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METHODOLOGY Open Access

VirFinder: a novel k-mer based tool for
identifying viral sequences from
assembled metagenomic data
Jie Ren1†, Nathan A. Ahlgren2,4*†, Yang Young Lu1, Jed A. Fuhrman2 and Fengzhu Sun1,3*

Abstract

Background: Identifying viral sequences in mixed metagenomes containing both viral and host contigs is a critical
first step in analyzing the viral component of samples. Current tools for distinguishing prokaryotic virus and host
contigs primarily use gene-based similarity approaches. Such approaches can significantly limit results especially for
short contigs that have few predicted proteins or lack proteins with similarity to previously known viruses.

Methods: We have developed VirFinder, the first k-mer frequency based, machine learning method for virus contig
identification that entirely avoids gene-based similarity searches. VirFinder instead identifies viral sequences based
on our empirical observation that viruses and hosts have discernibly different k-mer signatures. VirFinder’s
performance in correctly identifying viral sequences was tested by training its machine learning model on
sequences from host and viral genomes sequenced before 1 January 2014 and evaluating on sequences obtained
after 1 January 2014.

Results: VirFinder had significantly better rates of identifying true viral contigs (true positive rates (TPRs)) than
VirSorter, the current state-of-the-art gene-based virus classification tool, when evaluated with either contigs
subsampled from complete genomes or assembled from a simulated human gut metagenome. For example, for
contigs subsampled from complete genomes, VirFinder had 78-, 2.4-, and 1.8-fold higher TPRs than VirSorter for 1,
3, and 5 kb contigs, respectively, at the same false positive rates as VirSorter (0, 0.003, and 0.006, respectively), thus
VirFinder works considerably better for small contigs than VirSorter. VirFinder furthermore identified several recently
sequenced virus genomes (after 1 January 2014) that VirSorter did not and that have no nucleotide similarity to
previously sequenced viruses, demonstrating VirFinder’s potential advantage in identifying novel viral sequences.
Application of VirFinder to a set of human gut metagenomes from healthy and liver cirrhosis patients reveals
higher viral diversity in healthy individuals than cirrhosis patients. We also identified contig bins containing
crAssphage-like contigs with higher abundance in healthy patients and a putative Veillonella genus prophage
associated with cirrhosis patients.

Conclusions: This innovative k-mer based tool complements gene-based approaches and will significantly improve
prokaryotic viral sequence identification, especially for metagenomic-based studies of viral ecology.
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Background
Viruses are the most abundant biological entities with
more than 1031 particles on Earth, most of which are
viruses that infect bacteria and archaea (prokaryotes) [1].
Viruses infect and replicate within host cells, and
through these infective interactions, they play important
roles in controlling bacterial population size, altering
host metabolism, and have broader impacts on the func-
tions of microbial communities, such as human gut, soil,
and ocean microbiomes [2]. For example, viruses in the
human gut microbiome have been found to profoundly
influence inflammatory bowel disease and severe acute
malnutrition [3, 4]. In aquatic and soil habitats, viruses
also have important roles in affecting the biogeochemical
functioning of their hosts [5].
However, our understanding of virus-host interactions

for large portions of viral communities has been limited
due to the difficulties of using traditional virus isolation
techniques, especially for those that infect uncultivable
hosts. Isolation approaches have to date only yielded a
small portion of known viral diversity–viruses have been
isolated on less than 15% of known phyla of prokaryotic
hosts (based on data in [6]). While the term virus
broadly includes those that infect prokaryotic and
eukaryotic hosts, throughout we use the term virus (and
provirus in the case of integrated viruses), to refer to
viruses that infect bacteria or archaea (the focus of this
study) rather than the terms phage or bacteriophage,
which specifically refer to viruses that infect bacteria.
Metagenomic studies using high throughput sequencing
technology can now generate massive amounts of short
read sequences from prokaryotic cells in microbial
communities regardless of cultivability of the cells, and
viruses are inevitably captured at the same time in these
samples. Many metagenomic studies specifically focus
on selectively capturing and sequencing viral particles,
but sequencing cellular fraction samples frequently
recover viral sequences along with prokaryotic host
sequences. For example, viral sequences were estimated
to comprise 4–17% of human gut prokaryote metagen-
omes [7]. Viral sequences found in cellular prokaryotic
samples will include lysogenic viruses integrated into
prokaryotic host genomes, or proviruses, as well as viral
DNA within actively infected cells and those outside
cells but still collected by the sampling method. Like-
wise, single cell sequencing methods can sometimes sim-
ultaneously capture host and virus sequences [8].
Potentially large numbers of new viruses can be dis-

covered from prokaryotic cellular fraction metagenomes
leading to marked advances in our knowledge of virus-
host interactions. The first crucial step is the identifica-
tion of viral sequences from the mixture of virus and
host sequences. Current tools for identifying virus and
provirus sequences have largely taken the same general

approach—identifying query sequences with significant
similarity to vetted databases of viral sequences (lytic vi-
ruses and/or proviruses). Tools for identifying proviruses
from within prokaryotic genomes were first developed
before the metagenomic era. While identifying provi-
ruses is a different problem than finding viral sequences
within mixed metagenomic samples, provirus finding
tools laid the groundwork for current approaches and in
general use the same principles used in current metage-
nomic tools. These provirus finding programs include
Phage_Finder [9], Prophinder [10], PHAST [11], and
PhiSpy [12]. They generally use sliding windows analyses
to scan for regions that have high densities of genes with
significant similarity to databases of known virus genes
and predict those regions as proviruses. Phispy [12] fur-
ther integrates multiple information sources other than
similarity-based methods such as protein length, AT and
GC skew, transcription strand direction (long stretches
of genes in viral genomes are frequently encoded on the
same strand), and unique virus k-mers to further in-
crease the detection accuracy. These prophage detectors
are not well suited for identifying viral sequences from
assembled metagenomic data, because most assembled
contigs are short, fragmented contigs and possess few or
no complete predicted genes. Additionally, most of these
prophage predictors are not optimized to process large
numbers of contigs in a reasonable time (see [13]), the
exception being PHASTER, an updated version of
PHAST [14].
Studies and tools aimed at identifying viral sequences

in mixed metagenomic datasets likewise often use simi-
larity searches of reads or assembled contigs to known
virus reference genomes. For example, Waller et al. [15]
detected 15 virus genera in 252 human gut metagenomic
samples by mapping short reads to known phage marker
genes, and numerous novel virus-host interactions were
subsequently established. The tool VIROME, while built
to specifically analyze viral fraction metagenomes, cate-
gorizes predicted proteins as microbial or viral via blast
searches against metagenomic databases and UniRef
proteins [16]. Metavir [17] is a web server tool that can
rapidly compare metagenomic reads to complete viral
genomes from the Refseq database, and this tool has
addressed the issue of processing large amounts of
sequence data not implemented in most virus or
provirus finding tools. The tools Centrifuge [18] and
DIAMOND [19] can rapidly map metagenomic reads to
optimally indexed nucleotide or protein databases
respectively, and can be useful in identifying viral genes
in metagenomics. Such reference-based inferences,
however, are hampered by the limited extent to which
current reference databases represent the extant diversity
of natural viral communities, i.e., this approach only finds
viruses closely related to those we already know about. It
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is estimated that only about 15% of viruses in human gut
microbiome and 10% in the ocean have similarity to the
known viruses [3, 20].
VirSorter [13] is the most recent and best performing

program for detecting viral sequences in assembled
metagenomics data. It can detect both proviruses and
lytic viruses. Beyond simply identifying regions enriched
in genes with similarity to viral sequence databases, it
follows in the footsteps of PhiSpy by integrating multiple
types of evidence including presence/absence of viral
hallmark genes, enrichment of viral-like genes, enrich-
ment of uncharacterized genes, and depletion of Pfam-
affiliated genes. VirSorter relies heavily on similarity
searches to available viral databases, but it has an added
advantage that it uses a manually curated database of
virus reference genomes augmented with metagenomic
viral (virome) sequences sampled from freshwater,
seawater, and human gut, lung and saliva. Another ad-
vantage is the use of the strand switching and short gene
criteria that are characteristic viral phenomena that do
not require similarity searches. VirSorter, however, is still
gene-based and requires at least three predicted genes
within a contig to make a prediction, thereby excluding
many shorter contigs. It is known that some viruses have
about 11–14% non-coding regions [21, 22], and this too
could hinder gene-based virus prediction programs. In
addition, high confidence VirSorter predictions (categor-
ies I and II for “most confident” and “likely” predictions)
rely on the presence of a hallmark viral structural gene,
which again will limit detection of fragmented viral con-
tigs. Similarly, VirSorter may miss many novel viruses
for which their hallmark genes have not been character-
ized or are poorly represented in reference databases,
and novel viruses not well represented in existing
viromes can also be missed.
Sequence signature methods provide a promising and

