Clark University
Clark Digital Commons

Computer Science

1992

The power of the middle bit

Frederic Green
Clark University, fgreen@clarku.edu

Johannes Kobler
Clark University

Jacobo Toran
Clark University

Faculty Works by Department and/or School

Follow this and additional works at: https://commons.clarku.edu/faculty_computer_sciences

b Part of the Computer Sciences Commons

Repository Citation

Green, Frederic; Kobler, Johannes; and Toran, Jacobo, "The power of the middle bit" (1992). Computer

Science. 75.

https://commons.clarku.edu/faculty_computer_sciences/75

This Conference Paper is brought to you for free and open access by the Faculty Works by Department and/or
School at Clark Digital Commons. It has been accepted for inclusion in Computer Science by an authorized
administrator of Clark Digital Commons. For more information, please contact larobinson@clarku.edu,

cstebbins@clarku.edu.


https://commons.clarku.edu/
https://commons.clarku.edu/faculty_computer_sciences
https://commons.clarku.edu/faculty_departments
https://commons.clarku.edu/faculty_computer_sciences?utm_source=commons.clarku.edu%2Ffaculty_computer_sciences%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=commons.clarku.edu%2Ffaculty_computer_sciences%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.clarku.edu/faculty_computer_sciences/75?utm_source=commons.clarku.edu%2Ffaculty_computer_sciences%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:larobinson@clarku.edu,%20cstebbins@clarku.edu
mailto:larobinson@clarku.edu,%20cstebbins@clarku.edu

» AUOOO\163)
Ceore A4

The power of the middle bit

Frederic Green
Johannes Kobler
Jacobo Toran

Report LSI-91-50

FACULTAT G'IRFUEMATICA
BIBLIOTECA
R. 9.09%_ 18 DES. 1991




The Power of the Middle Bit

Frederic Green*  Johannes Kéblerft Jacobo Toran ¥
Clark University Universitdt Ulm U. Politecnica de Catalunya

Extended Abstract

Abstract

We study the class of languages that can be recognized in polynomial time
with the additional information of one bit from a #P function. In particular
we show that every MODy, class and every class contained in PH are low for
this class. We translate these results to the area of circuit complexity using
MidBit (middle bit) gates. A MidBit gate over w inputs z,...,2, is a gate
which outputs the value of the [log(w)/2]* bit in the binary representation of
the number 37 ; z;. We show that every language in ACC can be computed
by a family of depth-2 deterministic circuits of size 2(1°87)° with a MidBit gate
at the root and AND-gates of fan-in (logn)° at the leaves. This result improves
the known upper bounds for the class ACC.

1 Introduction

The complexity classes PP (probabilistic polynomial time [Gi 77]) and @P (parity
P, [PaZa 83, GoPa 86]) have received much attention since the well known result by
Toda [Tod 89] proving that the polynomial time hierarchy (PH) is Turing reducible
to PP. These classes are closely related to the class of counting functions #P [Va 79]
that count the number of accepting paths on nondeterministic Turing machines.
Observe that sets in PP and @P can be respectively decided with the information
of the leftmost and rightmost bit of a #P function. Toda’s proof combines two
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important results; on one side he shows that PH is randomly reducible to @P, and
in a second part he proves that PP®® is included in P#P. A careful observation of
the proof of the last result shows that for this inclusion the whole power of P#P is
not needed. To decide an input , a function f € #P has to be queried just once,
and more interestingly, just one bit of information of f is needed, as in the case of
PP or ®P. It is natural to ask what other problems can be computed by looking at
just one bit of a #P function. This question has been independently considered by
Schwentick [Scw 91] and Regan [Re 91] who define the class MidBitP (middle bit P)
of languages that can be computed with the information of just one bit from a #P
function.!

Definition 1.1 [Re 91, Scw 91] A language L is in MidBitP if there ezists a func-
tion f in #P and a function g in FP such that for all z,  is in L iff there is a 1 at
position g(z) in the binary representation of f(z).

At first sight it looks like the definition depends heavily on the base in which the
representation of the #P function f is taken. It is clear that @P is in MidBitP since
the parity of a #P function in base 2 can be obtained by looking at just one bit,
but how about other modular classes? For example, in order to decide whether a
number written in base 2 is congruent to 0 modulo 3, one needs the information of
each one of its bits. By constructing suitable #P functions we prove however that
for each k the class MODP [BeGiHe 90] is included in MidBitP. Moreover we show
that for every k, MOD,P is low for MidBitP. Intuitively this means that a language
in MOD,P does not give any additional help when used as an oracle in a MidBitP
computation and therefore this is stronger than a containment result. We also show
that the classes BPP and PH are low for MidBitP.

