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Abstract

Rapidly rising populations and likely increases in incomes in sub-Saharan Africa make tens of millions of
hectares of cropland expansion nearly inevitable, even with large increases in crop yields. Much of that ex-
pansion is likely to occur in higher rainfall savannas, with substantial costs to biodiversity and carbon storage.
Zambia presents an acute example of this challenge, with an expected tripling of population by 2050, good po-
tential to expand maize and soybean production, and large areas of relatively undisturbed miombo woodland and
associated habitat types of high biodiversity value. Here we present a new model designed to explore the poten-
tial for targeting agricultural expansion in ways that achieve quantitatively optimal trade-offs between competing
economic and environmental objectives: total converted land area (the reciprocal of potential yield); carbon loss,
biodiversity loss, and transportation costs. To allow different interests to find potential compromises, users can
apply varying weights to examine the effects of their subjective preferences on the spatial allocation of new crop-
lands and its costs. We find that small compromises from the objective to convert the highest yielding areas permit
large savings in transportation costs, and the carbon and biodiversity impacts resulting from savanna conversion.
For example, transferring just 30% of weight from a yield maximizing objective equally between carbon and
biodiversity protection objectives would increase total cropland area by just 2.7%, but result in avoided costs of
27%-47% for carbon, biodiversity, and transportation. Compromise solutions tend to focus agricultural expan-
sion along existing transportation corridors and in already disturbed areas. Used appropriately, this type of model
could help countries find agricultural expansion alternatives and related infrastructure and land use policies that
help achieve production targets while helping to conserve Africa’s rapidly transforming savannas.

Introduction1

Meeting growing food demands while minimizing ecological losses presents one of the 21st Century’s major2

challenges. Many global sustainability studies and climate mitigation pathways call for eliminating or rapidly3

phasing out emissions from land use change [1, 2]. Unfortunately, these ambitions do not appear realistically4

attainable in sub-Saharan Africa, due to a projected doubling of population by 2050 combined with rapidly growing5

economies, which will combine to treble food demand [1, 3]. For example, even with the substantial yield growth6

(3-5% per year) projected by the UN Food and Agriculture Organization (FAO), the region would likely need to add7

more than 100 million hectares of cropland by 2050 [1]. Much and probably the great bulk of that new cropland is8

likely to occur in the 500 million hectares of savannas and shrublands of the region that receive sufficient rainfall9

to permit crop production [1].10

Savannas sometimes receive limited respect in global land use assessments and have been a major focus of11

agricultural expansion, not only in Africa but in places such as the Cerrado of Brazil and northern Thailand [4].12

Their carbon contents and biodiversity values may be completely ignored on the grounds that they are not forests13

[1]. Yet, the wetter woodland-savannas and shrublands of Africa have a similar average richness, although not14

density, for birds and mammals as the world’s wetter tropical forests, and 75% of these habitats have higher overall15

vertebrate diversity than 75% of the rest of the world [1]. Their carbon contents are also substantial, particularly16

relative to their likely yields, so that their use for food crops is unlikely to result in fewer carbon emissions per ton17

of crop [1]. Conversion of over 100 million hectares of these lands would release tens of millions of tons of carbon18

[1].19

The high likelihood of some cropland expansion in sub-Saharan Africa raises the prospect of whether this20

expansion could be located in ways that meet agricultural production goals, but for substantially lower loss of21
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carbon and biodiversity than conventional agricultural development pathways. Analyzing this question must be22

done at national or sub-national scales, because that is where key decisions are made, and accurate results require23

data that are high in both resolution and quality.24

In this paper we look at Zambia, which is a bellwether for this land use challenge in sub-Saharan Africa. On25

the one hand, Zambia has great need to boost its food production. Sixty percent of Zambia’s population is rural26

[5], per capita calorie food availability is just 2100 kcal [6], and child stunting rates are 40% [7]. According to27

the medium estimate of the United Nations, Zambia’s population is projected to grow 265% from 16.2 million in28

2015 to 43 million in 2050 [8], which will combine with rapid economic growth [>6%, 5] to substantially increase29

per capita calorie demands [3]. Zambia has also been expanding its agricultural exports, and has agronomic and30

situational characteristics that put it in a strong position to continue to do so to other parts of the region.31