wholly different new avenue for improved identification
of viral contigs. Characterization of sequences using
frequencies of k-mers (or k-tuples, k-grams) regardless
of coding and non-coding regions, have been used with
great success for many sequence discrimination and
classification applications. Several k-mer based tools, in-
cluding Glimmer [23], Phymm [24], PhyloPythiaS [25],
Kraken [26], CLARK [27], k-SLAM [28] exist for identi-
fying or classifying prokaryotic metagenomic sequences,
but they notably do not attempt to discriminate or
classify viral sequences. For example, Glimmer uses in-
terpolated Markov models learned from distributions of
k-mers to identify bacterial genes from mixed samples
containing eukaryotic sequences [23], and Phymm taxo-
nomically classifies bacterial sequences as short as
100 bp using the same type of models [24]. PhyloPythiaS
is another web server for taxonomic assignment of
bacterial sequences that uses an ensemble of machine

learning classifiers trained on k-mer frequencies [25].
Moreover, Kraken, CLARK, and k-SLAM use k-mers to
index genomic sequences and speed up sequence com-
parison for taxonomically assignment of prokaryotic
metagenomic sequences [26–28]. In general, sequence
signatures-based methods characterize sequences using
k-mers from the whole sequence, coding or not, and
then build a classification model based on the distribu-
tion of k-mers. Since no gene finding or gene similarity
comparisons are needed, these methods can have super-
ior performance for short sequences that have only a
few or incomplete genes. The use of discretized k-mer
patterns also avoids the reliance on hallmark genes or
alignment to known viruses. Finally, if viruses universally
use some k-mer patterns distinct from prokaryotes, then
word-based methods may be more powerful in identify-
ing novel viruses that are distantly related to currently
known viruses and lack homologous sequences at the
gene level.
The motivation for developing a k-mer based tool for

viral sequence was inspired during development of
another tool, VirHostMatcher [29], that matches query
viruses to their probable hosts based on k-mer frequency
similarities. We and others have shown that viruses
often share higher similarity in k-mer patterns with its
specific host than with random hosts [29, 30], presum-
ably because of evolutionary selection to share similar
codon usage. VirHostMatcher utilizes this phenomenon
to predict the probable host of a query virus by iden-
tifying to which host sequence the virus has the great-
est k-mer similarity (using the d2* measurement [29]). In
the process of developing VirHostMatcher, we noted other
virus sequences often had greater k-mer similarity
scores to the query virus than any of the other host
sequences. This initially suggested that in addition to
specific viruses and hosts sharing k-mer patterns, vi-
ruses themselves may share some characteristic k-mer
patterns that could potentially be used to distinguish
viral and host sequences.
In this paper, we have developed VirFinder, to our

knowledge, the first k-mer based program for identifying
prokaryotic viral sequences from metagenomic data.
VirFinder uses machine learning methods to identify
sequence signatures that distinguish viral sequences
from host sequences, and as a result, constructs a scor-
ing system to predict viral sequences based on sequence
signatures. We have evaluated VirFinder for its perform-
ance in detecting viral sequences over a range of short
(500 bp) to long ≥ 3000 bp sizes, including novel viruses.
VirFinder exhibits improved performance over VirSorter
in correctly identifying novel viruses, especially for short
(1000 bp) contigs. VirFinder was applied to find and
analyze viral sequences in human gut metagenomic data
from healthy and liver cirrhosis patients. Diseased
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patients exhibited lower viral diversity, and 15 viral con-
tig bins could be used to predict the disease status of
liver cirrhosis with high statistical power, demonstrating
the potential use of metagenomic viral diversity in the
diagnosis of human disease states. VirFinder is available
at https://github.com/jessieren/VirFinder.

Results
To build and test VirFinder, two separate sets of viral
and host sequences were used for training and testing of
the machine learning tool: RefSeq virus and prokaryotic
genomes sequenced before 1 January 2014 for model
training and after 1 January 2014 for testing. The parti-
tioning of training and evaluation sequences by date was
used to evaluate the ability of the tool to discover novel
viruses based on patterns of previously known viruses.
The 1 January 2014 break point was selected to make fair
comparisons in performance to VirSorter, which makes
predictions based on a database of viruses sequenced
before January 2014. To mimic fragmented metagenomic
sequences, RefSeq virus genomes were split into non-
overlapping fragments of various lengths L = 500, 1000,
3000, 5000, and 10,000 bp, and the same number of non-
overlapping fragments were randomly subsampled from
the prokaryotic genomes (Table 1). See Methods for
details.

The effects of k-mer length and contig length
We first determined the best word length to use with
VirFinder and how contig length of both training
sequences and query sequences affected prediction
performance. A logistic regression model with lasso
regularization was chosen for its good interpretability
and flexibility. The machine learning model was trained
using equal numbers of sequences subsampled from
prokaryotes and viral genome sequences at several
contig lengths: 500, 1000, 3000, 5000, and 10000 bp. For
prediction of each query sequence, VirFinder first
extracts the k-mer features from the sequence and then
generates a score between 0 and 1 based on the trained
machine learning model, with a higher score indicting
higher possibility that the sequence is viral. The tool also
outputs a statistical measure of how distinct it is from

prokaryotic hosts contigs: the p value from comparing
the query score to the distribution of scores for all host
contigs used in the training dataset.

Evaluation of VirFinder with contigs subsampled from
known virus and host genomes
After training the model, VirFinder was evaluated on
equal numbers of viral and host contigs subsampled
from genomes sequenced after 1 January 2014. To evalu-
ate VirFinder’s performance, we used receiver operating
characteristic (ROC) curves typically used to evaluate
performance of classifiers. ROC curves were generated
by setting a score threshold and calling contigs as viral if
their scores were above that threshold. Over a range of
incrementally decreasing thresholds (or increasing
thresholds for p value), we calculated and plotted the
fraction of true viral contigs that were correctly called as
viral or the true positive rate (TPR) and the fraction of
prokaryotic contigs that were incorrectly called as viral
or the false positive rate (FPR). The area under the curve
of these ROC curves (AUROC) was used to evaluate
performance whereby high values indicate good per-
formance. A score of 1 represents perfect identification
of all true viral contigs with no false positives, and a
score of 0.5 represents a random classification. For
VirFinder, AUC values and thus performance increased
as k-mer length increased (Fig. 1a). For contigs with
length ≥ 3,000 bp, performance was relatively stable at
k-mer lengths ≥ 6. For 1000 bp contigs, AUROC
values began to stabilize for k-mer size ≥8, and for
500 bp contigs, performance appeared to still increase
appreciably above k-mer size 8. Based on these results,
k-mer length 8 was chosen for all subsequent applica-
tions of the tool. At k-mer length 8, AUROC score first
increased somewhat from 0.91 for 500 bp contigs to
0.94 for 1000 bp contigs and then were relatively stable
for higher lengths (0.97, 0.98, and 0.99 for 3000, 5000, and
10000 bp contigs). Overall, these high AUROC scores
demonstrate the strong ability of our VirFinder tool to
correctly identify newly obtained viral sequences.
Metagenomic assembly produces contigs of various

lengths ranging from hundreds of bp to 105 bp or more,
so we wanted to determine the sensitivity of VirFinder’s
performance to different contig lengths used for training
and evaluation. As before, the model was trained using
contigs subsampled from genomes sequenced before 1
January 2014 and then tested on contigs subsampled
from genomes sequenced after 1 January 2014. For a
given query contig length, AUROC scores in general
were highest when the query contig length matched the
contig length on which the model was trained, and per-
formance dropped as the training model contig length
was increased or decreased (Fig. 1b). Performance was
more sensitive to changes in the training contig length

Table 1 The number of fragments generated from the virus
genomes discovered before and after 1 January 2014

Fragment
length (L)

Before 1
January 2014

After 1
January 2014

Total

500 bp 154,640 50,350 204,990

1000 bp 77,014 25,087 102,101

3000 bp 25,263 8246 33,509

5000 bp 14,881 4878 19,759

10000 bp 7120 2357 9477
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for smaller query contig lengths. In particular, for query
contigs ≥ 3000 bp, AUROC scores did not appreciably
change across the different training contig lengths. Based
on these results, we subsequently used the 500 bp
trained model to predict contigs <1000 bp; the
1000 bp trained model to predict contigs of 1000–
3000 bp; and the 3000 bp model predicts contigs with
length ≥ 3000 bp.
Because metagenomic datasets may contain different

proportions of viral and host contigs, this potentially
could affect prediction performance for a tool that is
trained on equal proportions of viral contigs. In practice,
the fraction of viral contigs will vary with different types
of samples, so VirFinder was evaluated as above using
subsampled host and viral contigs sequenced after 1
January 2014, but with 10 and 90% viral mixtures.
Within each contig size class, AUROC scores had no

obvious differences (≤1.8%) between different fractions
of viral mixtures (Additional file 1: Figure S1A). Area
under precision-recall curves (AUPRC) were used as a
complementary method to evaluate the prediction per-
formance, as they are more sensitive for imbalanced
data. In these plots, precision or the fraction of predicted
viral contigs that are truly viral is plotted against and re-
call the fraction of viral contigs that are correctly called
(also known as true positive rate (TPR)). As with
AUROC scores, they range from 0 to 1 with higher
values indicating better performance. For each contig
size class tested (as in Fig. 1), AUPRC values increased
with increasing fraction of viruses in the contigs tested
(Additional file 1: Figure S1B), and these increases were
more pronounced for smaller contig sizes. For example,
AUPRCs were all nearly 1 (perfect prediction) with
samples containing 90% viral contigs regardless of contig
length, while they were 0.71, 0.94, and 0.99 for 1000 bp
contigs for 10, 50, and 90% viral contig datasets,
respectively.