In section 3 we give an application of the previous results improving the known
upper bound for the circuit class ACC. This class was defined by Barrington [Ba 89)
as the class of languages accepted by bounded depth polynomial-size circuits with
AND, OR, NOT and a finite set of MOD,, gates. Clearly ACC contains AC; and is
contained in TCy. Since the PARITY function cannot be computed in ACq the first
inclusion is proper; Barrington [Ba 89] conjectured that the second inclusion is also
proper i.e., TCy ZACC, but no proof of this fact has been obtained.

Using Toda’s result [Tod 89] and building on some work on ACy by Allender and
Hertrampf [Al 89], [AlHe 90], Yao [Yao 90] proved the first non-trivial upper bound
for ACC. He showed that every language in ACC is recognized by a family of depth-2
probabilistic circuits of size 2(°6™)° with a symmetric gate at the root and AND-gates
of fan-in (logn)® at the leaves. Recently Beigel and Tarui [BeTa 91] have improved
this result showing that the circuits given by Yao can be made deterministic without
increasing their size. However in both cases the symmetric gate at the root depends
on the type of the modular gates used in the ACC circuit. It is therefore very hard

!Independently, Regan [Re 91] and Schwentick [Scw 91] have also observed that Toda’s proof
implies that PP®P and PP"H are contained in MidBitP.



to prove that a certain function cannot be computed by depth-2 circuits of the type
given in [Yao 90] or [BeTa 91] since all that can be said about the gates in the root is
that they belong to an infinite subfamily of the symmetric functions. We improve the
above upper bounds showing that the mentioned circuits can be restricted to have a
symmetric gate of type MidBit at the root. A MidBit gate over w inputs z;,..., 2,
is a gate which outputs the value of the |log(w)/2]'" bit in the binary representation
of the number 3%, z;. We prove that ACC can be computed by a family of depth-2
deterministic circuits of size 2(1°6™)° with a MidBit gate at the root and AND-gates of
fan-in (logn) at the leaves. We believe that there are TCy languages which cannot
be computed by circuits of this kind, and that the study of these circuits can therefore
provide a way to show that TCy is not contained in ACC.

2 Lowness of Mod Classes for the Class MidBitP

The concept of lowness in the context of computational complexity theory was first
introduced by Schéning [Sch 83] and was first studied in counting classes by Tordn
[Tor 88]. A class A is low for a relativizable complexity class C if the sets in A, when
used as an oracle for C, do not help, i.e., C* = C. In this section we prove that for
any k, ModP is low for MidBitP.

Toda has shown that for every function f in #P®" and every polynomial p there
is a function g € #P such that f(z) and g(z) agree in the last p(|z|) bits.

Theorem 2.1 [Tod 89] For all functions f in #P®F and for every polynomial t
there ezists a function h in #P such that

h(z) = f(z) (mod 2:(=N),

By this result, @P is low for ®@P (which is proved by Papadimitriou and Zachos
[PaZa 83] using a different technique) and MidBitP.

Corollary 2.2 ®P s low for MidBitP.

It will follow from the next theorem that for every function f € #PBFP and every
polynomial p there is a function g € #P such that f(z) and g(z) agree in the first
p(|z|) bits where the first bit of a binary number is the most significant bit which is
1.

Theorem 2.3 For every function f € #PBPP there ezist a polynomialt and a func-
tion g € #P such that
f(=z) = |g(=)/20=0].

Proof. Let f be in #PPPF. Since BPP is closed under Turing reductions, there
exists a language L in BPP and a polynomial ¢ such that

fl)= Y xu({=z,9))

yezall=h

3



Furthermore, by the probability amplification lemma for BPP, there exists a function
h € #P and a polynomial ¢ such that

(z,9) €L = h((z,y)) > 2:(=D _ gtli=D-all=l)-2
(z,9) ¢ L = h({z,y)) < 2t(=N-all=sD-2

and therefore h fulfills the following inequalities:
XL(($7y>)2‘(IrI) ~ 9t(l=))-q(l=)-2 < h((z,y)) < XL((z,y>)2t(|z|) + 9t(laD)-a(l=))-2,

Since #P is closed under addition, '({z,y)) = h((z,y)) + 2¢(1=D-9(=D)-2 i5 also a #P
function fulfilling the inequalities

x((2,9))20) < B'((2,9)) < x1((2,))20=) 4 2t=D-all=h-1,

Now we can define the #P function

g(@)= > H((z.9)),

yezals)

and since
2a(m)gt(le)-a(lzl)-1 o gt(n)

it follows that
Lg(=)/20D] = f(z).

