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The scales at which ecosystems are observed play a critical role 
in shaping our understanding of their structure and func-
tion1–3. Ecological patterns emerge from temporal and spa-

tial domains that may be coarser or finer than the processes that 
shape them, which means that investigation across multiple scales 
is essential for understanding ecological phenomena1,4. This aware-
ness has grown rapidly since the 1980s5, accelerated by the need to 
understand how changes in the global climate, ocean and land sys-
tems are affecting everything from individual populations6 to entire 
biomes7, while technological advances in areas such as remote sens-
ing and genetics are making it ever-easier to quantify ecological fea-
tures across a broad and increasing range of scales2,5.

Given the growing awareness of scale, expanding data-gathering 
capabilities and the fact that the most comprehensive (and arguably 
best-known) meta-analyses8,9 of ecological research scales were pub-
lished nearly 30 years ago (but see refs 4,10 for more recent reviews), 
it is both timely and important to assess the scales of contemporary 
ecological investigation. To address this need, we quantified the 
spatial and temporal domains of empirical observations that were 
reported within recently (2004–2014) published ecological stud-
ies. We define domain as the distribution of observations within 
the spectrum of one or more scale dimensions (note: this defini-
tion differs from the ‘domain of scale’3, which is 'a portion of the 
scale spectrum within which process–pattern relationships are con-
sistent regardless of scale’), and empirical observations as ecologi-
cal observations collected under uncontrolled or non-manipulated 
conditions. Empirical observations are critical for developing and 
testing the models that explain why ecological patterns vary in time 
and space1,8; therefore, the spatio-temporal domains of observations  

provide an important indicator of the field’s progress towards 
achieving a holistic, predictive understanding of ecosystems1,2.

Our study focused on two dimensions of spatial scale (that is, res-
olution (grain) and extent) and two of temporal scale (that is, inter-
val and duration) (Table 1). We analysed the observational domains 
within each of these four dimensions and between pairs of these 
dimensions. We also assessed two additional dimensions—actual 
extent (the summed area of spatial replicates) and actual duration 
(the summed observational time of temporal replicates)—which we 
used to evaluate how much the actual scales of observation (that is, 
how much space and time are covered by the measurement) dif-
fer from the scales they ostensibly represent. These differences may 
impact how effectively observations characterize ecological phe-
nomena. For one, an increasing gap between actual and ostensible 
observational scales implies greater interpolation or extrapolation 
of observed measurements, raising the odds of over-leveraging data. 
Furthermore, since natural systems are frequently complex, non-
linear and non-random11–13, a larger gap increases the likelihood 
of data challenges such as censoring (sensu14) as phenomena may 
resolve themselves in the space or time between replicates.

Results
We reviewed 348 papers randomly selected from 42,918 published 
between 2004 and 2014 in the top 30 ecology-themed journals. We 
extracted scale data from 378 observations of ‘natural’ (that is, non-
experimentally manipulated) ecological features reported within 
133 of the reviewed papers (plus an additional 62 cited as the source 
of observations). Most sampled observations were collected using 
conventional field methods (80%), followed by automated in situ 
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To understand ecological phenomena, it is necessary to observe their behaviour across multiple spatial and temporal scales. 
Since this need was first highlighted in the 1980s, technology has opened previously inaccessible scales to observation.  
To help to determine whether there have been corresponding changes in the scales observed by modern ecologists, we analysed 
the resolution, extent, interval and duration of observations (excluding experiments) in 348 studies that have been published 
between 2004 and 2014. We found that observational scales were generally narrow, because ecologists still primarily use 
conventional field techniques. In the spatial domain, most observations had resolutions ≤ 1 m2 and extents ≤ 10,000 ha. In the 
temporal domain, most observations were either unreplicated or infrequently repeated (> 1 month interval) and ≤ 1 year in dura-
tion. Compared with studies conducted before 2004, observational durations and resolutions appear largely unchanged, but 
intervals have become finer and extents larger. We also found a large gulf between the scales at which phenomena are actually 
observed and the scales those observations ostensibly represent, raising concerns about observational comprehensiveness. 
Furthermore, most studies did not clearly report scale, suggesting that it remains a minor concern. Ecologists can better under-
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sensing techniques (12.4%), remote sensing (6.9%) and palaeo-
reconstruction (< 0.8%).