Comparison of VirFinder and VirSorter performance
We assessed the ability of VirFinder to correctly identify
viral contigs in comparison to VirSorter, the top per-
forming viral classification tool [13]. Both VirSorter and
VirFinder were tested using the same set of evaluation
contigs as above: equal numbers of contigs subsampled
from host and virus genomes sequenced after 1 January
2014. This provided a fair comparison as both methods
use databases of viruses sequenced before 1 January
2014 to make their predictions. We first assessed the
true positive (TPR) and false positive rate (FPR) for
VirSorter using category I and II VirSorter predictions.
Categories I, II, and III represent “most confident”,
“likely”, and “possible” predictions (see [13] for details).
In comparing the performance of two methods, it is im-
portant to use the same criteria for a fair comparison,
namely, comparing the true positive rate under the con-
dition of both methods having equivalent false positive
rates. To do this, we first determined the true and false
positive rates for VirSorter with category I and II results
(or when noted, with different levels). By selecting the
VirFinder score threshold that produces the same FPR
level as the corresponding VirSorter results, we then
determined the true positive rate (TPR) for VirFinder.
At all query contig lengths, VirFinder’s TPR exceeded
that of VirSorter (Fig. 2a) at comparable FPRs, and based
on 30 replicate bootstrap samples, this difference was
statistically significant (p ≤ 6 × 10−5, Wilcoxon signed-
rank one-sided test). The relatively large standard errors
of TPRs were primarily due to the large range of FPRs
from VirSorter’s results and thus the subsequent deter-
minations of VirFinder’s TPRs. Note that for 500 bp
contigs, VirSorter made no predictions so its FPR and

Fig. 1 The impact of k-mer size and contig length on the performance
of VirFinder. VirFinder was trained using contigs sampled from viral
and host genomes sequenced before 1 January 2014 and predictions
were made on contigs from genomes sequenced after 1 January 2014.
Error bars depict standard error determined from 30 bootstrap samples
from the testing dataset. a Area under the curve for receiver operator
curves (AUROC) are shown when VirFinder was trained using several
k-mer lengths and contig lengths. b AUROC values for VirFinder results
when using k-mer length 8 and several combinations of contig
lengths used for training and testing
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TPR were both 0. VirFinder correctly identified 944 con-
tigs as viral (TPR = 1.9%) at 0 FPR in this case. VirFinder
correctly identified 78, 2.4, 1.8, and 1.2 times more viral
contigs than VirSorter for 1000, 3000, 5000, and
10000 bp, respectively (Fig. 2b), and therefore VirFinder
had a substantially larger TPR for 1000 bp or shorter
contigs. TPRs for VirFinder were also evaluated at three
specific fixed FPRs. At FPRs of 0.01 and 0.005, VirFinder
had higher TPRs at all contig lengths than VirSorter. At
the more conservative FPR of 0.001, VirFinder had TPRs
18, 19, 31, and 39% for 1000, 3000, 5000, and 10000 bp
contigs, respectively.

Along with the tests above on equal numbers of virus
and host contigs, we also tested VirFinder and VirSor-
ter using highly skewed contig datasets: host-enriched
(10% viral) and virus-enriched (90% viral). At all contig
lengths and both viral fractions, VirFinder’s TPR exceeded
that of VirSorter (Additional file 1: Figure S2A, S2B). For
example, for 1000 bp contigs, VirFinder predicted 1.2, 3.6,
and 11% of true viral contigs while VirSorter predicted
0.04, 0.05, and 0.26% for 10, 50, and 90% viral samples,
respectively. This translates to 26-, 78-, and 41-fold higher
TPRs for VirSorter. For long contigs >3000 bp, the fold
difference in VirFinder over VirSorter TPRs were lower,
on average 1.1, 1.8, and 3.8 for 10, 50, and 90% viral
samples, respectively.

Sensitivity of VirFinder to mutations
Because VirFinder relies on nucleotide k-mer analyses
and sequencing technologies can contain errors, the
sensitive of VirFinder to mutations was tested. This also
served as a test of the ability of VirFinder to identify vi-
ruses that may rapidly diverge over time from previously
sequenced virus strains in the training datasets due to
high mutation rates in viruses. Random mutations were
introduced into the 30 replicate subsampled contigs
used above in the analyses in Fig. 2 at three different
rates (0.0001, 0.001, and 0.01), and AUROC values were
compared to the results with no mutations. Within
each contig size group, only at the highest rate of
0.01 mutations per bp were AUROC values significantly
lower (p < 0.01, t test) (Additional file 1: Figure S3). Vir-
Finder’s ability to correctly identify viral contigs is insensi-
tive to virus mutation rates of ≤0.001 as suggested in [31].
The reported rates for sequencing errors generated by the
Illumina platform are about 0.001 [32].

Virus prediction for sequences from different host
domains and phyla
Recognizing the unevenness in the taxonomic diversity
of hosts from which the training set of viruses were
isolated, we evaluated how the performance of our tool
varied for several groups of viruses. The model was
trained on all viruses in the training set regardless of
host taxonomy, and AUROC curves were plotted for
identification of viruses that infect different domains
and major bacterial phyla using 1000 bp subsampled
contigs. AUROC scores were markedly lower for ar-
chaeal viruses versus bacterial viruses (Fig. 3a). Only 3%
of viruses in the training set are archaeal. Similarly, iden-
tification of Firmicutes viruses had a notably lower
AUROC score, 0.88, than those for Proteobacteria (0.97)
and Actinobacteria (0.96). The patterns for other contig
lengths were consistent with results shown for 1000 bp
contigs (data not shown).

VirFinder vs VirSorter cat. I, II & III
VirFinder vs VirSorter cat. I & II
VirFinder vs VirSorter cat. I
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Fig. 2 Performance of VirSorter and VirFinder virus prediction for
contigs subsampled from virus and prokaryotic genomes. As input
to each evaluation, equal numbers of contigs subsampled from virus
and prokaryotic genomes were used for 30 replicate bootstrap samples.
a The fraction of true viral contigs (true prediction rate (TPR)) identified
by VirSorter using category I and II predictions and VirFinder at the
same false positive rate (FPR) as VirSorter (listed in or above the VirSorter
bars) and at FPRs of 0.001, 0.005, and 0.01. Bars depict mean values for
30 replicate bootstrap samples and error bars depict the standard error.
Asterisk indicates the TPR of VirFinder is significantly higher (p < 0.001)
than that of VirSorter at the same false positive rate (Wilcoxon signed-rank
one-sided test). b The ratio between mean VirFinder and VirSorter
true positive rates for category I; I and II; and I, II, and III where VirFinder
FPRs were set at the corresponding FPRs of VirSorter predictions. Since
VirSorter had no predictions for 500 bp contigs (TPR = 0), the ratio is
infinite (not shown). Error bars depict mean standard error, and
the red line shows a ratio of 1

Ren et al. Microbiome  (2017) 5:69 Page 6 of 20



Assessment of the identification of novel viruses
To assess the ability of VirFinder and VirSorter to iden-
tify novel viruses, predictions were also made on whole
virus genomes sequenced after 1 January 2014 (n = 337),
and we paid particular attention to 45 viruses (13%) that
had no significant nucleotide similarity (blastn search,

E value <10–5) to previously viral genome sequences,
which we used as a proxy for what we refer to as novel
viruses. Using a p value cutoff of 0.01 for VirFinder pre-
dictions and category I and II VirSorter predictions, Vir-
Finder and VirSorter both predicted most of the viruses
(n = 26, 58%), and 3 were not predicted by either (Add-
itional file 1: Table S1). VirFinder uniquely predicted 4 vi-
ruses that VirSorter did not, and VirSorter correctly
predicted 12 viruses that VirFinder did not.
We also assessed the ability of VirFinder to identify

novel viruses by excluding viruses that infect a particular
group of hosts (four major phyla and eight major gen-
era) and the hosts of that taxon group from the training
dataset and then predicting those viruses from among
mixed sets of subsampled virus and host contigs. As
above, predictions were made on 30 replicate datasets
with equal numbers of total host and viral contigs. Pre-
diction results of the selected viruses that were excluded
from the training set were assessed with AUROC values
and compared to control results of predictions made for
all other viral contigs using that same trained version of
VirFinder (Fig. 3b). AUROC scores for predicting viruses
infecting Firmicutes, Staphylococcus, Streptococcus, Acti-
nobacteria, and Mycobacterium decreased by >5% when
they were excluded from the training dataset. Viruses in-
fecting other taxa such as Proteobacteria, Cyanobacteria,
and Escherichia had reduction in AUROC of <5%,
suggesting that they can be predicted reasonably well
even when they were excluded from the training data.

