a basic three-endmember spectral mixture model can represent over 95% of all observed 

Landsat image spectra, producing fraction estimates that closely agree with in situ measurements and 

quantitative output that directly relates to the physical characteristics of land cover [41]. Spectral unmixing 

has been effectively applied to both mono and multi-temporal data in semi-arid environments in 

monitoring desertification and desertification risk [42,43], rangeland degradation [44], and mapping 

invasive grasses [45].  

Logistic regression is a flexible alternative to the traditional supervised classification approach. 

Hogland et al. (2013) [46] discuss the “desirable qualities” of logistic regression underscoring the rather 

unrestrictive model assumptions, the model’s incorporation of both categorical and continuous variables 

into the classification scheme, ease of model comparisons, and a focus on direct modeling of class 

probabilities. Environmental variables have been paired with logistic regression to identify distributions 

of land cover [47] but coupled with multispectral data and derivatives, logistic regression has been 

utilized to classify land cover [48], identify areas of advancing land degradation [49], and mapped burned 

lands [50]. We adopt logistic regression in the classification protocol presented here, pairing the logit model 

with multispectral derivatives generated from temporal intra-band differencing and spectral unmixing.  
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2. Data and Methods 

2.1. Study Area 

Zambia is a nation with an extensive land resource base (58% classified as arable), much of it covered by 

savanna and savanna woodland, and possessing 40% of the water in Central and Southern Africa [51,52]. 

With only 14% of the resource base cultivated each year, and the agriculture sector accounting for almost 

70% of labor force employment, Zambia is one of the global focal points for agricultural expansion [53]. 

The Southern Province of Zambia (Figure 1) is one of the key agricultural regions in the country. The 

province falls within the semi-arid/highland semi-arid agro-ecological zones and is dominated by 

smallholder farming, similar to the Central, Lusaka, and Eastern provinces of Zambia and comparable 

regions in south-central Africa, the Sahel, and east African steppe. The climate is sub-tropical, 

characterized by three seasons: cool dry (April–August), hot dry (August–November), and warm wet 

season (November-April). Average temperatures are between 14 °C and 28 °C with an average annual 

rainfall accumulation of 800–1000 mm (less than 700mm in the South Chama and Lundazi regions of 

the extreme south). The province is dominated by clay soils supporting primary crops of maize, cassava, 

groundnuts, millet, seed cotton, and wheat. The population was estimated to be over 880,000 in 2010, 

an increase of approximately 38% from 1990 [54].  

 

Figure 1. Country of Zambia with provinces outlined in black and water bodies/seasonally 

inundated areas in blue. The Southern Province is highlighted in green.  
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2.2. Data 

Landsat 5 Thematic Mapper (TM) data was collected for three footprints that covered nine of eleven 

administrative districts, either wholly or in large part. The footprints were located at nominal scene 

centers of Path: 172, Row: 071; Path: 172, Row: 072; and Path: 173, Row: 071.  Given the breadth of 

study area and characteristic smallholder farming, the Landsat 5 TM instrument offered the optimal pixel 

resolution of 30 m [55]. Two images were selected for each satellite footprint with acquisition dates 

corresponding to the pre-season of 2008 and the harvest season of 2009 (Table A1). The choice of 

2008/2009 imagery coincided with survey data collected during 2007–2008. Optimally, scenes from the 

growing season would also be utilized but persistent heavy cloud cover combined with the 16-day 

reacquisition interval did not yield an image of sufficient quality. Quantized calibrated pixel values were 

converted to at-sensor radiance based on the minimum and maximum spectral radiance for each band [56]. 

Radiance values were subsequently converted to surface reflectance using an image-based procedure of 

dark-object subtraction [57,58]. Fmask software (https://code.google.com/p/fmask/) was utilized to identify 

cloud/heavy haze and cloud shadow in each TM scene. Cloud masks were combined into a cumulative mask 

and applied to both images. Multi-temporal composites were then generated for each footprint by stacking 

the six multi-spectral bands (TM 1–5, and 7) of the seasonal image pairs to generate a 12-layer image. 