O

By this result, BPP is low for BPP [Za 82], PP, [K6ScToTo 89], and MidBitP.
Corollary 2.4 BPP is low for MidBitP.

Since all the proofs in this section relativize we immediately obtain the lowness
of BPP®? and since PH is contained in BPP®P [Tod 89), also of PH for MidBitP.

Corollary 2.5 BPP® and therefore PH are low for MidBitP.

Using relativized versions of Theorem 2.3 and Theorem 2.1, we can easily prove
the following theorem which states that for every function f in 5'f;1:PBPP$P a #P
function k can be constructed such that the binary representation of f is a substring
of the binary representation of h. Note that Theorem 2.6 additionally allows us to
“isolate” the binary representation of f inside k, i.e. for each polynomial p we can
construct A such that there are at least p(|z|) 0’s in the binary representation of h(z)
to the left and to the right of the binary representation of f(z). A similar result
was used in [TodWa 91] to show that every function in the counting version of PH
is metric reducible to a #P function.



Theorem 2.8 For all functions f in #PBPP@P there ezists a polynomial q such that
for every polynomial t there ezists a function h in #P such that

[4(=)/220D] = f(z) (mod 2:0=D),

Proof of Theorem 2.6. Let f be in #PBPPQP. Since Theorem 2.3 relativizes, there
exist a polynomial g and a function g € #P®F such that

f(z) = |g(=)/270=D].
By Theorem 2.1, there exists a function h € #P such that
h(z) = g(z) (mod 29(=D+t=N)

and therefore

[h(z)/27)]| = f(z) (mod 201D).
d

Next we prove the main result of this section, namely that every #PM°%P function
can be isolated inside some #P function.

Theorem 2.7 Let k be prime. For all functions b in #PMoUP gnd for every poly-
nomial t there ezist a polynomial ¢ and a function b in #P such that

[A(2)/290=D] = b(z) (mod 2:(I=).
Because the proof of Theorem 2.7 relativizes, we can state the following corollaries.
Corollary 2.8 For any k, ModP is low for MidBitP.

Proof of Corollary 2.8. By the representation theorem of Hertrampf [He 90], it
follows that if k = ptq for a prime number p and gcd(p,q) = 1, then

Mod,P C Mod,PMod:P,

The result follows iterating this argument for all the prime factors of k and using the
relativized version of the previous theorem. a

The result stated in theorem 2.7 works also for every complexity class in ModPH,
a generalization of the polynomial time hierarchy that includes also ModP classes.
ModPH can be considered as the polynomial time analogue to the circuit class ACC.

Definition 2.9 ModPH is the smallest family of languages containing the class P

and satisfying that for any class K in ModPH the classes NPX, co-NPX and Mod, PX
(for any positive integer n) also belong to ModPH.



Corollary 2.10 For all functions f in #PM°dPH gnd for every polynomial t there
ezist a polynomial g and a function h in #P such that

[h(2)/290°)| = f(2) (mod 2:0=D).

Proof of Theorem 2.7. Let b be in #PM°4P, Since k is prime, ModP is closed
under Turing reductions [BeGiHe 90]. Thus there exists a language L in Mod.P and

a polynomial r such that
)= > xc({z:9).

yerrii=

Let p be a polynomial such that k(") > 2r(")+n)+2,  Adapting results from
Toda [Tod 89] and Beigel, Gill and Hertrampf [BeGiHe 90] we can assume that there
is a function c in #P s.t.

((,9)) = x.((z,y)) (mod k?(=D),

Consider the function

fz)= 3 cl{z,9)).

yezr(l=)

Then
f(z) = a(=)k"1=) + b(z)

where b(z) < 2r(=l) « 5%%;2—2. The proof of Theorem 2.7 is now completed by the
following lemma. o

Lemma 2.11 If f € #P is of the form f(z) = a(z)k?(*) + b(z), where

kr(l=l)
¥z) < g

then there ezist a function h in #P and a polynomial q such that
h(z) = a'(z)29(=N+¢(=) | b(z)290=) 4 ¢(z),
where ¢(z) < 29(l=1),

Proof of Lemma 2.11.  Since f is in #P there exists a polynomial s such that
f(z) < 2°0sD) for all z. We first prove the following claim.

Claim. There exist a polynomial ¢ and a function g in #P such that

9(z) = a(z)29"=D 4 ¥(z) and ¥(z) < 290=N-tl=N-1,



Proof of Claim. Define
2a(l=l)
9(z) = f(=) [m] :

Then it follows that

q(l=])
a(z)zqﬂ“') < g(z) = (a(z)k”“’”‘i‘b(“’)) [ipu.—.n]

9a(l=])
kr(l=()

a(z)290=D 4 p(z) + a(z)kP=) 4 p(z).