VirFinder’s performance on assembled contigs from
simulated metagenomic samples
To evaluate performance on a more realistic dataset,
VirFinder and VirSorter were evaluated on contigs
assembled from simulated human gut metagenomic
samples. A simulated human gut metagenome with 20
million reads was generated using NeSSM [33] by sub-
sampling reads from host and viral reference genomes
found in a real Human Microbiome Project gut metage-
nomic sample at their respective relative abundances
(see Methods). Assembly with metaSPAdes [34, 35]
generated 190,079 contigs ≥500 bp in length, and each
contig was definitively assigned as prokaryotic (88%),
viral (10%), or ambiguously chimeric (1.8%) (see
Methods). VirFinder’s performance was first assessed
using AUROC values as before for contigs 500–1000 bp,
1000–3,000 bp, and ≥3000 bp in length. Viral contigs
from genomes sequenced after 1 January 2014 paired
with the same number of randomly sampled host contigs
were evaluated. AUROC scores were all very high, >0.9,
and increased with increasing contig length. For 1000–
3000 and ≥3000 bp contigs, the AUROC scores were as
high as 0.94 and 0.98, respectively (Fig. 4a). Including
chimeric contigs decreased performance slightly. To
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Fig. 3 Differences in VirFinder’s performance for different groups of
viruses and when excluding particular viruses from the training of
VirFinder a ROC curves for VirFinder prediction results based on
contigs subsampled from viruses isolated on particular host domains
and phyla. Curves depict mean results for 30 replicate samples each.
Numbers in the legend indicate mean AUROC values and numbers in
brackets indicate the upper 2.5% quantiles for 30 replicate bootstrap
samples. b Viruses that infect four major phyla and eight major genera
of hosts were each excluded from the dataset of sequences used to
train VirFinder. AUROC scores were then determined when making
VirFinder predictions on contigs of the excluded viruses when they
were mixed with equal numbers of contigs of other viruses and equal
numbers of host contigs as the total number of viral contigs. As a
control, AUROC scores were compared to results of predictions of all
other viruses. Contigs for the training and evaluating datasets were
sampled at a length of 1000 bp, and predictions were made for 30
replicate datasets for each taxon analysis
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study the effects of sequencing depth and the fraction of
viral sequences in the sample, simulated metagenomic
samples were generated for 10 and 20 million total reads
and using 3 different viral and host proportions (10, 50,
and 90% viral reads, see Methods). The AUROC scores
based on 10 and 20 million reads are similar, indicating
that within the sequence depth levels investigated, se-
quencing depth does not markedly affect the viral contig
prediction results (Fig. 4b). As before, AUROC values
generally increased noticeably with contig length, but
within size classes, they did not appreciably differ
between 10, 50, and 90% viral samples tested (<8% for
500–1000 bp and <5% for all other size classes). To
make fair comparisons across scores predicted using dif-
ferent models trained using contigs of different lengths,
VirFinder p values rather than VirFinder scores were used
for generating ROC curves and corresponding AUROC
scores. The AUROC scores using p values were 0.90–0.93
for contig >500 bp and 0.92–0.95 for contig >1000 bp.

AUPRC results showed increasing values with increased
proportion of viral contigs present in the sequences being
tested (Additional file 1: Figure S4).
VirFinder and VirSorter’s TPRs were next compared

using assembled contigs from simulated 20 million read
metagenomes. TPRs were compared at the same FPRs
levels as found for VirSorter considering various VirSor-
ter category results (I, “most confident; II, “likely”, III,
“possible”). VirFinder correctly identified more viral con-
tigs than VirSorter at all ranges of contig lengths and for
all three combinations of VirSorter categories used when
tested with samples with equal numbers of viral and
host contigs (Fig. 5a). As before, use of 30 replicate
bootstrap samples showed that these differences were
statistically significant (p ≤ 10−5, Wilcoxon signed-rank
one-sided test). VirSorter identified almost no viral
contigs of 500–1000 bp viral contigs at the 3 category
combinations used (I, I and II, and I–III) (TPRs were 0,
0.2, and 0.5%, respectively). At the same FPRs levels as
VirSorter, VirFinder successfully identified 5.9, 5.9, and
6.0% true 500–1000 bp viral contigs for the 3 VirSorter
category combinations, respectively, which are undefined
(VirSorter TPR was 0%), 30 and 13 times higher than
VirSorter’s TPRs. For contig lengths 1000–3000 and
>3000 bp, both methods had higher TPRs. VirSorter’s
TPRs were 2.5 and 19% for 1000–3000 and >3000 bp,
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AUROC scores for results from 3 size classes of assembled contigs
(20 million read simulated metagnome, 10% viral community).
b The effects of sequencing depth, viral fraction, and contig length
on prediction performance. Bars shown mean AUROC scores and
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contigs for 3 length ranges assembled from 20 M reads simulated
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rates (TPRs) for VirSorter category I; I and II; and I, II, and III predictions.
As in Fig. 2, VirFinder predictions were evaluated at the same
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virus and host genomes found in a real human gut metagenome. The
horizontal bar displays the median, boxes display the first and third
quartiles, and whiskers depict minimum and maximum values. Asterisk
indicates VirFinder’s TPRs are significantly larger than VirSorter’s
(Wilcoxon signed-rank one-sided test, p < 10−4)
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respectively, using categories I and II. At the same con-
trolled FPR, VirFinder’s had TPRs of 7.4 and 67%, or 3.0
and 3.5 times higher than VirSorter’s TPRs.
Viral prediction performance was also evaluated using

unbalanced fractions of viral and host contigs. Overall,
VirFinder’s TPRs were significantly higher than VirSorter’s
TPRs for all 3 ranges of contig length, all 3 VirSorter
category combinations considered, and all datasets with
different viral fractions (p ≤ 10–3) (Additional file 1:
Figure S5). Performances were also evaluated when
parsing the results for all contigs >500 bp or all con-
tigs >1000 bp. The simulated assembled contig data-
set contained on average 41% 500–1000 bp contigs,
38% 1000–3000 bp contigs, and 20% >3000 bp con-
tigs. When considering all contigs >500 bp, VirFinder
had significantly greater TPRs than VirSorter except
when comparing category I or category I and II Vir-
Sorter results with 10% viral samples and when comparing
category I and II VirSorter results with 50% viral samples
(Additional file 1: Figure S6). When considering all contigs
>1000 bp, however, VirFinder had significantly higher
TPRs than VirSorter under all scenarios at equivalent
FPRs (Additional file 1: Figure S6).

Example application: identification and analysis of viral
communities in human gut metagenomes from a liver
cirrhosis study
We applied the VirFinder tool to study real human gut
metagenomes of healthy and liver cirrhosis patients. Qin
et al. [36] previously reported the alteration of human
gut microbiomes associated with liver cirrhosis. Their
analysis only focused on the bacterial microbiome by
mapping reads to reference bacterial genomes. Roughly
40% of the reads were unaligned, indicating that the
remaining reads represent unknown bacterial or archaea
or more importantly prokaryotic viruses. We reanalyzed
the Qin et al. dataset using VirFinder (and VirSorter) to
identify viruses in these metagenomes and any potential
differences in the prokaryotic viromes of healthy and
diseased patients.
Reads from 40 healthy and 38 liver cirrhosis patients,

comprising 316 Gb of total sequence data were cross-
assembled. Only the resulting 325,020 contigs that were
>1000 bp in length were retained to achieve high predic-
tion accuracy. The majority (76%) of contigs were 1000–
3000 bp long (Additional file 1: Figure S7). VirSorter
predicted 2657 contigs as viral using category levels I
and II. To make fair comparisons, we also analyzed the
2657 contigs with the highest VirFinder scores. The false
positive rate for these VirFinder contigs was estimated at
15% using q values estimated by the positive false dis-
covery rate (pFDR) method [37, 38].
Contigs were binned using COCACOLA [39] based

on k-mer frequencies and abundance patterns across

samples to group similar contigs. This produced 86 and
116 bins for VirSorter and VirFinder contigs, respect-
ively. The abundance profiles of contig bins across 78
samples of health and diseased patients were used to
train classification models to distinguish health status.
The logistic regression model with lasso regularization
was used in order to enhance the prediction accuracy
and interpretability. These models were then tested on
an independent set of 230 samples from the same study
[36] using ROC curves and AUROC scores. Model
results using VirFinder binned contigs had a larger
AUROC score, 0.87, than those for VirSorter bins, 0.77.
The ROC curve for VirFinder was above that of VirSor-
ter for most of the plot (Fig. 6). The high AUROC scores
demonstrate that virome data mined by virus prediction
software can predict with good confidence the health
status of patients. The ROC results furthermore indicate
that viral contigs predicted by VirFinder can better dis-
tinguish between healthy individuals and liver cirrhosis
patients.
Similarity searches of contigs and their predicted