2.3. Analysis 

Given the slight differences in image acquisition dates, and inherent difficulties related to normalizing 

reflectance among adjacent scenes, each footprint was classified independently. Land cover within the 

area delineated by the TM footprint at Path: 172; Row: 071 (WRS 2) was classified first. The method 

for classifying land cover in this footprint, and classification results, are presented in detail. 

Classification results from the two adjacent footprints are provided in the supplement.  

To develop a training dataset, a clustering algorithm (ISODATA) in Erdas IMAGINE was applied to 

the multi-temporal spectral data to identify statistical patterns and segment pixels into natural occurring 

clusters. Utilizing a minimum spectral distance formula, pixels were grouped into ten clusters and 

randomly sampled, generating 75 points within each unsupervised cluster. Square buffers, delineating 

an area of 900 m2, were constructed around sample points and a ground cover label assigned to each 

polygon through interpretation of high resolution Google Earth imagery [22,59,60]. Training locations 

were coded with Google Earth imagery acquired between 2007 and 2010. Of the total sample of 

750 points, 498 were interpretable and intersected with suitable land cover reference imagery. Training 

data were labeled as 1 of 5 primary land cover classes: (1) forest; (2) cropland; (3) savanna; 

(4) settlement; and (5) water. The dominant land covers were adequately sampled by this scheme, 

however, the settlement class was underrepresented so purposeful sampling was performed to 

supplement the training data for that category with an additional 25 points.  

A processing diagram is provided to illustrate the workflow that follows (Figure 2). As operations are 

described, text is provided directing to specific points in the diagram, e.g., “Operation 1, Figure 2” refers 

to the operation icon in the workflow labeled “1” (hierarchical clustering of training signatures). Spectral 

signatures were extracted from the multi-temporal data at sample locations and imported into DataDesk 

statistical software [61]. Because intra-class spectral variability was high, the compliment of signatures 

https://code.google.com/p/fmask/
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associated with each primary land cover category was grouped into spectrally similar subsets, or 

subgroups, using hierarchical clustering (Operation 1, Figure 2). Mean subgroup signatures were 

produced by averaging signature values for each unique cluster of signatures. 

 

Figure 2. Classification workflow using objects and syntax analogous to the model builder 

in ERDAS Imagine. Note that reclassification iterations are performed by repeating the loop 

of Operations 5, 8–11 (in bold), the remaining operations are performed once. The dashed 

line, directing to Operation 5 in the diagram, represents data not used directly in the operation 

but rather to establish parameters for Operation 5.  

Separability was tested among subgroup signatures, within primary categories, by calculating the 

Transformed Divergence (TD) [62], merging signature pairs with a TD value less than 1700 [63]. Spectral 
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variability was high among all non-water categories. The greatest variability was observed in the cropland 

class where spectral signatures were partitioned into 10 clusters with minimal overlap (Figure 3). 

 

Figure 3. Distribution of cropland clusters in T1TM3 (x-axis) and T2TM4 (y-axis) feature 

space. Dashed lines delineate the distribution of individual signatures that compose the 

respective cluster. TM3 is utilized to illustrate soil reflectance variability and TM4 to illustrate 

the variability in vegetation response.  Surface reflectance is scaled to unsigned 8-bit. 

The bulk of training samples (~67%) was distributed among the cropland and savanna categories. 

Hierarchical clustering of training signatures produced 3 to 10 subgroups for non-water categories with 

cropland and savanna represented by the greatest number of subgroups (Table 1). The mean signatures 

used to parameterize the initial classification represented the average spectral value of each of these 

subgroups. We categorized the spectral data in Erdas IMAGINE with a MLC, selecting all layers in the 

temporal dataset as input to the classifier and applying the 25 subgroup signatures (Operation 2, 

Figure 2). The 25-category thematic output serves several purposes, namely: a mechanism for identifying 

and isolating commission error within spatially defined strata of primary land covers; a sampling template, 

and, a mask to spatially constrain pixel reclassification. The number of primary categories and breadth of 

training data dictates the quantity of subgroups and the number of classes in the thematic output. These 

parameters will vary by type of study and composition of landscape but the method of primary category 

stratification is certainly generalizable to a variety of studies, and equally, landscapes. 
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Table 1. Primary category training data for footprint at Path: 172 Row: 071: category 

description, sample size, and number of subgroups. Column 3 indicates the total number of 

training samples for each primary category. Column 4 indicates the number of subgroups 

generated from the hierarchical clustering of training signatures.  