At the same time, two thirds of Zambia’s 738,400 km2 land area is dominated by woodland savannas, which32

have at sufficiently dense tree cover to be classified as forest under either of the definitions (>10 or >30% tree33

cover) used by the United Nations Framework Convention on Climate Change [9]. These ecosystems store sub-34

stantial amounts of carbon, with 50% of Zambia having a carbon density of at least 130 t ha−1 (vegetative carbon35

and soil carbon in the top 1 m), while an additional 40% exceeds 80 t ha−1. Meanwhile, Zambia’s deforestation36

rate of 2,500–3,000 km2 year−1 is one of the highest in the world [10].37

The biodiversity of these woody savannas is also high. Most of Zambia is covered by what the World Wildlife38

Fund has categorized as the Central Zambian Miombo Woodland ecoregion [11, 12], which contains some 380039

plant species, making it the 17th richest ecoregion in the world in floral diversity (out of 867) [13]. Vegetation is40

characterized by a mix of tall, frequently evergreen, trees (15-20 m), broadleaf shrubs, and grasses, and is heavily41

interspersed with wetlands [12]. The large expanses of relatively intact habitat give this woodland the third highest42

richness for mammal species of the worlds ecoregions [11, 14, 15]. It supports rare species including the black43

rhino, major predators, and highly migratory, wide-ranging species, such as elephants [12]. Zambia overall also44

has a high bird diversity, with 753 recorded species [16]. Although few bird and mammal species are endemic,45

reptile and amphibian endemism is high, with 19 endemic reptile species and 13 endemic amphibians [14].46

There is a long history of using models to achieve conservation objectives in the face of cost and other con-47

straints [e.g. 17, 18]. MARXAN, perhaps the most widely used of these, is a decision-support program that is48

designed to efficiently select conservation area networks [19, 20]. Within the more general land use planning field,49

an even broader range of models exists for finding optimal spatial configurations that satisfy multiple land use ob-50

jectives (see Cao et al. [21] for an example and review of alternatives). In the present case, the need is not to select51

protected areas but to identify areas for cropland expansion that meet the objectives of agricultural development52

and environmental conservation. Koh and Ghazoul [22] developed one model for examining trade-offs among oil53

palm development, rice production, and carbon and biodiversity production in Indonesia, and a related approach54

was used to identify sustainable agricultural intensification solutions in southern Tanzania [23]. In both examples,55

the model assigned equal weight to each land use objective in the compromise scenarios that were analyzed. How-56

ever, one of the great challenges for land use planning is that different objectives can be difficult to weigh against57

each other ex ante, because the values are often abstract, making them harder to evaluate without first viewing58

the consequential trade-offs [21, 23]. Governments and other stakeholders also tend to have varying, and often59

conflicting, priorities, and their willingness to compromise may depend on the degree to which their priorities are60

impacted.61

To overcome these problems, we developed a new, publicly available model that allows varying levels of com-62

promise between competing agricultural and environmental interests to be evaluated while still meeting agricultural63

production targets. The model adopts different methods than the two aforementioned models [22, 23] to estimate64

agricultural potential and conservation objectives, and can allocate land for multiple crops simultaneously. More65

fundamentally, our model is based on linear programming, which allows users to place varying weights on the66

different land use objectives [21]. This feature allows different stakeholders to work together to choose the most67

appealing combination of weights based on their land use preferences, and their own assessments of what are and68

are not acceptable costs within those objectives.69

We apply this model to Zambia so that we can explore its strengths and limitations as a decision-making70

tool, and also to answer a basic but important question: is it possible to achieve a reasonable balance of different71

interests by reducing the carbon and biodiversity costs of expansion while still focusing on land use areas with high72

agricultural potential? Answering this question is becoming increasingly important as savannas and other grassy73

biomes receive increasing agricultural development pressure, and may become increasingly targeted as an indirect74

result of the laudable efforts to conserve tropical forests [1].75

Materials and Methods76

The model we developed seeks to find optimal land use configurations that satisfy the production targets for multi-77

ple crops while minimizing four costs: the total land area required, transportation costs, carbon released from land78

conversion, and impacts on biodiversity. Although total land area is treated as a cost, minimizing this cost identifies79
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lands with the highest likely yields. By minimizing total land required as well as transportation costs, the model80

therefore finds areas that reflect two important indicators of agricultural potential. By minimizing carbon and bio-81

diversity costs, the model also finds areas that minimize two important dimensions of environmental impact. The82

model chooses final areas depending on the weights that a user assigns to each of these four objectives.83