proteins against NCBI’s non-redundant nucleotide (nt)
or protein (nr) databases were conducted to determine if
contigs and bins do not have any similarity to previously
known sequences and thus potentially represent novel
viral sequences. Searches against nt and nr assessed if
contigs are closely or distantly related to known se-
quences, respectively. Only 12% of contigs were ≥95%
similar to another bacterial or viral sequence in the nt
database (requiring an E value <1e−10 for ≥100 bp). It
has recently been suggested that virus species distinguish
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Fig. 6 ROC curves and AUROC scores for classifying healthy and
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contig bins. The models were trained using averaged bin coverage
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samples from the same study. Each set of 2657 viral contigs
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samples. The numbers in the square brackets are the lower and
upper 2.5% quantiles
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from each other by ~95% nucleotide identity [40] thus
the majority of the contigs probably represent new viral
species. Analyzed in another way, 64% of contigs did not
have any significant blastn matches to the nt database
(E value <1e−10 for ≥100 bp), such that 17% of the
bins had no contigs with any significant similarity to
nucleotide sequences in this database. For blastp
searches, only 8% of contigs did not contain any predicted
encoded protein with significant similarity (E value <1e−5,
bit score ≥ 50) to any protein in the nr database. This
translated to all but two bins that had at least one
protein with significant similarity to a previously
reported protein sequences. These 2 bins were com-
prised of 1 short contig each, 1119 and 1182 bp, with
1 and 3 predicted proteins on those contigs,

respectively. We also note that, of 2657 contigs, ~10%
had at least 1 protein for which its best hit to nr was
a viral protein or has significant similarity to a viral
Pfram domain. This resulted in 57% of bins having at
least 1 viral protein, supporting that these binned
contigs indeed are viral sequences.
Hierarchical clustering was used to cluster contig bins

and patient samples (80 from healthy and 76 from cir-
rhosis patients) according to the relative abundance of
bins (Fig. 7). Viral bins (rows) formed three major
groups broadly reflecting the degree to which the bin
was present across samples. Bins belonging to cluster 1
(green), 2 (purple), and 3 (blue) were found, respectively,
in nearly all samples (95% of samples on average), most
samples (82% on average), and only some samples (33%
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Fig. 7 Two-way hierarchical clustering of viral contig bins and human gut metagenomic samples from a liver cirrhosis study [36]. Rows are contig
bins (n = 116) comprised of 2657 viral contigs predicted by VirFinder, and columns are samples from healthy (blue) and cirrhosis (red) patients
(n = 80 and 76, respectively). The heatmap depicts bin coverage across samples calculated as the averaged Reads Per Kilobase per Millions
mapped reads (RPKM) of contigs in each bin. Bins form three coherent clusters that generally correspond to bins that are found in nearly all
(95% on average), most (82% on average), or some (33% on average) samples. With the exception of two outliers (in grey), samples belong to
three major clusters, A, B, and C, and clusters A and B each have two coherent subgroups (A1, A2, B1, B2). Stars depict bins that are positively
(red) or negatively (yellow) associated with cirrhosis samples chosen using the lasso method for subset variable selection
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on average), respectively. For bins in clusters 2 and 3,
their prevalence in cirrhosis patient samples was signifi-
cantly lower than those of healthy patients, 76 vs. 88%
and 27 vs. 39%, respectively (Wilcoxon signed-rank one-
sided test, p < 0.001), while there was no difference for
cluster 1 (95 vs. 96%, p = 0.30) (Fig. 8). Overall fewer bins
were detected in diseased than healthy patients (89 vs.
93% bins detected on average, respectively, p < 10−4).
Except for two outlier samples (in grey) for which few

bins were detected, samples clustered into three major
groups (A, B, and C), and the A and B groups contained
two coherent subgroups each (A1, A2, B1, and B2;
Fig. 7). The A1 subgroup (in blue) contained 70 samples
that were comprised mostly of healthy patient samples,
while samples from cirrhosis patients primarily fell into
the other subgroups. Among the samples in all groups
except for the 2 outliers, 10 healthy and 14 cirrhosis
patients had multiple (>1) samples. The Pearson cor-
relation coefficients between contig coverages (Reads
Per Kilobase per Million mapped reads (RPKMs)) of
viral bins of samples within those individuals were
significantly higher than that between samples from
different individuals (Wilcoxon rank-sum one-sided
test, p < 10−4), even when evaluated separately using
the 3 different groups of viral bins.
Using the lasso regularization method for variable

selection [41, 42], we identified 7 and 8 bins that were
positively or negatively associated with the disease sta-
tus, respectively (Table 2). Nine of these bins had at least
one protein for which its best blastp search results
against nr was a viral protein or the protein had signifi-
cant similarity to a viral Pfam domain. Of particular note
were bins 2 and 64 that were negatively associated with
cirrhosis and had 8 and 19 proteins, respectively, that
from blastp searches against nr were most similar to
crAssphage proteins. Bin 64 in particular contains 2
large contigs (10 and 12 kb) that have several predicted
proteins with similarity to (26 to 66% protein identity)

and in similar order to large regions of the crAssphage
genome (Additional file 1: Figure S9). Also of note is bin
41; the bin most strongly associated with cirrhosis
(Table 2), that contains a large 121 kb circular contig.
Nearly all (95%) of the prediction proteins on this contig
have significant similarity (78% identity on average) to
megaplasmid pMP1046B from the Firmicutes strain
Lactobacillus salivarius strain JCM 1046, representing
91% of the proteins on pMP1046B. This bacterium was
isolated from swine intestines. The 121 kb circular con-
tig was only predicted at category level III by VirSorter.
Several of these predicted proteins have similarity to
Pfam motifs for phage proteins (phage integrases, phage
tail tape proteins, phage holins), suggesting that it is a
lysogenic phage that is stably maintained in the host as a
replicating plasmid like P1 phage [43]. Four other large
(40–72 kb) circular contigs were among the 2657 Vir-
Finder predicted viral contigs, and each have several
proteins with similarity to phage related Pfams. Bin 41
also contains a 21.6 kb contig that possesses several
structural phage genes (capsid, heal-tail adapter genes).
Twenty nine of the 32 predicted proteins on this contig,
including the structural phage proteins, are most similar
to sequences of the genus Veillonella, strongly suggest-
ing that this viral contig occurs as a prophage in this
genus. A recent analysis of the Qin et al. dataset also
found that host sequences of the genus Veillonella were
more abundant in cirrhosis patients [28], consistent with
the higher association of this viral bin with individuals
with cirrhosis.

Discussion
We have presented the development, validation, and ap-
plication of VirFinder, a machine learning based tool
that uses k-mer frequencies to accurately identify viral
contigs. To our knowledge, VirFinder represents the first
virus identification tool that solely uses a nucleotide
k-mer frequency based approach and stands in
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Fig. 8 Box plots summarizing the number of healthy or cirrhosis patient samples in each viral bin. Results are summarized from the three bin
clusters shown in Fig. 7. Horizontal bars indicate median values, boxes depict the first and third quartiles, whiskers depict minimum and maximum
values, and outliers are shown as points. p values for Wilcoxon signed-rank one-sided tests comparing results for healthy and cirrhosis samples
are listed above each graph
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contrast to previous methods that primarily use simi-
larity searches of predicted genes to known viral se-
quences (e.g., Phispy, Phymm, VirSorter). We do note
that PhiSpy uses AT and GC skew, a coarse form of
k-mer analysis, for prediction, but this is one of sev-
eral search criteria PhiSpy uses. VirFinder adds to the
growing number of recently developed tools that use
powerful, alignment-free k-mer frequency approaches
to rapidly categorize and/or analyze the similarity of
sequence datasets [24–29, 39, 44–49]. We note here
that VirFinder has been trained to identify prokaryotic
viruses, but in the future, it potentially could be utilized to
identify eukaryotic viruses as well. We note that users
applying VirFinder to eukaryotic host associated micro-
biomes should first filtered out eukaryotic host sequences
as VirFinder may potentially misidentify those sequences
as viral, since eukaryotic sequences were not included in
VirFinder’s training datasets.
VirFinder is trained using a logistic regression model

with lasso regularization in order to enhance the predic-
tion accuracy and interpretability. Other regularization
methods such as ridge and elastic net had similar per-
formance with no significant difference. We also tested a
few other machine learning methods before selecting the
logistic regression approach. Performance with a Naïve
Bayes classifier was worse than that of logistic regression
(data not shown), possibly because of the violation of
the independence assumptions for k-mer patterns. We
also attempted to use the support vector machine