Primary LC 

Category 
Description 

Sample 

Size 

No. 

Subgroups 

Forest Tree assemblages ≥ 40% canopy closure 88 5 

Cropland Cultivated land for subsistence or commercial agriculture 177 10 

Savanna 

Savanna: grassland (woody canopy cover < 10%), bushland 

savanna (10% < bush cover < 40%), woodland savanna  

(10% < tree canopy < 40%) [55,56]. 

172 6 

Settlement Urban areas, villages, and roads  54 3 

Water Lakes, rivers, streams, and seasonally inundated areas  32 1 

Proportional random sampling of the 25-category thematic map was used to generate validation points 

(Operation 3, Figure 2). A total of 477 validation points were interpretable and intersected with suitable 

reference land cover imagery. Since classification accuracy in Erdas IMAGINE is evaluated within a 3-pixel 

by 3-pixel window, square buffers (8100 m2) were constructed around the sample validation points and 

a land cover label assigned to each polygon through interpretation of Google Earth imagery. 

Classification error was evaluated through an accuracy assessment of the 25-category (subgroup) 

thematic map (Operation 4, Figure 2). The assessment allowed us to examine the distribution of error 

within strata of a primary category and identify the subgroup(s) where the greatest classification error 

resided. The largest detected commission errors were related to savanna misclassified as cropland and 

cropland as settlement. An examination of a portion of the error matrix, revealed error concentrated in the 

cropland_3 and cropland_4 subgroups and within the settlement_2 and settlement_3 subgroups (Table 2). 

Table 2. Partial classification error matrix containing cropland and settlement subgroups. 

Rows represent the classified subgroup map categories and columns represent reference or 

validation data. High commission errors are indicated by asterisks. 

Subgroup Forest Cropland Savanna Settlement Water 

Cropland_1 0 27 0 0 0 

Cropland_2 0 32 0 0 0 

Cropland_3 0 28 13* 0 0 

Cropland_4 0 6 28* 0 0 

Cropland_5 0 2 0 0 0 

Cropland_6 0 1 0 0 0 

Cropland_7 0 1 0 0 0 

Cropland_8 0 33 0 0 0 

Cropland_9 0 4 0 0 0 

Cropland_10 0 2 0 0 0 

Settlement_1 0 1 0 2 0 

Settlement_2 0 8* 0 37 0 

Settlement_3 0 7* 0 1 0 
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Reclassification was iterative, each iteration addressing commission error within a particular high-error 

subgroup and restricted to the spatial extent of same. There were, overall, five subgroups reclassified 

within the footprint (Path: 172 Row: 071) but only four subgroups directly affected error in the primary 

cropland class: two cropland and two settlement. We limit our description of method and models to these 

subgroups, describing the approach to reclassification in detail using one of the cropland subgroups and 

one of the settlement groups as examples.  

Commission error within the cropland_3 class resulted in 13 known areas of savanna misclassified 

as cropland (Table 2), indicating a data high degree of spectral confusion between savanna and cropland 

within this strata. We randomly sampled 200 locations within the cropland_3 thematic subgroup and 

assigned a land cover label (Operation 5, Figure 2). Land cover was interpreted for 176 observations with 

high confidence, the remainder were eliminated from the analysis.  

The assessment indicated that classification error was distributed between two primary land cover 

categories (e.g., cropland and savanna) within subgroups; the binary outcome allowed us to use logistic 

regression to estimate the probability that one of the two particular land covers was present given a set 

of predictors. The binary logistic regression model has the form:  

𝑙𝑛 (
𝑝
(1 − 𝑝)⁄ ) = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2+. . . 𝑏𝑛𝑥𝑛, (1) 

where p = probability of a case belonging to category 1; p/(1 – p) = odds; a = constant; n = number of 

predictors; b1...bn = regression coefficients; and bx1...xn = regression predictors  

Logit models are used as the basis for pixel reclassification for a number of reasons. First, logistic 

regression does not assume a linear relationship between predictors and the outcome variable. Second, 

accuracy assessment of the subgroup thematic map indicates that the dependent variable is dichotomous. 