To enable this functionality, and to identify optimal solutions, the model is structured to evaluate each objective84

in terms of production efficiency, or the ratio of each cost per hectare to crop production per hectare (yield) that85

results from converting land to agriculture. For land area, cost is measured as the number of km2 required to meet86

the crop production target. For the other objectives, the costs indicators are transportation time, carbon loss, or87

biodiversity impacts.88

We focus our model initially on two crops, maize and soybeans, because of their existing and potential signifi-89

cance for Zambia’s agricultural sector, and their likely dominance of in the future growth of agriculture in Africa’s90

broader savanna regions [1]. Maize is the largest crop by area and consumption in Zambia [6], while soybeans91

are expanding rapidly as a commodity crop to meet regional and global demands for animal feed and direct hu-92

man consumption [24]. Because the model is designed to meet production targets for multiple crops, we apply93

algorithms for allocating each crop to its highest value cells, given the particular combination of objectives being94

assessed.95

Further details on model structure and all model input calculations can be found in the online electronic sup-96

plement.97

Model inputs98

Our model focuses on the costs of cropland expansion into areas that are currently not farmed but could be. To99

identify such areas, we calculated the proportion of currently cropped and settled grid cells within each 1 km2 grid100

cell. We excluded the proportion of cells that are either protected or with slope greater than 20% slope, which101

are both generally considered unsuitable for farming and strong actual predictors of cropland presence or absence102

[25]. We estimated the costs of converting each cell as described in the following sections.103

Likely yields104

We spatially estimated likely yields for maize and soybeans using a three-step approach. In the first step, we used105

the decision support system for agrotechnology transfer [DSSAT, 26] to simulate maize and soybean yields at106

the sites of 40 weather stations distributed across Zambia. They are the points where a 31-year, gridded daily107

meteorological dataset has received the greatest amount of bias-correction and infilling by weather observations108

[27–29]. We used soil profiles corresponding to those locations drawn from the WISE v1.1 gridded soil profile109

database [30], and simulated for each location maize yields over all 31 years under commercial input practices for110

three-four cultivars representative of short and medium season length according to the Zambian crop calendar [31].111

In the second step, we used an empirical model to map the DSSAT-modeled yields onto a 1 km grid, taking112

advantage of a finer resolution soil map that provides a common frame for estimating both yield potential and soil113

carbon stocks (see below), but has insufficient detail in several parameters (particularly effective rooting depth)114

required by DSSAT to provide a sound empirical basis for running the model directly. We used a generalized115

additive model [32] to predict the values of the DSSAT-simulated yields, using best-fitting subsets of the following116

weather and soil variables: growing season precipitation; growing degree days; mean growing season shortwave117

solar radiation; percent organic carbon; pH; percent clay content. The soil predictors represented mean values118

in the top 1 m of soil, and were extracted from a new 1 km global database of soil properties [33]. This two119

step approach allowed us to more soundly capture crop responses to Zambia’s climatic variability and potential120

management practices, and to base potential yields on the same dataset used to estimate carbon costs (see below).121

The first two steps resulted in a map of potential yield under high inputs and good management, and assuming122

no losses due to other limitations such as diseases. These yield values therefore overestimate what farmers are123

truly likely to achieve. To reflect more realistic estimates of future yields, we therefore rescaled the yield maps124

to match FAO-projected Zambian yields in 2050 (4.4 t ha−1 for maize and 3.6 t ha−1 for soybean). We used the125

FAO-projections for sub-Saharan Africa as a whole to derive an annual growth factor and applied that factor to126

the average 2009-2014 yields for each crop in Zambia. Overall, the distribution of yields derived from our crop127

modeling is most important to targeting land use, while this choice of average yield determines the total quantity128

of land needed to meet production targets.129

Transportation Costs130

As a second measure related to agricultural potential, we estimated the travel time to the nearest major market131

town. Travel time serves here as a proxy for differences in output prices and production costs, such as fertilizer132

and transport costs [34], and, via the density of road networks, is strongly correlated with the suitability of land for133

farming [25, 35]. For this analysis, we defined market towns as the administrative capitals of Zambia’s districts,134
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as well as any town outside of Zambia having a population of ≥10,000 within a region bounded by 19.5◦ to 34.5◦
135

longitude and -19.5◦ to -8◦ latitude. These neighboring towns were included because they may be more easily136

accessible to Zambians living in border regions than the nearest district capital.137

We calculated travel time in hours using cost-distance analysis drawing on several spatial datasets. Vector138

data for Zambian roads obtained from the Government of Zambia (GOZ) and for the broader region from Open-139