(SVM) with kernels, one of the most widely used non-
linear classification methods, but it failed because the
training sample size was too large (>300,000 sequences)
for the regular SVM to handle.
In side-by-side comparisons, VirFinder exhibited

superior performance in terms of identifying true viral
contigs when evaluated at the same false discovery rates
as VirSorter, the current state-of-the-art, gene-based
virus prediction tool. VirFinder in particular exhibited
much better performance in virus identification for
shorter contigs in part because VirSorter is limited to
making predictions on contigs that have at least three
coding genes. VirFinder’s success is also probably due to
its use of k-mer frequencies that allows it to extract pre-
dictive sequence informative without requiring the pres-
ence of specific hallmark genes on the query contig.
VirFinder also provides a statistical framework to evalu-
ate if the output score is significantly different from the
distribution of host contig scores, which in turn can be
used to estimate the false positive rate when selecting a
particular VirFinder score threshold (the q value ap-
proach). Similarly, an additional benefit of our study is
that we provide estimates of the false positive rates for
VirSorter for contigs of various sizes, which was not
extensively evaluated previously. Finally, VirFinder
generates prediction scores that are static for each contig
regardless of the other contigs being tested at the same
time. VirSorter results in contrast are influenced by the
particular collection of sequences being analyzed. This is

Table 2 Summary information for 15 viral contig bins associated with cirrhosis (+) or healthy (−) patients samples

Bin Coefficients of association
with cirrhosisa

No. of
contigs in bin

Total nucleotides
in bin (bp)

No. of predicted
proteins in bin

No. of contigs with
significant blastn
hit to ntb

Bin contains proteins
with similarity to
viral proteinsc

2 −0.04 46 82431 92 3 Y

6 0.06 88 295063 357 2 Y

35 0.00 1 1214 2 1 N

41 0.23 40 259266 360 15 Y

48 0.05 3 4940 5 0 N

51 −0.19 36 84134 112 6 Y

59 −0.10 68 184455 245 3 Y

64 −0.05 29 130154 148 1 Y

66 0.12 6 8500 7 5 N

69 0.00 1 1197 1 0 N

72 −0.05 29 77421 110 6 Y

78 −0.05 21 43329 48 1 Y

93 0.03 1 1295 1 0 N

106 −0.06 2 5243 7 0 N

127 0.01 18 72694 110 0 Y
aCoefficients determined by the logistic regression with lasso regularization method for variable selection (see Methods)
bContig had at least one blastn hit to NCBI’s non-redundant nucleotide database (nt) with an E value of ≤1e-10 and an alignment length of ≥100 bp
cBin contains at least one protein for which its best blastp search results against NCBI’s non-redundant protein database (nr) was a viral protein or the protein had
significant similarity to a viral Pfam domain (see Methods). Similarity requirements: E value of ≤1e-5, bit score ≥ 50
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because VirSorter first uses all contigs to estimate the
background distributions for the various metrics it eval-
uates (for example, enrichment of hypothetical genes),
and virus predictions are made by comparing individual
contig values to these background distributions. There-
fore, VirSorter results of individual contigs are not stable
and are dependent on what other contigs are included in
the query dataset.
VirFinder’s reliance on k-mer patterns also gives it a

practical advantage over other gene-based methods
when analyzing binned contigs. Recent binning methods
have advanced analysis of assembled metagenomic con-
tigs by grouping together fragmented contigs belonging
to the same or closely related organisms with high fidel-
ity based on tetramer frequencies and abundance pat-
terns across multiple samples [39, 49, 50]. Here, we have
used the binning approach COCACOLA that exhibits
improved binning accuracy with reduced computational
times. Although we have not implemented this here,
VirFinder could be applied to binned contigs. Since each
bin collectively contains more sequence data than the
individual contigs within them, this would presumably
result in more robust predictions. Other current
methods only make predictions for individual contigs
and are not implemented to handle predictions for
binned contigs.
VirFinder works by training a machine learning model

on known viral and non-viral (prokaryotic host) sequences
to detect the additive effect of many subtle differences in
the frequencies of k-mers specifically used by viruses. A
helpful analogy is that viruses and hosts use the same
“language”; the genetic code of nucleic acids, but the two
have slightly different “accents” or “dialects” in their use of
that code, which VirFinder is able to detect. While VirFin-
der clearly works well in practice, it will be interesting to
understand in more detail, the evolutionary phenomena
underpinning its success. VirFinder works in principle due
to the reasonable underlying assumption that viruses and
hosts use different k-mer patterns. While there were no
individual k-mers identified that are unique to viruses or
hosts, VirFinder’s machine learning model instead uses
the cumulative effect of slight differences in frequencies
over many k-mers to distinguish virus and host sequences,
and the cumulative frequencies of these k-mers are signifi-
cantly different between viruses and hosts (Additional file
1: Figure S8). Viruses and their hosts are very different
biological entities, so the different evolutionary selective
forces they experience likely shape the k-mer space they
explore. We hypothesize that evolutionary constraints in
particular on capsid structural genes that are unique to
viruses may impart some of the k-mer signal that allows
VirFinder to distinguish virus and host sequences.
In future studies, it will be interesting to determine if

there are particular k-mer patterns that are universally

shared across all viruses, or if it is more the case that
distinct patterns exist for each larger group of viruses.
The former appears to be the case at a broad level, as
viruses exhibit slightly lower GC contents than host
genomes [51]. We likewise find that the informative
k-mers for predicting viruses are significantly more
AT-rich (p < 10−4). It was previously hypothesized that
the AT shift was due to the limited availability of G
and C nucleotides and higher energetic costs imposed
on viruses for utilizing these bases. Further examin-
ation of any discernable pattern among the inform-
ative k-mers could be instructive in understanding the
evolutionary and mechanistic reasons for how and
why viruses and hosts use k-mer space differently.
If the model that viruses universally share certain k-mer

usage patterns is true, this suggests that VirFinder could
have a strong advantage in extending viral prediction to
novel virus groups for which we have no sequences. This
model is partly supported by results obtained when par-
ticular viruses were excluded from the training dataset
(Fig. 3b). Most viruses showed differences of <10% in pre-
diction performance as compared to controls, suggesting
that VirFinder can readily predict them based on k-mer
patterns present in the other viruses that were not
excluded. While prediction performances for viruses in-
fecting Firmicutes and Staphylococcus were 21 and 13%
lower than controls, AUROC scores were still generally
high, often >0.75. We also found that VirFinder could cor-
rectly predict many recently sequenced, novel viruses that
lack any significant nucleotide similarity to previously
sequenced viruses in the training dataset. Likewise, a sig-
nificant portion of predicted viral contigs (~30%) from the
cirrhosis study have no significant nucleotide or protein
similarity to known sequences, and the cirrhosis study
recovered several contigs that appear to be variants of
crAssphage that were not predicted by VirSorter
(Additional file 1: Figure S8).
If instead it is more the case that large subgroups of

viruses each have different distinguishing patterns,
VirFinder like other virus prediction methods will still
be sensitive to the diversity of known viruses represented
in the training sequence database. This may explain in
part why VirFinder had somewhat lower performance
for archaeal viral contigs for which there are relatively
few sequenced representatives. Interestingly, VirFinder
similarly had somewhat lower performance in identifying
Firmicutes viruses compared to other groups even though
there were many Firmicutes viruses in the training set. It
is unclear why this is exactly the case. As discussed above,
the exclusion of certain groups of viruses from the train-
ing set did diminish prediction results, suggesting that
the viruses that infect particular host taxa do have
some signal of k-mer patterns that are specific to that
group and not shared “universally” (Fig. 3b). We
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anticipate that VirFinder’s accuracy will improve over
time as additional virus isolates are sequenced, espe-
cially for archaeal viruses, and available to be added
to the training sequence database. To this end,
VirFinder can be periodically updated by training it
on new, available sequences, and the current release
allows users to select and train VirFinder on host and
viral databases of their choosing.
One potential counterpoint to the paradigm that

viruses and host have distinct k-mer patterns is that co-
evolution of viruses and their hosts leads to sharing
somewhat similar k-mer patterns. This is likely due to
the evolutionary pressure on viruses to adopt similar
codons used by their hosts since they are dependent on
host machinery for replication [6, 30, 52–55]. In fact, we
and others have previously utilized this phenomenon
to predict the probable host of query virus sequences
[6, 29, 30]. These two phenomena, virus-host k-mer
amelioration and viruses and hosts possessing distin-
guishing k-mer patterns, however, may not be mutu-
ally exclusive, as some specific distinct viral k-mer
patterns could still be maintained even in the midst
of co-evolutionary pressures to share similar codon
patterns with their hosts. In support of this, results
obtained during testing of the host-matching tool Vir-
HostMatcher, as discussed in the introduction, indicated
that virus-host pairs share some k-mer similarity but
viruses often appear to share even higher similarity with
each other. This supports a model that viruses simultan-
eously possess distinguishing viral k-mer patterns and
patterns of virus-host amelioration.
An important consideration in the application of