Third, there are no predictor requirements for normality, linearity, or equal variance within primary 

categories of subgroups. Fourth, the primary categories are mutually exclusive and exhaustive. Last, 

logit models provide an efficient way of testing classification outcomes and offer a flexible interface for 

evaluating the contribution of any given predictor, or set of predictors.  

Predictors for the logit model were generated from the original multi-spectral data, incorporating 

elements of phenology and sub-pixel composition of land cover. Multi-temporal data is utilized to 

capture variability in phenology which has been demonstrated to enhance differentiation between 

cropland and surrounding natural land cover [59,64–66] as well as among crop type [67,68]. Temporal 

intra-band differencing (e.g., B1Ti–B1T2) was adopted to measure change in phenological states within 

the unique spectral windows of each band, between date 1 (T1) and date 2 (T2) (Operation 6, Figure 2). 

Quantitative subpixel information of surface components was estimated using SMA to spectrally unmix 

one image of the seasonal image pairs (Operation 7, Figure 2). We selected the Landsat image acquired 

during the harvest season since spectral separation between cropland and the surrounding natural 

savanna was slightly greater than that found in the preseason scene. No discernible advantage in 

separation between cropland and settlement was detected between scenes. A Sequential Maximum 

Angle Convex Cone (SMACC) [69], utilizing a residual minimization model, was used to identify a 

pseudo set of image endmembers that were displayed in a scatterplot amongst all pixels in the TM image 

as reference locations that would guide endmember selection. The set of four endmembers used in this 

analysis was selected through iterative testing of candidate pixels at reference locations, representing 

photosynthetic vegetation (PV), soil, non-photosynthetic vegetation (NPV), and shade components 
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(Figure 4). Results of the constrained model showed few pixels with values below 0 or above 1 and a 

mean RMS error of 5.538 indicating that the selected endmembers effectively characterized the 

landscape. An inspection of RMS distribution revealed the highest error pixels concentrated in areas that 

seasonally inundate with water, however the magnitude of error was not considered serious enough to 

warrant modification of the model. The library of candidate predictors utilized in the logit model 

consisted of six difference variables (one for each band pair, 1–5, and 7) and four fraction images. 

Predictor values were extracted at the sampled locations and collated (Operation 8, Figure 2).  

 

Figure 4. (Left): Location of selected endmembers in scatterplot where Landsat TM band 4 

is assigned to the y-axis and band 7, the x-axis. Values of X and Y-Axes are at-surface 

reflectance. (Right): Endmember pixel boundaries mapped and overlaid on high-resolution 

imagery (Google Earth). 

The type of error that we detect within subgroups is always commission error. Our logit models are 

used to identify misclassified pixels of the commissioned category, assigning a value of 1 to cases 

associated with the latter category and 0 to cases associated with the primary category to which the 

subgroup has membership. For example, we wanted to identify misclassified savanna within the 

cropland_3 subgroup, correcting the commissioning of savanna by cropland, so an outcome value of 1 

was assigned to savanna cases and outcome value of 0 to cropland. The 10 candidate predictors were 

input to the logit model using backward stepwise selection (Operation 9, Figure 2). The significance 

level for removal was set at 0.10 and classification cutoff at 0.5. Overall fit of the model was evaluated 

using scalar measures of fit, such as log-likelihood, as well as information based measures (70). The 

likelihood ratio test (G2) compares the log likelihoods of the full and constrained model (i.e., a model 

with all coefficients but the intercept constrained to zero), and is reported as a chi-square statistic, with 

degrees of freedom and a statistical significance level. The likelihood ratio test allowed us to test the 

hypothesis that all model coefficients except the intercept were zero. Common pseudo-R square 

measures, such as McKelvey and Zavoina’s R2 and Nagelkerke R2 were used to assess the adequacy of 

the model. We also used the Hosmer and Lemeshow's goodness-of-fit test to compare predicted to 

observed frequencies, whereby a test with a large p-value indicates a good fit between the model and the 
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data. Finally, to compare full (non-nested) to nested models we employ information measures of fit. 