< a(z)2902D 4 galeD=t=N=2 4 g0z )oll= 4 p(z).

< a(z)gq(lrl) + 9all=N=¢(l=N)-1_

The last inequality can be achieved by choosing ¢ > ¢ + s + 2.

To complete the proof of Lemma 2.11 we define
h(z) = f(2)290) 1 g(=)i(|2|),

where
i(n) = k" (mod 2™) and i(n) < 2t(™),

Then it follows that

h(z) = a(z)kP(lfl)ch(lrl) + b(z)gq(lrl) + a(a:)2"("')i(|z|) + b'(z)i(lzl)
= 20a(2)(kD 1 i(|a])) + b(z)27D + B(2)i =),

where
k() +4(n) =0 (mod 24™)

and
b (z)i(|z]) < 2901,

O

From corollary 2.10 we know that ModPH is the largest class of languages known
to be low for MidBitP. It is an open question whether the class PP is also low for
MidBitP. A positive answer to this problem would imply that the polynomal time

counting hierarchy, [Wa 86), collapses to the class MidBitP.

3 A New Upper Bound for ACC

The methods of the preceding section relativize. It is thus not surprising that there

are analogous circuit results. In this section we prove them directly.

7



Yao [Yao 90] showed that ACC circuits can be simulated by probabilistic depth-2
circuits consisting of some symmetric gate over subexponentially many AND gates
of polylogarithmic fan-in. Beigel and Tarui [BeTa 91] subsequently improved his
construction and showed that depth-2 deterministic circuits of a symmetric gate over
small AND’s also can simulate ACC. Note that in both cases it was proved that some
symmetric function over small AND’s is sufficient. This leaves open the possibility
that the symmetric function needed will be different for different input sizes. However
our main result in this section is that there is one particular symmetric function
which, together with AND gates of small fan-in, can capture all of ACC: namely, the
symmetric function which outputs the middle bit of the sum of the inputs.

Definition 3.1 A MidBit gate over w inputs z,,...,z,, i3 a gate which outputs the
value of the |log(w)/2]™® bit in the binary representation of the number Yz A
MidBit-of-AND circuit of order r is a circuit consisting of a MidBit gate over AND-
gates where each AND-gate has fan-in at most r. A family of functions {fn} is
computable by a family of MidBit* circuits if there is a polynomial p such that for
each n there is a MidBit-of-AND circuit of order p(log(n)) and size 2PU°9(") which

computes fo(z1,...,Tn)-

A Mod, gate over w inputs z,...,z, is defined to output 1 if Yiliz # 0
(mod k) and 0 otherwise. We similarly define Mod,-of-AND circuits and families
of Mod{ circuits. Note that we will always speak of families of MidBitt or Mod*
circuits. Even when we refer to a MidBit* or Mod™ circuit individually, it should be
understood that what is meant is a member of a particular family of such circuits.

The following theorems give the circuit analogue of the lowness result
MidBitPMP = MidBitP.

Theorem 3.2 Let k be prime and let {C,} be a family of circuits such that there
ezists a polynomial v where for each n, C, consists of a MidBit gate over at most
2r(ea(n) Mod-gates. Then {C.} is computable by a family of MidBitt-circuits.

Proof. Similar to the proof of Theorem 2.7. Let ¢ be any polynomial. We have that
Cn outputs 1 if and only if the [log(w)/2]** bit in the binary representation of b(z)
equals 1, where
b(z) = ZModk(z,-L, ey Ti, ),y
=1

si < n (i.e., the Mod gates can have any number of the n inputs) and w < 2r(les(m)),
Using techniques of Toda [Tod 89] and Beigel, Gill and Hertrampf [BeGiHe 90], there
is a polynomial Qg of degree d which has the property that if X # 0 (mod k) then
Qu(X) =1 (mod k%), and if X =0 (mod k) then Qu(X) =0 (mod k?). Thus

bz) = i[Qd(;E: 2;) mod k.

i=1



Suppose we choose d = p(log(n)) where p is a polynomial such that k» >
max {27+¢+2,2¢+2}. (To simplify notation, in the remainder of the proof, where it
is not confusing we use p,q,™ and t for p(log(n)), g(log(n)), r(log(n)) and t(log(n)),
respectively.) Then b(z) < 2" < kP. Now the outer sum in the equation above for b
is less than kP, so the “mod” can be moved outside:

bz) = [> Qp(é z3)] (mod k?).

=1

We write " .
flz)=3" Qp(lz z;)-
=1 =1
Then
f(z) = ak? +b.