VirFinder is the potential problem of provirus sequences
within the host genome training sets and host genes that
are present in the genomes of viruses. These “contamin-
ating” sequences in the training set could be expected to
potentially reduce TPRs and elevate FPRs, respectively,
of virus prediction results. For the case of proviruses,
however, we found negligible difference in prediction
performance when training VirFinder on a smaller
14,722 host genome dataset [6] vs. training VirFinder on
that same database with VirSorter-predicted provirus
sequences removed (Additional file 1: Figure S10). This
is likely because proviruses only comprise a small
proportion, 0.64%, of those prokaryotic genomes. We
predict similar, limited impact on proviruses present
in our larger host genome database, assuming the
fraction of proviruses is similar. Congruent with this,
prediction performance as assessed by AUROC values
was diminished by <0.5% when random virus isolate
contigs were spiked into our host training dataset at
5% (~8-fold larger amount of viruses than found in
the Roux et al. dataset) (Additional file 1: Figure S11).
Moving forward, we are currently working on

“cleaning” our larger host genome database of pro-
virus sequences using VirSorter for a future, updated
release of VirFinder.
The presence of host genes in the viral training set is

potentially more problematic as this is predicted to
inflate the FPR for viral prediction. False positives (true
host contigs that are called as viral) should not be an
issue for long contigs, but short contigs could potentially
be called as viral if they contain a host gene that occurs
as a horizontally transferred host gene in the viral train-
ing set. A prime example of such genes are auxiliary
metabolic genes (AMGs) encoded in viruses that are ac-
quired from their hosts and used to bolster the metabol-
ism of the host for increased virion production [56–58].
The best-studied example of an AMG is the photosyn-
thesis gene, psbA, that is encoded in many cyanophage,
viruses that infect cyanobacteria [59–61]. Host and viral
versions of psbA form distinct phylogenetic clusters [62]
and have different GC contents and codon usage pattern
[63], suggesting that k-mer analysis may readily distin-
guish viral and host psbA genes. Using the set of host
and viral psbA genes from [62], VirFinder correctly pre-
dicted 62% of the viral psbA genes with no false positives
on (using a p value cutoff of 0.05). The process of
“cleaning” such host genes from viral genomes is not
trivial, but based on the results above, host genes in viral
genomes likely do not significantly impact VirFinder’s
performance.
It was observed that the balance of viral and host con-

tigs can impact the magnitude of prediction perform-
ance. The reason for these differences can be explained
using the simple Bayes rule. Suppose a contig is ran-
domly picked from the testing dataset. Let Z = 1 if the
contig is predicted as virus. Let the probability that the
contig is a true viral sequence be P(V|Z = 1), where V
denotes viruses and H denotes hosts. By the Bayes rule,

P V jZ ¼ 1ð Þ ¼ P Z ¼ 1jVð ÞP Vð Þ
P Z ¼ 1jVð ÞP Vð Þ þ P Z ¼ 1jHð ÞP Hð Þ

¼ P Z ¼ 1jVð Þ
P Z ¼ 1jVð Þ þ P Z ¼ 1jHð Þ P Hð Þ

P Vð Þ
:

where P(V) and P(H) are the fractions of viral and host
contigs, respectively. Here, P(Z = 1|V) is the probability
that a virus can be correctly predicted and P(Z = 1|H) is
the probability that a host is falsely predicted as virus.
Both P(Z = 1|V) and P(Z = 1|H) do not depend on the

ratio P Hð Þ
P Vð Þ . As viral fraction P(V) increases, the ratio P Hð Þ

P Vð Þ
decreases, and the probability of having a correct predic-
tion P(V|Z = 1) increases. In fact, P(V|Z = 1) is equiva-
lent to precision, the fraction of predicted viral contigs
that are true [64]. Therefore, AUPRC increases as viral
fraction increases. For example, for 1000 bp contigs, the
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AUPRC of VirFinder were 0.71, 0.94, and 0.99 as viral
fraction increases from 10, 50, and 90%. Despite these
trends, VirFinder still exhibit higher TPRs than VirSorter
under almost all conditions tested, the exception being a
few cases when considering predictions on all contigs
>500 bp (Additional file 1: Figure S6).
While VirFinder shows better performance than

VirSorter, we ultimately advocate for the development
and use of future tools that combine the core principles
of each tool, k-mer and gene-based approaches, to make
even better predictions. Case in point is the prediction
of recently sequenced, novel virus genomes, whereby
each method could uniquely identify virus genomes that
the other could not (Additional file 1: Table S1). In
addition, performance of VirFinder and VirSorter were
comparable for larger contigs. For such longer contigs,
VirSorter may prove to be the more appropriate tool,
especially if the contig contains a hallmark gene, a
definitive piece of evidence for a virus. In practice, we
suggest users apply both methods and analyze the over-
lapping and/or additive lists of probable viruses found
by each tool.
As an example application of VirFinder, we assembled

and identified probable viruses for human gut metagen-
omes of healthy and cirrhosis patients. From analysis of
nearly 2700 viral contigs, viral diversity was significantly
lower in diseased individuals. This is consistent with pre-
vious studies of bacterial and viral diversity of human
microbiomes [3, 65, 66]. It is unclear if lower viral diver-
sity follows lower host diversity in response to health
status, vice versa, or a balanced combination of both.
Longitudinal studies of patients could provide a clearer
picture of which leads the other, and VirFinder would be
a valuable tool for such a study. Our analysis reveals
viral contigs that appear to be quite specific to particular
patients, consistent with the patterns of “personalized”
microbiomes observed at the prokaryotic and virus
level in previous studies [7, 67, 68]. In our study, viral
sequences could be used to predict with good
discriminating power the health status of patients,
suggesting the potential of viral microbiome analysis
as a diagnostic tool. Interestingly, two of the distin-
guishing viral bins had sequences with similarity to
crAssphage; an ubiquitous virus found in the healthy
human gut microbiome. First, this suggests that there
may be multiple populations of crAssphage-like viruses
that have yet to be fully characterized. Second, they are
both negatively associated with cirrhosis indicating that
they are part of the normal status of healthy microbiomes.
Furthermore, we found a putative prophage probably
associated with the genus Veillonella, within the viral bin
that was most strongly associated with liver cirrhosis
patients (Table 2). This is consistent with a recent analysis
of the prokaryotic component of this metagenome dataset,

which found that the host genus Veillonella are more
abundant in cirrhosis patients. This example application
of VirFinder highlights the type of downstream analyses
that can be done with VirFinder’s results to investigate
important viral ecology questions.

Conclusions
Our development of an innovative k-mer based viral
identification tool adds to the increasing number of
alignment-free k-mer based tools being utilized for
analysis of large sequence datasets. In side-by-side com-
parison to VirSorter, VirFinder has superior perform-
ance, especially for shorter contigs (i.e., 1000 bp). Since
such shorter contigs typically dominate metagenomic
assemblies, VirFinder will help greatly in expanding our
knowledge of natural virus communities. Our example
application of VirFinder to human gut microbiomes
highlights its utility in identifying diagnostic differences
in viral communities between healthy and diseased indi-
viduals. Since VirFinder can be broadly applied to any
type of metagenomic sample, it will be invaluable in
addressing a variety of questions in the ecology of natural
viral communities across various habitats types (i.e., aquatic,
soil, host-associated). We also propose that VirFinder could
be further implemented for identifying proviruses within
large contigs, using a sliding window approach. Future inte-
gration of our k-mer based approach with previous gene-
based tools, will further improve the accuracy and utility of
virus prediction.

Methods
Viruses and prokaryotic host genomes used for training
and validation
We collected 1562 virus RefSeq genomes infecting pro-
karyotes and 31,986 prokaryotic host RefSeq genomes
from NCBI in May 2015. The NCBI accession numbers
of the RefSeq sequences are provided in the Additional
file 2: Table S2. To mimic fragmented metagenomic
sequences, for a given length L = 500, 1000, 3000, 5000,
and 10000 bp, viruses were split into non-overlapping
fragments of length L and the same number of non-
overlapping fragments of length L were randomly sub-
sampled from the prokaryotic genomes. Fragments were
generated for virus genomes discovered before 1 January
2014 and after 1 January 2014 and were separately used
as training and testing sets, respectively (Table 1). To
generate evaluation datasets containing 10, 50, and 90%
viral contigs, the number of viral contigs was set as in
Table 1 and was combined with 9 times more, equal
numbers, or 9-fold less randomly sampled host contigs,
respectively.
Highly represented host phyla (Actinobacteria,

Cyanobacteria, Firmicutes, Proteobacteria) and gen-
era (Mycobacterium, Escherichia, Pseudomonas,
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Staphylococcus, Bacillus, Vibrio, and Streptococcus)
were selected for the analyses where viruses infecting
these taxa were excluded from the training of Vir-
Finder. For evaluation of the different trained VirFinder
models, equal numbers of contigs of the excluded viruses
and all other viruses were selected and then combined
with randomly selected host contigs such that total virus
and host contigs were equal in number.
For the analysis of VirFinder trained with 14,722

prokaryotic genomes with or without proviruses re-
moved, these genomes were downloaded from the
database cited in [6]. Likewise, the positions of provi-
ruses predicted by VirSorter in these 14,722 genomes
were obtained from the published data of [6] and
were used to remove theses sequence from their cor-
responding host genomes.