Comparisons were made between the full, or non-nested (10 predictor), and nested (4 predictor) models 

using the difference in the Bayesian Information Criterion (BIC) measures for the two models (where 

an absolute difference of 2–6 suggests positive evidence, 6–10 indicates strong evidence, and a 

difference greater than 10 suggests very strong evidence in favor of the nested model [70]. Using Erdas 

IMAGINE’s Model Builder, parameters returned from the nested logit model were applied to the 

predictor layers, utilizing the subgroup thematic map to restrict the operation to the spatial extent of the 

strata of interest (Operation 10, Figure 2). Pixels within the subgroup were recoded to the appropriate 

land cover based on a threshold probability of 50% (Operation 11, Figure 2). Operations 5, 8–11 

(Figure 2) were repeated for the remainder of high error subgroups. Once all high error subgroups were 

addressed, validation was performed using the dataset generated in (Operation 3, Figure 2).  

3. Results 

The first stage supervised classification yielded an overall accuracy for five primary land covers of 

80.10%. The greatest error was observed within the savanna class where omission error was nearly 42%. 

Likewise, high commission error was found in the cropland and settlement categories at 24% and 28% 

respectively. Primary category subgroups identified as having high error were subsequently reclassified. 

Model parameters and statistics evaluating model fit are provided from two subgroup reclassifications: 

cropland_3 (Model 1) and settlement_2 (Model 2). 

3.1. Evaluation of Model 1: Cropland_3 Subgroup 

Four predictors were selected in the cropland_3 subgroup model to differentiate misclassified savanna 

from cropland: Fractionveg, FractionSoil, FractionLitter, and the seasonal difference in near-infrared 

reflectance (DifferenceB4). The likelihood ratio test, evaluating the four predictors as a group, was highly 

significant (G2162.65, df = 4, p < 0001). The Hosmer-Lemeshow goodness-of-fit (Χ20.519, df = 8,  

sig. = 1.000) as well as two pseudo R-square values (McKelvey and Zavoina R2 = 0.803 and Nagelkerke 

R2 = 0.803) provided further support for the model fit. A comparison of nested and non-nested models 

offered positive evidence in favor of the nested (4 predictor) model over the full (10 predictor) model 

(difference in BIC = 3.816). All predictors contributed significantly to the model at a significance level 

of 0.001. A one unit increase in the difference of near-infrared reflectance increased the log odds of a 

pixel being savanna by 0.06, whereas the soil, vegetation, and litter fractions all decreased the log odds 

of a pixel being savanna, in order of decreasing magnitude (Table 3a).  

Of the 80 known savanna plots within the cropland_3 thematic category, 74 were classified correctly, 

and 89 of the known 96 cropland plots classified correctly for an overall accuracy of 92.6% (Table 3b). 

Positive and negative predictive values (PPV and NPV) were calculated (%) with accompanying 

confidence intervals (Equation A1). PPV and NPV values indicated high probability of a plot being 

savanna when the test is positive, and high probability of a plot being non-savanna when the test is 

negative. Recoding pixels with p ≥ 0.5 reduced the spatial extent of the cropland_3 thematic category 

by 53.15%, from roughly 294 thousand hectares to 156 thousand while, simultaneously, reducing 

commission error of cropland and omission error of savanna. 



Remote Sens. 2015, 7 15307 

 

 

Table 3. (a) Summary of predictor effects for cropland_3 subgroup model. (b) Classification 

table for cropland_3 subgroup model. Classification cutoff value is 0.500. PPV = Positive 

predicted value and NPV = Negative predicted value. 

(a) 

Predictor β SE β eβ Wald’s χ2 (df = 1) 

FractionVeg −0.2089*** 0.0423 0.8115 24.36*** 

FractionSoil −0.4225*** 0.0985 0.6554 18.38*** 

FractionLitter −0.1428*** 0.0502 0.869 8.10*** 

DifferenceB4 0.0604*** 0.0130 1.0622 21.57*** 

Constant 12.2058*** 2.2976 NA NA 

(b) 