StreetMap1 were merged to create a single dataset of regional roads that distinguished between trunk, primary,140

secondary, and tertiary roads. For market towns, we obtained district capital towns locations from the GOZ and141

for towns outside Zambia we used data from the Gridded Population of the World Version 3 [36] database. For142

waterbodies, we used the USGS Hydrosheds database [37] to indicate the position and size of rivers, based on143

their contributing area, and used a lakes vector provided by the GOZ. The roads, rivers, and lakes data, as well as144

Zambia’s border, were converted to 1 km grids wherein each feature was assigned a travel time value based on how145

long it would take to traverse 1 km. The resulting grids were merged into a single “friction” surface, which was146

used to compute the number of travel hours along the fastest route to the nearest market town (see online electronic147

supplement for further details).148

Total travel costs for any land use scenario equal the total time needed to transport the tonnage of crops pro-149

duced in each converted cell to the nearest town, We divided these costs by 20 to produce ”truck hours” on the150

assumption of a 20-ton truck. Doing so produces a more intuitive unit, but does not alter mapping outcomes.151

Carbon152

To estimate potential carbon costs from cropland conversions, we developed maps of vegetative and soil carbon153

stocks for Zambia. Vegetative carbon was calculated from a recent map of above-ground biomass developed by154

Baccini et al. [38]. We estimated below-ground biomass using savanna and miombo woodland-specific root-shoot155

ratios [39, 40], and then converted the total biomass to carbon using a ratio of 0.47 [41]. The same soil carbon156

dataset used for crop yield prediction, together with an accompanying map of bulk density, was used to calculate157

soil carbon stocks in the top 1 m. We calculated the potential carbon loss due to agricultural conversion was158

calculated as 100% of vegetative carbon and 25% of soil carbon [1].159

Biodiversity160

There are many ways of evaluating biodiversity value and potential impacts, including species richness of different161

taxa in absolute terms or based on level of threat or endemism [e.g. 1, 24]. Other possibilities include factors162

designed to address the significance of contiguity or the impact of different types of development on diversity [e.g.163

22, 42]. The actual measures selected should reflect both conservation priorities and the quality of available data.164

For a fine-scaled, country-level analysis such as this one, the species range map data that form the basis for many165

broader impact assessments [e.g. 43] have an effective resolution that is too coarse. We therefore developed a166

composite measure of biodiversity value based on several datasets.167

First, we used the potential vegetation maps of East Africa [44], a 2010 landcover dataset for Zambia2, and168

a shapefile of protected areas to calculate how much of Zambia’s 20 unique vegetation types remained after con-169

version to croplands and settlements as of 2010, and what proportion of that remainder fell within national parks.170

We used these values to calculate an index of rarity and threat. We calculated rarity as the proportion of Zam-171

bia occupied by each vegetation type’s remaining area, which we then log-transformed to account for the highly172

skewed distribution. For threat, we calculated the proportion of each vegetation type falling within protected areas,173

and then multiplied the threat and rarity values to create the index [45]. We then used the remaining vegetation174

map to calculate a second measure, the proportion of untransformed vegetation within a 11x11 km neighborhood175

centered on each 1 km2. By adding this measure to the first index and normalizing, we created a biodiversity score176

with a range of 0-1 per ha, which gives equal weight to a habitat based on a) how rare or threatened and b) how177

undisturbed it is. Summing the biodiversity score for each converted grid cell generates a total cost of biodiversity178

impacts for each scenario.179

As a final modification, we masked out the areas of existing national parks and game management areas to180

respect the national judgment that they should not be used for expanding farmland. We retained a third protected181

category, forest reserves, as these tend to be far less stringently protected, having already lost 8.3% of their area182

to cropland or settlements, but assigned these areas a high biodiversity score (0.927, the inverse of their converted183

proportion).184

Potential farmland and production targets185

Likely future demand for maize and soybeans produced in Zambia is difficult to estimate, and our model can easily186

be run with different production targets. For this paper, we adopted targets of a four-fold increase for maize for187

1http://openstreetmap.org
2downloaded from http://apps.rcmrd.org/landcoverviewer/
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2050 compared to 2009-2014 average, and a 10-fold increase for soybeans. These increases reflect the rate of188

growth in Zambia from 2000-2014, and a mean production trend for soybean growth in southern Africa estimated189

by Gasparri et al [24], with small additional adjustments to account for the fact that Zambia has one of the highest190

agricultural potentials in sub-Saharan Africa and has high potential to expand exports.191

Yields on current land192

The amount of land conversion to meet a production target will depend on the growth of yields on existing crop-193

lands, which are well short of their current potentials [46]. For the principal scenarios we present in this paper,194

we assume that yields on current cropland will achieve the average likely yields for Zambia’s potential farmland.195