Observational domains within individual dimensions. In terms of 
resolution, spatial replicates for most (67%) observations were ≤ 1 m2,  
24% were 1 m2 up to 1 ha, and 9% were > 1 ha (Fig. 1a). These distri-
butions primarily reflect those of field observations, the dominant 
observational methodology. Automated sensing and palaeo-recon-
struction observations had resolutions that were generally finer 
(85% or more ≤ 0.1 m2) than field observations (47% ≤ 0.1 m2), 
while most remote observations were much coarser (70% > 100 m2; 
Supplementary Fig. 1).

The extent of 19% of the observations was ≤ 10 ha, 23% cov-
ered 10–1,000 ha, 11% covered 1,000–10,000 ha, 19% covered 
10,000–100,000 ha, 12% covered 100,000–1,000,000 ha and 15% 
covered > 1,000,000 ha (Fig. 1b). As with resolution, the extent 
covered by automated sensing methods tended to be smaller (52%  
≤ 100 ha) than those of field observations (31% ≤ 100 ha), while 96% 
of remote and all palaeo-reconstruction observations covered areas 
> 10,000 ha.

In the temporal dimensions, 37% of observations were not 
repeated (Fig. 1c), 17% were repeated at short intervals (sub-second 
to daily), 20% were repeated at daily to monthly intervals, 18% were 
repeated at monthly to yearly intervals, 6% were repeated at yearly to 
decadal intervals and 2% were repeated at decadal or greater inter-
vals. Among temporally replicated observations (Supplementary 
Fig. 1), automated sensing had the finest intervals (61% ≤ 1 day and 
100% ≤ 1 year), followed by remote observation (37% ≤ 1 day and 
78% ≤ 1 year), field methods (17% ≤ 1 day and 86% ≤ 1 year) and 
palaeo-reconstructions (21% ≤ 1 decade).

The duration was ≤ 1 day for 31% of the sampled observations 
(due to lack of temporal replication), while 10% covered 1 day to 
1 month, 23% covered 1 month to 1 year, 27% covered 1–10 years 
and 9% covered > 1 decade (Fig. 1d). Palaeo-reconstructions  
naturally had the longest duration (67% > 1 decade), while only  
∼ 40% of field, automated and remote observations had durations 
exceeding 1 year.

Observational domains within two dimensions. Contrasting 
resolution with interval revealed that most temporally replicated 
observations had resolutions of 10 cm2 to 1 m2 and were revisited 
at daily to yearly intervals (Fig. 2a). A less dense, oblong concen-
tration of observations bounded on the upper left by monthly to 
yearly observations at 100 m2 resolution and on the lower right by 
near-daily to monthly observations with 1–10 ha resolution is also 
evident. The four observational methods had substantially differ-
ent domains, as indicated by the locations of their median values  

(see Supplementary Fig. 2): the median domain of field observa-
tions had 0.1–1 m2 resolution and a monthly interval, whereas 
remote observations had a coarser median resolution (1,000 m2) but 
finer median interval (∼ 1 day). Palaeo-reconstructions and auto-
mated sensing were both finely resolved (median between 10 cm2 
and 0.01 m2), but automated approaches had an hourly to daily 
median interval compared with a multi-decadal interval for palaeo-
reconstructions.

Comparing the interval and duration of temporally replicated 
observations showed that most observations had daily to decadal 
intervals and durations of one month to one decade (Fig. 2b). 
Interval appears to increase with duration; observations lasting one 
month to one year tend to have daily to monthly intervals, while 
those lasting one year to one decade tend to have yearly to decadal 
intervals. This tendency is reflected in the domain medians of the 
primary observational methods: automated sensing had the finest 
median interval (hour–day) and shortest duration (month–year), 
followed by remote sensing (~1 day and 1 year, respectively), field 
observations (1 month and ~1 year, respectively) and finally palaeo-
reconstructions (1 decade and millennium, respectively).