The k-mer based machine learning prediction model
For a fragment sequence S, let N(w) be the number of
occurrences of the word w =w1w2…wk and its
complimentary word w , wi∈A≡ A;C;G;Tf g; i ¼ 1; 2;…;
k . For simplicity, we use word w to refer to the word
patterns w and its compliment w . We defined the se-
quence signatures as the normalized word frequencies,

V wð Þ ¼ N wð ÞX
w
N wð Þ

;w∈Ak . Duplicated word pairs were

removed as in [6, 39, 69]. For example, for k = 4, only
the 136 unique word pattern pairs are used. Based on se-
quence signatures, a binary classifier for identifying viral
sequences was built. The classifier was trained using the
training data and then was evaluated using the testing
data.
Given a training dataset composed of the same num-

ber of viral sequences and host sequences, we first used
t statistic to test for each word w if the mean word
frequency in viral sequences was significantly different
from that in host sequences. Note that V(w) were sub-

jected to the unit sum constraint
X

wV wð Þ ¼ 1 . To

overcome the problem of multicollinearity, we excluded
the word with the highest p value (the least significant
word). Then based on the selected words, we used the
logistic regression model to build a binary classifier. We
added a lasso regularization to make the model flexible
and let the data choose the model with the highest
accuracy.
Let S1, S2,…, Sn be n sequences. Let Yi = 1 if Si comes

from viral sequences and Yi = 0 if it is from host
sequences, and Vi(w) is the sequence signatures of
Si, i = 1,…, n. Then we model,

log P Y i¼1jV i wð Þð Þ
1−P Y i¼1jV i wð Þð Þ

� �
¼ P

w∈Ak β wð ÞV i wð Þ þ β0,

or in other words,

P Y i ¼ 1jV i wð Þð Þ ¼
exp

X
w∈Akβ wð ÞV i wð Þ þ β0

� �

1þ exp
X

w∈Akβ wð ÞV i wð Þ þ β0

� � :

Thus, the objective function is

− 1
n

X
i¼1

n
logl Y ijV i wð Þ; β wð Þ; β0

� �þ λ
X

w∈Ak β wð Þj j,

where l is the likelihood, β is estimated by minimizing
the objective function. We chose the parameter λ to
have the highest AUROC using 10-fold cross validation
on the training data. The R package “glmnet” was used
for the model training and testing [41]. ROCs were plot-
ted using R package “ROCR” [70] and AUC scores, and
its confidence interval were computed using R package
“pROC” [71].
In real metagenomic experiments, the assembled con-

tigs are of various lengths. In order to compare scores
from different prediction models, for each query contig,
a p value was computed by comparing the score with
the null distribution, that is, the distribution of scores of
the testing host contigs. The p value was computed as
the fraction of testing host contigs that have greater
scores than the score of the query sequence. To estimate
the false discovery rate (the proportion of predictions
that are hosts), we used R package “qvalue” [37, 38] to
estimate false discovery rates based on the p values.
Then each query contig was associated with a false dis-
covery rate, also known as the q value. The contigs were
sorted by q values from the smallest to the largest. Given
a threshold, the contigs with q values smaller than the
threshold were predicted as viral sequences, and the
largest q value among the predicted contigs gave the
estimation of the false discovery rate for the prediction.

Simulation studies on metagenomes
Metagenomic samples were simulated based on spe-
cies abundance profiles derived from a real human
gut metagenomic sample (accession ID SRR061166,
Platform: Illumina) from the Human Microbiome Pro-
ject (HMP) [72], commonly used for metagenomic
data analysis [73–76].
Following a similar simulation procedure as in [77],

we first mapped reads from sample SRR061166 using
bwa-0.7.15 [78] to 1562 virus and 2698 host complete
genome sequences downloaded from NCBI RefSeq to
generate abundance profiles. The reads from the sample
were first mapped to viral genomes and then the
remaining unmapped reads were mapped to the host
complete genomes using the command of “bwa mem”.
10% of reads mapped to viral genomes, consistent with
the range previously reported for human gut metagen-
omes (4–17% viral) [7]. The abundance profiles are
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provided in the Additional file 3: Table S3. Then we used
NeSSM [33] to simulate metagenomic samples with
pair-end short reads of length 150 bp in an Illumina
MiSeq setting mode based on the abundance profiles.
Ten and 20 million read samples were generated at 3
different mixtures of virus and prokaryotic sequences.
The relative abundance among viruses and among hosts
were kept the same and the virus and hosts reads were
mixed to make 10 (the native level in sample SRR061166
determined from mapping), 50, and 90% viral samples.
metaSPAdes [34, 35] was used to de-novo assemble the
simulated metagenome samples, using the command
“spades.py –meta”. Only contigs ≥500 bp were used for
the downstream analysis.
To obtain the true labels of the assembled contigs,

reads in the simulated data were mapped to the set of
contigs using “bwa mem”. A contig was labeled as a viral
contig if it was assembled from reads only from viral ge-
nomes; similarly, a contig was labeled as a host contig if
it was assembled from reads from host genomes. A con-
tig was labeled as chimeric if it was assembled from a
mixture of virus and host reads. To validate the predic-
tion, we plotted ROC (receiver operating characteristic)
curves at different ranges of contig lengths, 500–
1000 bp, 1000–3000 bp and ≥3000 bp. The ROC curves
were based on the predictions of viral contigs from
genomes sequenced after 1 January 2014 paired with the
same number of randomly sampled host contigs.

VirSorter settings
VirSorter was run in the “Viromes” mode on the same
sets of evaluation sequences as used for VirFinder.
VirSorter reported predicted viral sequences in three
categories: I for “most confident” predictions, II for
“likely” predictions, and III for “possible” predictions.

Assembly and analysis of human gut metagenomic
samples from liver cirrhosis study
The data from Qin et al. [36] contains two independent
datasets each of which contains Illumina 2 × 100 bp
paired read metagenomes of stool samples from both
healthy individuals and liver cirrhosis patients, all of
Han Chinese origin. These metagenomes were down-
loaded from the European Nucleotide Archive, accession
number ERP005860. The first dataset, referred to as the
“training set”, has 78 samples comprised of 40 samples
from 31 healthy patients and 38 samples from 25 liver
cirrhosis patients. The second dataset, referring to as the
“testing set”, has 230 samples comprised of 103 samples
from 83 healthy patients and 127 samples from 98 liver
cirrhosis patients.
Megahit [79] was used to cross-assemble the 78

sample training dataset using the default settings since
the 230 sample dataset was too large for assembly.

COCACOLA [39] was used to separately cluster viral
contigs predicted by VirFinder and VirSorter based on
sequence tetranucleotide frequencies and contig cover-
ages normalized by contig length and number of
mapped reads in samples. Contig coverages (RPKMs)
were determined by mapping sample reads with Bowtie2
[80] using the default settings and were averaged for
each bin. Averaged bin RPKMs were used to train a
classification model to classify the disease status (0 for
healthy and 1 for liver cirrhosis). A logistic regression
model with lasso regularization was used in order to en-
hance the prediction accuracy and interpretability. Thus,
a subset of viral bins was chosen to achieve the best pre-
diction accuracy. To assess the classification model, the
average RPKM of bins in the second dataset with 230
samples were used to test the classification model, and
ROC curves were used for evaluation. Two-way hier-
archical clustering was performed using the average
RPKM coverages of the 116 VirFinder contig bins using
all 78 training set samples and 78 samples randomly
selected from the 230 sample testing dataset. Distances
were computed using Euclidean distance and were clus-
tered with complete linkage method in R.
Blast analyses were used to assess if predicted viral

contigs assembled from the cirrhosis study samples had
similarity to previously reported sequences. Blastn and
blastp searches were performed with default settings
against NCBI’s non-redundant nucleotide (nt) and pro-
tein (nr) databases from August 2016. Protein sequences
were predicted for each contig using Prodigal [81, 82]
with the “meta” procedure (−p meta). The best hits for
each contig (nucleotide) or each predicted protein on
the contigs were retained. Resulting proteins in the nr
databases were called as viral if they came from a virus
(recorded in their taxonomy) or had one of the following
terms in their definition lines: virus, phage, capsid, tail,
head, or terminase. Proteins were also searched against
Pfam domains via the webserver at http://pfam.xfa-
m.org/. Resulting domains were considered viral if their
description contained one of the following terms: virus,
phage, capsid, tail, head, tape, terminase, Gpnn (where n
are digits), “podo”, or “sipho”.
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