However, to examine the possible significance of yield gains on existing cropland, we also examined scenarios196

in which the yield gains on existing cropland 1) only manage to close 50% of the gap between current and our197

projected future yields, and 2) exceed the gap by 50% (i.e. achieve 150% of the expected yield gain).198

Normalization and Weighting199

Weighting different objectives to some extent depends purely on preferences, but it is important that these pref-200

erences be expressed in a numerical form that reasonably reflects them so that a quantitative solution can be201

computed. To achieve this result, we first express the different objectives as efficiencies, e.g. carbon loss per ton of202

crop yield, and then normalize the units of each objective based on the range of its scores. Weights representing the203

percentage of importance are placed on each objective, expressed as a decimal between 0 and 1, with values closer204

to 1 indicating stronger preferences, and with all weights summing to 1. The final score is the sum of the resulting205

products for each objective for each grid cell, which is used to rank each grid cell according to its ability to meet206

the production target most for the lowest total cost, given those weights. The model then selects cells in descending207

rank order until the cumulative production of converted cells reaches each crop’s corresponding production target.208

Although this weighting system treats choices as relative preferences, our model calculates the actual costs of209

each objective in absolute terms: total area converted, total transportation costs from new croplands, total carbon210

released from land conversions, and total impacts on biodiversity. After reviewing these costs, model users can211

then adjust the preferences to reflect desirable or politically acceptable trade-offs.212

Results213

Significance of yield gains on existing cropland214

In our main scenario, we assumed that the gap between current and projected future yields would be fully closed215

on existing cropland, but we also ran the model for cases when only 50% or 150% of the gap was closed (with216

equal weights across all objectives). In the former case, the total land area required to meet the target increased217

by 18% (14,634 to 17,202 km2), transport costs increased 22% (5.52 x 10−5 to 6.61 x 10−5 truck hours), carbon218

losses increased by 19% (597 to 711 Mt), and the total biodiversity index of converted areas increased by 20%219

(5.53 x 10−5 to 6.61 x 10−5). In the 150% gap closure scenario, the impacts were reversed, with impacts declining220

by almost exactly the same percentage.221

Overlap and adjacency from optimal individual solutions222

To identify the minimum possible costs for each individual objective, and the degree to which their areas of new223

cropland correspond, we examined simulations giving 100% of the weight to each of the four different objectives.224

Figure 1 maps the results, and shows the costs for each objective in each simulation, as well as the extent of overlap225

among objectives.226

The scenario designed solely to maximize yield (100% weight) converts land with the most promising yield227

potential for farmers, which should have economic advantages. These areas have little direct overlap with the areas228

picked by scenarios that minimize carbon costs, biodiversity impacts or travel time (Figure 1). They also have229

little adjacency, as measured by the average distance between each pixel of one map and its nearest neighbor in the230

other (Figure 1).231

The areas selected solely for minimizing carbon, biodiversity, or transportation costs also have little direct232

overlap, but the map reveals that they have high adjacency, confirmed by direct estimates of distance (Figure 1).233

All three criteria tend to identify lands along existing road networks and population and agricultural centers, with234

the carbon minimizing objective converting a larger area of land in the western half of the country. The reasons for235

this correlation are probably that carbon stocks and biodiversity values are lowest in areas of high human densities,236

which have correspondingly high levels of wood harvesting for charcoal and fuelwood, and higher levels of habitat237

loss and fragmentation leading to lower biodiversity scores.238

[Figure 1 about here.]239
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Potential to harmonize different interests240

Although the ideal solutions to maximize each objective do not lead to much direct overlap, areas selected by less241

ideal but still good solutions for each objective may still overlap. The reasons start with the different potential242

ranges of costs among the scenarios that maximize each objective.243

While the best case scenario for maximizing yield would convert 13,668 km2, the worst case scenario for yields244

among our single-purpose optimization scenarios would convert 15,302 km2 (the carbon-optimizing scenario).245

This range in converted areas is only 12%. This difference is far lower than the range in yields across the country’s246

potential cropland (3.7-6.1 t/ha/y ha−1 for maize and 0.8 to 5.1 t/ha/y ha−1 for soybean), but yield plays such a247

significant role for each objective (because it is always in the denominator) that the model selects land with better248

yield potential even when the yield maximization priority is given no weight. By contrast, the differences in travel249

times among single-objective scenarios range from a total of 3.4 x 10−5 to 32.3 x 10−5 truck hours, a difference250

of 872%. Carbon costs differ by 156% (462 to 1184 Mt), and biodiversity by 68% (4.96 x 10−5 to 8.33 x 10−5).251