Observed 

Predicted 

Land Cover Percentage 

Correct Cropland Savanna 

Land cover Cropland 

 Savanna 

89 

6 

7 

74 

92.7 

92.5 

Overall Percentage   92.6 

PPV: 91.36%; 95% CI: 82.99% – 96.44% 

NPV: 93.68%; 95% CI: 86.75% – 97.63%  

***p < 0.001. 

3.2. Evaluation of Model 2: Settlement_2 Subgroup 

Four predictors were selected for the settlement_2subgroup model to differentiate cropland from 

settlement: Fractionveg, FractionLitter, FractionShade, and the seasonal difference in visible green 

reflectance (DifferenceB2). The likelihood ratio test was statistically significant (G254.31, df = 4,  

p < 0.0001). The Hosmer-Lemeshow test (Χ2 7.736, df = 8, sig. = 0.460) and pseudo R2 values indicated 

a good model fit, (McKelvey and Zavoina R2 = 0.798 and Nagelkerke R2 = 0.697). A comparison of nested 

and non-nested models (4 predictor vs. 10 predictor model) strongly favored the nested over the full 

model (difference in BIC = 15.729). All predictors were statistically significant at the 0.01 level of 

significance. A one unit change in FractionLitter resulted in the greatest increase in log odds of a pixel 

being cropland, followed by the vegetation and shade fractions. Seasonal difference in visible green 

lowered the log odds of a pixel being cropland. (Table A2).  

Of the 52 known cropland plots, 48 were classified correctly, and 18 of the known 26 non-cropland 

plots classified correctly for an overall accuracy of 84.6% (Table A3). Omission error of cropland 

decreased and commission error of settlement was no longer detected. PPV and NPV both exceeded 

82%, however, confidence intervals were much broader than those observed in the previous model. 

Recoding reduced the size of the settlement_2 thematic category by 33.3%, removing all error detected 

by the validation dataset.  

A comparative assessment between the initial classification and post-correction classification 

revealed an absolute reduction in cropland commission error of 17.24% to an error of 7.04%, and 

decrease in omission error of 3.4% to 13.16% (Table 4). The greatest reduction in error was found in the 
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savanna class where omission error was reduced by 28.78% although this resulted in a slight uptick in 

commission error of 3.08%. Overall, no measure of error in any category exceeded 15%. 

Table 4. Error assessment of thematic land cover map at Path: 172 and Row: 071. Absolute 

changes in errors of omission and commission are reported in the last two columns. These 

values reflect the impact of error correction measures.  

Class 
Reference 

Total 

Classified 

Total 

No. 

Correct 
εOmission εCommission 

Abs. Change 

εOmission 

Abs. Change 

εCommission 

Forest 108 116 104 3.70 10.34 −1.86 −10.59 

Cropland 152 142 132 13.16 7.04 −3.40 −17.24 

Savanna 152 155 132 13.16 14.84 −28.78 3.08 

Settlement 40 40 40 0.00 0.00 0.00 −28.57 

Water 25 24 24 4.00 0.00 4 0.00 

Total 477 477 432  

Overall Accuracy: 90.57 

Table 5. Error assessment of combined thematic maps from Path: 071 Row: 072, Path: 072 

Row: 072, and Path: 073 Row: 071. Errors of omission and commission are reported in the 

body of the table, overall accuracy at the bottom. 

Class 
Reference 

Total 

Classified 

Total 

No. 

Correct 
εOmission εCommission 

Forest 288 298 265 7.99 11.07 

Cropland 421 410 370 12.11 9.76 

Savanna 349 374 302 13.47 19.25 

Settlement 100 80 78 22.00 2.50 

Water 86 82 82 4.65 0.00 

Total 1244 1244 1097  

Overall Accuracy: 88.18 

The method described in this paper was subsequently applied to the adjacent datasets, categorizing 

land cover within the TM footprints at Path: 172 Row: 072 and Path: 173 Row: 071 (Figure 5). In total, 

4 primary category subgroups were reclassified within the former footprint and 6 subgroups within the 

latter. Overall classification accuracy in the Path: 172 Row: 072 footprint was 85.4% and 86.5% in Path: 

173 Row: 071. Cropland omission error was 12.8% and 7.3% respectively, commission error 9.4% and 

14.2% (Table A4). Finally, classification error was assessed for the combined footprints. Overall accuracy 

was reported at 88.18% with 1097 out of 1244 locations of known land cover classified correctly (Table 5). 