Contrasting the two spatial dimensions shows a primary con-
centration of observations of 10 cm2 to nearly 100 m2 resolution 
with extents ranging between ∼ 1,000 and 1,000,000 ha (Fig. 2c). 
Another prominent concentration consists of higher-resolution 
(1 cm2 to 1 m2), smaller-extent (10–1,000 ha) observations, beneath 
which lies a third, fainter concentration of 1–1,000 cm2 resolution 
and 1,000 m2 to < 10 ha extent. These three concentrations suggest 
that observational extent increases with resolution, which is fur-
ther evident in the median domain values (and kernel densities; 
Supplementary Fig. 2) of automated (0.01 m2 resolution, 100 ha 
extent), field (0.1–1 m2 resolution, 1,000–10,000 ha extent) and 
remote (1,000 m2 resolution, 1–10 million ha extent) observations. 
Palaeo-reconstructions were the exception, having very fine median 
resolution (0.01 m2) but large extent (1 million ha)—a possible arte-
fact of small sample size.

There are two primary observational domains within the con-
trast between duration and extent. The first consists of observations  
lasting 1 month to 1 decade with extents of 10–1,000 ha, while the 
second is defined by observations of 1 year to several decades that 
cover 10,000–1,000,000 ha (Fig. 2d). Three other notable but lesser 
concentrations are also evident, including small-area observations 
(0.1–1 ha) covering 1 month to 1 decade, and short-duration, tem-
porally unreplicated observations (≤ 1 day) of either 1–100 ha or 
10,000–1,000,000 ha. The median observation from automated 
sensing (1 year duration, 100 ha extent) lies near the centre of the 
first major concentration, while the median extents of field (1,000–
10,000 ha) and remote (1–10 million ha) observations bound the 
second major concentration at its upper and lower extents, with 
the median duration of both observational types falling between 
1 month and 1 year.

Differences between actual and ostensible scales. Observational 
extent was on average 5.6 orders of magnitude larger than actual 
extent (Fig. 3a). This difference increased with extent, reaching a 
maximum of 8.3 between 100 million and 1 billion ha of extent, then 
falling to 3 orders of magnitude between 1 and 10 billion ha (these 
extents comprised < 2% of observations, which were primarily col-
lected with remote sensing). Remote observations had the smallest 
mean difference magnitude (1.9), compared with ≥ 5.7 for the other 
three methods (Supplementary Fig. 3).

The difference magnitudes between observational duration and 
actual duration were somewhat smaller, averaging 3.4 and ranging 
from ~2 for the shortest durations (hour–day) to > 4 for observa-
tions lasting 1 decade to 1 century (Fig. 3b). As with extent, the 
difference fell substantially for the longest durations (century to mil-
lennia), as these domains were covered by palaeo-reconstructions  

Table 1 | Scale dimensions of ecological observations assessed 
in this meta-analysis

Component units Description

Spatial Resolution m2 Area of an individual spatial 
replicate (for example, plot)

Extent ha Area encompassed by all spatial 
replicates

Actual extent ha Summed area of all spatial 
replicates

Temporal Interval days Time elapsed between successive 
temporal replicates

Duration days Time elapsed between first and last 
temporal replicates

Actual duration days Summed observational time of all 
temporal replicates
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(Supplementary Fig. 3), which show little difference between actual 
and ostensible duration because coring techniques capture con-
tinuous temporal records. The mean difference magnitudes for the 
other three observational methods ranged from just over 3 (field 
and automated sensing) to nearly 6 (remote observations).

Potential biases and uncertainties in quantifying scales. Our 
results were potentially influenced by several methodological issues. 
First, most studies did not precisely report observational scales, thus 
we had to estimate, rather than simply record, scale values for most 
observations (we estimated 63, 60, 69, 36, 64 and 83% of resolution, 
extent, actual extent, interval, duration and actual duration values, 
respectively). Estimation errors may therefore have biased our find-
ings. We attempted to quantify and account for this error by assess-
ing between-observer variability and incorporating this uncertainty 
into our resampling methodology (Supplementary Results). The 
resulting confidence intervals (Fig. 1) suggest that estimation errors 
did not unduly influence our findings.

Our scale-estimation protocols may also have introduced bias—
particularly our protocol for estimating resolution (the smallest 
areal unit of complete measurement). We selected this definition 

for the sake of consistency, but some papers reported resolution 
as a larger area in which sub-samples were taken. For these, our 
estimates were finer than what the studies’ authors considered to 
be the resolution. Our results would also be somewhat different 
if we had included observations from experiments. For exam-
ple, average resolution and duration would probably be finer8,9. 
Additionally, the token one second (Supplemental Methods) we 
used to represent the duration of remotely sensed temporal repli-
cates (which are effectively instantaneous) caused us to underesti-
mate the differences between their durations and actual durations 
(Supplementary Fig. 3). However, the relatively small number of 
remote observations suggests that the impact of this bias on our 
overall findings was negligible.