These results indicate that there is a strong potential for reducing transportation, carbon and biodiversity costs with252

only a small increase in additional land area needed to meet production targets. In other words, these cost savings253

can be achieved for relatively little sacrifice of potential yield, which is inversely related to converted area.254

This potential is illustrated in Figure 2, which plots the “efficiency frontier” [47] resulting from the range of255

possible tradeoffs between the yield maximization and carbon protection objectives. Each point represents the most256

efficient solution, in terms of lowest possible carbon loss and land area converted, for meeting the crop production257

targets under the given combination of weights. Color-coded maps indicate the associated cropland conversions258

for 5 of the 21 weighting combinations. Adding just 5% weight to carbon protection (orange scenario) results in259

31% less carbon loss but <1% additional converted area relative to the pure yield maximization objective (red260

scenario), without significantly altering the location of the new cropland (adjacency = 7.4 km). Transferring 25%261

weight to carbon (yellow scenario) substantially shifts the conversion map (adjacency to pure yield maximization262

map = 65 km), but results in 54% less carbon loss. These savings nearly equal the 61% reduction in carbon loss263

achieved under the pure carbon protection scenario (dark blue).264

[Figure 2 about here.]265

These last examples illustrate that tradeoffs can be usefully assessed in terms of avoided cost, or the percent266

difference between the cost paid under a given weight combination and the maximum cost generated by all possible267

weighting scenarios. By expressing avoided cost as a percentage, we can directly compare the impacts of tradeoffs268

between more than two objectives. Figure 3 shows how much carbon, biodiversity, and transport cost can be269

avoided by transferring increasing amounts of weight away from the yield maximization objective. Sequentially270

adding weights in 5% increments to both the biodiversity and carbon objectives results in little cost in land area,271

but rapid, large reductions in both biodiversity and carbon costs. It also results in substantial avoided transport272

costs, even without assigning any weight to this objective, because of correlations between savings in transport,273

carbon, and biodiversity. For example, adding just 15% weight each to carbon and biodiversity increases the area274

of new lands (i.e. reduces the average yield) by just 2.7% (avoided area costs drop to 8% from 10.7%), but avoids275

potential costs equal to 27% for biodiversity, 47% for carbon, and 44% for transportation. For comparison, in the276

best case scenario for each objective, 61%, 41%, and 90% of carbon, biodiversity, and transportation cost would277

be avoided.278

[Figure 3 about here.]279

Figure 4 shows the potential for compromise in which a hypothetical land user only interested in a single280

objective is willing to “pay” 5% more costs than the lowest possible costs for that objective. For example, the281

yield maximizing user would be willing to pay for an extra 683 km2 of new cropland, while the person interested282

in minimizing carbon costs would pay an additional 231 Mt of carbon. Lines in the bar charts show the minimum283

and maximum costs across all possible weighting scenarios. Each of the four different “compromise” scenarios,284

represented by a different colour, permits solutions that allow the other scenarios to save substantially relative to285

maximum potential costs. The carbon, biodiversity, and transport cost objectives in all but two cases avoid more286

than 50% of their maximum potential costs when any of the other objectives is willing to pay 5% more cost (Figure287

4).288

The location of the conversions associated with each of these compromises show substantial convergence289

along roads and population and agricultural centers. Overlap between the resulting cropland allocations exceeds290

30% between the yield and biodiversity and cost compromises, and 25% between the biodiversity and carbon291

compromises. The carbon and cost compromises overlap least (<10%), followed by carbon and yield (∼15%), but292

each pair of maps has high adjacency, with all compromise allocations having an average nearest neighbor distance293

of <20km.294

[Figure 4 about here.]295
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We also analyzed an “equal compromise” scenario in which each objective receives equal weight, as shown in296

Figure 5. The bar charts show how this scenario, represented in purple, compares with each of the 5% compromise297

scenarios shown in Figure 4, plus the best and worst case options among all weighting scenarios. Relative to the298

worst case, equal compromise avoids 80% or more of the cost for carbon, biodiversity, and transportation, and299

41% of the cost for land area. The equal weighting scenario compares favorably to the ∼95% savings achieved by300

carbon, biodiversity, and transportation costs within their individual cost categories, and to the 58% savings by the301

yield objective.302

As a general rule, the areas selected for conversion under equal compromise lie along existing major trans-303

portation corridors, and generally near areas of existing cropland.304

[Figure 5 about here.]305

All of these scenarios also suggest the value of deliberate and optimized land use planning. Zambia has desig-306

nated a large number of farm blocks, and added nine more blocks with roughly one million hectares as recently as307