Omission error within the primary cropland class was slightly higher than commission error but both 

reasonably low. Errors of commission were high for the savanna class at 19.25% however, almost 66% of 

the error is attributable to confusion with the forest class. Of the 72 non-savanna plots classified as savanna, 

43 were forest and 23 cropland. The largest recorded error was found in the settlement class, the majority 

of which was attributable to settlement misclassified as cropland.  
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Figure 5. Thematic land cover map of combined scenes at Path: 172 Row: 071, Path: 172 

Row: 072, and Path: 173 Row: 071. White areas were obscured by cloud. 

4. Discussion  

Reliably mapping cropland within smallholder-dominated savannas is critical to determining total 

area under crop and the distribution of cropland on the African continent. The workflow, and application 

of techniques, outlined in this paper delineates cropland within the savanna landscape of Zambia. The 

potential future applications of the protocol presented here could support policy initiatives aimed at 

achieving food security and support the frequent monitoring of food security in the region, as well as 

improve our understanding how seasonal climate variability affects regional crop production.  

The suite of complementary remote sensing techniques used in this analysis are familiar to remote 

sensing researchers. Our contribution lies in the integration of these techniques in a manner that capitalizes 

on the salient utility of each one. The data-driven unsupervised clustering algorithm (ISODATA) segments 

pixels into natural clusters that reflect the underlying spectral structure of the data [71]. Through random 

sampling of unsupervised clusters, we are able to capture variability within primary land cover categories 

that is representative of conditions throughout the study area in an unbiased training dataset. Likewise, 

clustering training data into primary category subgroups and parameterizing a MLC with subgroup 

spectra has two distinct advantages. First, thematic output is produced where commission error can be 

detected and isolated within strata of primary categories. Second, spectral variability is reduced within 
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classes which minimizes the number of confused primary categories within subgroups and reduces 

spectral noise, helping prevent over-fitting of the logistic model. The targeted reclassification that we 

adopt in this approach accounts for large spectral variability that is typically characteristic of generic 

land cover categories. By reclassifying within subgroups of primary categories we are able to treat 

spectral confusion between identical pairs of primary land covers uniquely within different subgroups. 

While our selection of model variables is consistent with previous research [21–23,42–45] we have 

reduced the temporal requirements in the model and combined phenological measures with sub-pixel 

fractions of pure surface components. With this approach, we are able to address spectro-temporal 

similarity that cannot be addressed with phenological variables alone. From a pool of ten candidate 

variables, logit models are utilized to largely correct commission error in select primary category 

subgroups affecting the accuracy of the cropland category. For example, commission error resulting 

from savanna misclassified as cropland was reduced by over 22% (absolute change) for the combined 

scenes; commission error resulting from cropland misclassified as settlement was reduced by almost 

35% (absolute change) for the combined scenes. These correction measures drove errors of omission 

and commission within the overall cropland class down to 12% and 10%, respectively.  

Although image data acquired during the rainy season could potentially enhance spectral separation 

between cropland and the surrounding land cover, cloud-free data was not available. We have, however, 

demonstrated that data acquired at time points bracketing the temporal window of the growing season can 

be used to accurately delineate cropland. Admittedly, separation between settlement and cropland is more 

challenging without an image acquired during the growing season. We were able to eliminate much of the 

detected commission error within high-error settlement subgroups but omission error remained rather high 

at 22%, but these areas constitute a fraction of 1 percent of the study area. Although the spatial extent of the 

error was rather small, alternative predictors need to be evaluated to better address the cropland-settlement 

confusion, particularly for study areas with a larger urban presence or higher density of villages.  

There are no major limitations of this approach as far as data availability. Temporal data requirements 

are minimal and images acquired during the growing season are not requisite. Both recent and historical 

Landsat data is available through the USGS Global Visualization viewer (http://glovis.usgs.gov/), Earth 

Explorer (http://earthexplorer.usgs.gov/), and a number of other online sources. Continuity missions 

such as Landsat 8 Operational Land Imager (OLI), and the planned Sentinel-2 satellite constellation, 

will allow the methods to be extended and enhanced with improved instrumentation.  

The logit models are rather unrestrictive with the primary requirements being independent data points 

and categorical outcomes. However, with the use of logit models, care should be taken to avoid over-fitting 

by using a minimal number of predictors with an adequate number of observations. 