Note that fis a polynomial in the variables z;, ..., z, of degree p(log(n)). If we multi-
ply f by [27/k”] we still have such a polynomial. Following the proof of Lemma 2.11,
we find that [29/k] f(z) = a27 + ¥ where b’ < 297*~1. Setting i = —k” (mod 2t)
as in the proof of Lemma 2.11,

29f(z) +1[27/K°] f(z) = 27b+14b (mod 297%) (x).

Now if we reduce the left hand side of the above equation mod 29+, we obtain a
polynomial of degree p(log(n)) with all positive coefficients (none larger than 20+e-1),
Replace any term with coefficient > 1 by a sum of identical terms with unit coef-
ficients, and substitute multiplication with logical AND. The result is a sum ¢ of
< 2rolvles AND gates each of polylog fan-in. Reducing the right hand side of eq. (*),
we obtain 29(b mod t) + i¥’, where &’ < 29~!, Thus the output bit of C, is the bit in
position g + |log(w)/2] in the binary expansion of . We can add constant inputs
or multiply the sum of AND’s so that this is precisely the middle bit. a

It is not hard to see that if the inputs to the MOD gates in the previous theorem
are AND gates of polylog fan-in, that the resulting depth-3 circuits can still be
simulated by MidBit* circuits. The reason is that we are composing the polylog
degree polynomial @, with another polylog degree polynomial.

Corollary 3.3 Letk be prime and let {C,,} be a family of depth-§ circuits such that
there ezists a polynomial s where for eachn, C, consists of a MidBit gate over at most
20(o9(m) Modf circuits. Then {C.} is computable by a family of MidBit*-circuits.

We now turn our attention to MidBit gates at the root and pure ACC subcircuits
[Yao 90] (families of constant-depth polynomial size circuits which consist only of
Mod,, gates for some natural number m).



Theorem 3.4 Let {C,} be a family of depth-d circuits consisting of a MidBit gate
at the root and Mod,, gates at remaining levels. Then {C,} is computable by a family
of MidBitt -circuits.

Proof. Beigel and Tarui [BeTa 91] have shown that a Mod,, gate can be simulated
by a “stratified” circuit of Mody, , Mody,, ..., Mody, gates where kq, ks, ..., k; are the
prime divisors of m, on levels 1,2, ...,1, respectively, and polylog fan-in AND gates
on the lowest level. Using the previous theorem and an inductive argument as in the
proof of Theorem 6 in [BeTa 91], each layer of Mod,, gates can be “absorbed” in the
MidBit gate, and the resulting polylog AND gates “pushed” down to the leaves. The
resulting circuit is a MidBit* circuit. d

The following main theorem uses a combination of the above results, techniques
of Valiant and Vazirani [ValVaz 86], Toda [Tod 89], Allender [Al 89], and Allender
and Hertrampf [AlHe 90], and the technique by which we showed that BPP is low for
MidBitP. It says that circuits consisting of a MidBit gate over ACC subcircuits can
be simulated by MidBit* circuits. The proof is similiar to those given in Corollaries
8 and 9 of [BeTa 91].

Theorem 3.5 Let {Cn} be a family of depth-d circuits of size 2P°W°9(") consisting of
a M:idBit gate at the root and Mod,,, AND, and OR gates at remaining levels. Then
{Cn} is computable by a family of MidBit*-circuits.

Proof.  Let Cn = 1 iff the [log(s)/2|*" bit of S is 1, where § = ¥, c;, with
each subcircuit ¢; consisting of AND, OR, and Mod,, gates, and without loss of
generality, s = 29(23(n) where ¢ is a polynomial. The AND and OR gates in each
ci can be replaced by probabilistic Mod}, circuits with polylogarithmically many
random bits, using the techniques of [ValVaz 86], [Al 89], and [AlHe 90]. By pushing
the AND-gates to the leaves, as in the preceding theorem, ¢; can be simulated by
a probabilistic circuit ¢/ comprised of Mod,, gates and AND gates of polylog fan-in
at the lowest level, so that and Pr(c! # ¢;) < 2-9(9(n))~2 Tt is possible to simulate
ci with such a ¢} using t(log(n)) bits where ¢ is a polynomial such that ¢ > ¢ + 2.
Let ¢/ denote the sum of ¢} over all possible settings of the random bits of ¢/, and

let §' := 32 (cf + 2t(es(n))-allog(m))~2) " QOpe can show that §' = 2tles(™)S 4
where r < 2:(29(n)), The output of the desired MidBit* circuit is the bit in position
[log(s)/2] + t(log(n)) of S'. =
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