2005 [48]. Although these areas have as a whole attracted relatively little development, there is continued interest308

in developing them [49]. But there is less than 2% overlap between designated farm blocks and either the yield309

maximization scenario and the equal weighting scenario, and very little adjacency (see supplementary results).310

Discussion311

Our results for Zambia suggest at least the potential to plan agricultural expansion such that it limits carbon and312

biodiversity costs with limited sacrifice of yield potential. In fact, if agricultural production goals alone are best313

represented by a combination of agronomic potential and existing road access, then solutions that provide a good314

balance of these objectives alone also correlate strongly with solutions that limit carbon and biodiversity impacts.315

This finding demonstrates the potential benefits of targeting land uses based on their ability to deliver a partic-316

ular benefit for the lowest possible cost. The value of such an efficiency-based approach, which we apply here to317

agricultural land use, is in line with findings from the field of conservation planning, where it has been shown that318

conservation outcomes can be achieved for substantially lower cost when both the economic and ecological value319

of land is considered [e.g. 17, 47].320

Another result, if more obvious, is the potential benefits of increasing yields on existing cropland if used to321

spare land. Actions that boost yields on existing cropland also have the potential to have feedback effects that322

lead to more local expansion, for example, by boosting the competitiveness and therefore quantity of exports [50,323

51]. Our analysis ignores those potential feedback effects because all options analyzed meet the same production324

targets, but shows how yield gains could be used to limit environmental impacts.325

The fact that the most advantageous compromises occur along existing transportation corridors also appears326

to have several advantages. Road construction has been a primary driver of the location of agricultural expansion327

[52]. Zambia is already engaged in a program to upgrade existing major roads, but there is some evidence in other328

parts of Africa that agriculture responds even more to improvements in the quality of smaller, rural roads than to329

improvements in larger paved roadways [53, 54]. Improving rural roads would be one way of focusing Zambia’s330

agriculture development on existing road networks. Because agricultural development tends to build on the private331

and public infrastructure that accompanies initial development, the focus on existing areas would also seem likely332

to be a more robust, strategy for avoiding carbon and biodiversity loss over the long-term [35].333

Beyond road infrastructure, our results also indicate the importance of assessing current agricultural develop-334

ment plans because of the low overlap between Zambia’s agricultural development blocks and the areas selected335

for any objective.336

We believe this type of the model would be particularly useful for planning agricultural development in any337

politically heterogeneous environment. Optimization models that require ex ante specification of preferences in338

mathematical terms work less well for decision-making that must weigh very different objectives in unclear ways.339

Our model makes possible an iterative optimization process that allows people to realize their preferences in the340

face of real information about options. It is particularly suitable to decisions that will inevitably have strong341

political elements, and to consensus-building among stakeholders with different preferences.342

For this kind of tool to be truly legitimate and useful on a practical level, we believe several elements are343

required. First, it should be further developed and applied in an iterative way with the government and other344

stakeholders so that the costs and benefits of different weighting decisions are fully explored. We are developing345

plans to work with governments, various stakeholders, and international collaborators to further develop and use346

this model as an operational decision-support tool in Zambia and other countries in the region.347

Second, development planning must reflect and incorporate other real world factors beyond those included348

in our model. For example, large, multi-lane roads can lead to high rates of wildlife mortality, and serve as349

effective barriers to migration for large mammals, regardless of other land uses [55]. Although our “equal weight”350

scenario identifies some target areas in the heavily wooded northeastern part of the country, these concerns would351

be one reason to explore whether areas closer to existing cropland concentrations in the south might be reasonable352
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substitutes. Such consolidation might also make it easier to support agricultural development with lower attendant353

infrastructure development costs. And this biodiversity concern is only one example of other issues, many purely354

practical, which should, and inevitably will, influence where agriculture develops.355