The method is heavily dependent on repetitive sampling that requires high-resolution imagery for 

land cover coding. The difficulty and expense of obtaining this imagery, particularly for Africa, makes 

Google Earth the most viable alternative currently. There are, however, other approaches being 

proposed, such as DIYlandcover/Mapping Africa [72,73]. In this approach, crowdsources generate land 

cover data and geometric details of fields. DIYlandcover has the potential to be coupled with computer 

algorithms adapted for land cover mapping, iteratively training the algorithm and identifying the areas 

of high error through each iteration. The method we propose in this paper could be usefully paired with 

a crowdsourcing platform such as this where active learning takes place and iterations continue until the 

desired accuracy is achieved.  

http://earthexplorer.usgs.gov/
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5. Conclusions 

The application of this workflow, with additional testing in other savanna range countries and semi-arid 

landscapes, provides a potentially valuable tool to assist and inform regional and national food security 

policies, the development of crop failure early warning systems, and natural resource management 

policies. While the emphasis in this analysis was on the delineation of cropland, pasture is another 

important component of agricultural activity in the Southern Province of Zambia, as well as in other 

savanna range countries on the continent. Pasture constitutes the main area for both commercial and 

small scale sector livestock production [74], and supports other savanna agroecosystems. Although 

pasture is often simply savanna in Africa, there are developed and managed pastures that are of interest. 

An avenue for further research is reliably identifying and discriminating pasture, as well as cropland, 

from savanna in order to provide a more comprehensive picture of the agricultural landscape.  
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Appendix 

Table A1. TM scene acquisition dates for each of three footprints classified. 

Footprint (WRS2) Pre-Season Date Harvest Season Date 

Path: 172; Row: 071 26 September 2008 24 May 2009 

Path: 172; Row: 072 26 September 2008 24 May 2009 

Path: 173; Row: 071 3 October 2008 31 May 2009 

Equation (A1): 

Positive Predictive Value (PPV) = a/(a + b) × 100;  

Negative Predictive Value (NPV) = d/(c + d) × 100 
(A1) 

where, a = true positive, b = false positive, c = false negative, and d = true negative.  
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Table A2. Summary of predictor effects for Settlement_2 subgroup model. 

Predictor β SE β eβ Wald’s χ2 (df = 1) 

FractionVeg 0.4408** 0.1474 1.5539 8.94** 

FractionLitter 0.5288** 0.1840 1.6968 8.25** 

FractionShade 0.4259** 0.1548 1.5310 7.57** 

DifferenceB2 −0.2802*** 0.0773 0.7556 13.14*** 

Constant −33.6832** 12.7889 NA NA 

**p < 0.01; ***p < 0.001 

Table A3. Classification table for settlement_2 subgroup model. Classification cutoff value 

is 0.500. PPV = Positive predicted value and NPV = Negative predicted value. 

Observed 

Predicted 

Land Cover 
Percentage Correct 

Settlement Cropland 

Land cover Settlement 

 Cropland 

18 

4 

8 

48 

69.2 

92.3 

Overall Percentage   84.6 

PPV: 85.71%; 95% CI: 73.77% – 93.61% 

NPV: 81.82%; 95% CI: 59.7% – 94.70%  

Table A4. Accuracy assessment of the southern adjacent classification at Path: 172 Row: 

072 and western adjacent classification at Path: 071 Row: 073.  

Path: 172 Row: 072 

Class Reference Total Classified Total No. Correct εOmission εCommission 

Forest 71 73 68 14.23 6.85 

Cropland 133 128 116 12.78 9.37 

Savanna 102 117 93 8.82 10.51 

Settlement 39 29 28 18.21 3.45 

Water 31 29 29 6.45 0 

376 376 375 334  

Overall Accuracy: 88.83 

Path: 173 Row: 071 

Forest 109 110 105 3.67 4.55 

Cropland 137 148 127 7.3 14.19 

Savanna 94 95 83 11.70 12.63 

Settlement 21 9 8 33.33 6.67 

Water 30 29 29 3.33 0.00 

Total 391 391 358  

Overall Accuracy: 91.56 
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