Third, data quality is critical. This kind of model focuses on particular hectares, not broad averages, so data356

errors have little or no chance of averaging out through aggregation. Predicted potential yields and most of our357

other scores can be highly sensitive to errors in the inputs used to calculate them. These facts mean that long-term358

use of the model should be accompanied by steady data improvement. It also means that the model should mostly359

serve as a guide to likely values. Before governments make any important and potentially irreversible decisions,360

there should be site-specific ground-truthing of soil properties and yield potential, as well as confirmation of361

biodiversity and carbon characteristics.362

Fourth, some elements of the model should also be further developed. Analysis of agricultural potential could363

incorporate more economic factors, differentiate between smallholder and commercial farming practices, and in-364

corporate irrigation potential [e.g. 23]. Additional information on land ownership and title would allow a finer365

delineation of potential agricultural land, while the carbon estimates would be improved by root-shoot specific to366

each vegetation type. For biodiversity, defining rarity/threat in relation to national borders may provide a biased367

view of conservation importance–habitats that are rare in Zambia might be common across the border, while a368

relatively common habitat in Zambia might be regionally rare. A regional approach to defining this measure might369

therefore be more appropriate [e.g. 45]. This index could also be adjusted to factor in additional indicators of370

biodiversity value, such as Important Bird Areas [56] or Key Biodiversity Areas [57].371

Analysis of biodiversity impacts could also improved by more direct quantification of biodiversity responses372

to land use. One potentially promising approach would be to incorporate the biodiversity impact model developed373

by Newbold et al. [42], which estimates changes in species diversity and abundance in response to landcover and374

land-use intensity. With sufficient data, this approach could also allow comparison of the biodiversity impacts375

of different agricultural practices, including land-sparing approaches that maintain trees, vegetated field borders,376

or other habitats within the agricultural landscape [58]. The model can be easily adjusted to simulate varying377

intensities of agricultural management.378

The model could also be used to evaluate the temporal persistence of tradeoffs in response to key uncertainties,379

such as the future effects of climate change on agricultural potential. Robustness to such uncertainty should be380

a key factor in determining new agricultural development areas. Assessment of robustness can be achieved by381

identifying stable areas of conversion that emerge over many iterations within the bounds of uncertainty, which is382

a feature of the model that we intend to develop.383

Despite the current limitations of the model and this initial analysis, our results are promising. They suggest384

that efficiency-based land use planning approaches such as ours, if operationalized and incorporated into decision-385

making processes, can help to substantially minimize the ecological cost of cropland expansion in sub-Saharan386

Africa’s savannas, the 21st Century’s emerging hotspot of agricultural land use change.387
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Figure 1: Areas converted to new maize and soybean croplands and their associated costs when each individual
objective (yield maximization, and carbon cost, biodiversity cost, and transport time minimization) is given 100%
weight. Cropland converted under each scenario is shown in the maps, colour-coded according to which objective
receives 100% weight. Large bar charts, colour-coded to the maps, display the absolute value of costs resulting
from each scenario. Small bar charts show the percentage of overlap (top) and adjacency (bottom; nearest neighbor
distance) between the map directly above it, and each of the other three maps.
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Figure 2: The costs of the optimal (most efficient) tradeoffs between the yield maximization and carbon protection
objectives under varying combinations of weights (varied in 5% increments). Costs are measured in total carbon
loss and converted area. The conversion areas resulting from a subset of the weight combinations are illustrated
in the accompanying maps, and are color-coded to their corresponding costs on the scatter plot, which represents
the efficiency frontier. The weightings (expressed as proportions) associated with this subset of scenarios are also
provided: Y=yield maximization objective; C=carbon protection objective.
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Figure 3: The impact of transferring weights from the yield maximization objective to the carbon and biodiversity
objectives in 5% increments, measured in terms of the percent cost that is avoided in each objective relative to the
highest cost paid across all weight combinations. In these results, no weight was assigned to the transport cost
objective.
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Figure 4: The results of scenarios in which each land use objective is willing to pay 5% more cost to compro-
mise with the other three objectives. Cropland converted under each compromise scenario is shown in the maps,
colour-coded according to which objective is making the 5% compromise. Large bar charts, colour-coded to the
maps, display the absolute value of costs resulting from each compromise scenario, together with the maximum,
minimum, and median costs across all weighting permutations (grey horizontal lines in bar charts). Small bar
charts show the percentage of overlap (top) and adjacency (bottom; nearest neighbor distance) between the map
directly above it, and each of the other three maps, with the colour denoting which map is being compared.
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Figure 5: Areas converted to new maize and soybean croplands and their associated costs when when all objectives
(yield maximization, and carbon, biodiversity, and transport cost minimization) compromise equally (i.e. receive
25% weight). Cropland converted under this scenario is denoted by purple areas in the map, with its associated
cost impacts shown alongside those from the 5% compromise scenarios (Figure 4), together with the maximum,
minimum, and median costs across all weighting permutations (grey horizontal lines in bar charts).
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