It is also possible that our findings misrepresent observational 
domains because of sampling error. Although we randomized our 
sample to ensure representativeness, we reviewed just 0.8% of the 
papers published during our study period. Our sample may there-
fore under- or over-represent observational coverage in certain 
domains, particularly for specific methods. This possibility is great-
est for palaeo-reconstructions, where the small sample size prob-
ably resulted in an overestimate of typical observational extent  
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Fig. 1 | observational domains within individual dimensions. a–d, Histograms of the resolution (a), extent (b), interval (c) and duration (d) of 
observations collected from the surveyed ecological studies. Bars represent the average percentages for each bin realized after 1,000 perturbed resamples, 
while the grey error bars indicate 95% confidence intervals. The bar widths in c and d indicate differences in scale between the x axis labels. The grey 
vertical line in d indicates that the majority (> 95%) of observations of ≤ 1 day duration were temporally unreplicated. kyr, thousand years.
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(for example, Fig. 2b,c; however, the interval and duration values are 
probably more representative).

Finally, our omission of papers published after 2014 could also 
have biased our findings. Although our sample size was too small 
to assign statistical significance, we found a possible positive trend 
in the use of remote observations and a corresponding decline 
in field observations over the course of our study period. If these 
trends were not spurious, they suggest that including studies from  
2015–2017 would result in a somewhat larger relative sample of 
remote observations, which could slightly increase the mean obser-
vational extent (see Supplementary Results).

Discussion
Our results suggest that modern ecology’s observational domains 
are fairly narrow and that ecologists still primarily rely on con-
ventional field-based observational techniques. In the spa-
tial dimensions, most observations have resolutions ≤ 1 m2 and 
extents ≤ 10,000 ha (Fig. 1a,b). In the temporal dimensions, most 
observations are either unreplicated or relatively infrequent (> 1  
month interval; Fig. 1c), and have relatively short durations  
(≤ 1 year; Fig. 1d).

Contrasting observational dimensions reveals that larger extents 
are associated with larger spatial replicates (Fig. 2c), while longer 
durations are associated with longer intervals (Fig. 2b). The latter  

association reflects a cost-imposed tradeoff between sampling fre-
quency and temporal duration that is characteristic of field obser-
vations, but also appears to affect the other three methods, as 
evidenced by their relative domain locations. A similar tradeoff is 
illustrated by the inverse relationship between resolution and inter-
val (Fig. 2a), which primarily relates to field observations, where 
larger spatial replicates demand greater effort, reducing sampling 
frequency9. Less obvious is the opposite tradeoff that affects remote 
observation (Supplementary Fig. 2), where finer resolution (neces-
sary for detail) typically necessitates longer intervals15.

As a result of these tradeoffs, there are several notable obser-
vational gaps, specifically within the domains defined by high-
frequency (daily to sub-daily intervals) observations with high to 
moderate resolutions (> 1 m2 to 100 ha; Fig. 2a) and decadal or lon-
ger durations (Fig. 2b). Another gap is evident in the high-to-mod-
erate-resolution, large-extent (1 million to 10 billion ha) domain 
(Fig. 2c).

Have these domains changed since the seminal papers on scale 
first appeared in the late 1980s?1,3,8 A comprehensive answer would 
require a similar analysis focused on earlier literature, but the data 
provided by three previous studies provide partial insight. The first 
dataset consists of duration values that ref. 8 extracted from 623 stud-
ies published in Ecology between 1977 and 1987. The mean dura-
tion of the most comparable subset of those values (n =  419) was 
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3.6 years, versus 3.3 years in our sample (or 5.1 year when exclud-
ing temporally unreplicated observations). The second dataset  
is found in ref. 9, which assessed the resolutions of 97 community 
ecology experiments published in Ecology between 1980 and 1986. 
The average of those (12,657 m2) was substantially smaller than the 
mean of our sample (1,479,465 m2), but comparing the eightieth 
percentile value (197 m2) in ref. 9 with ours (115 m2) shows that most 
contemporary observations are finer-grained than most 1980s-era 
experiments. Ref. 10 provides the third dataset, which compares the 
extent and interval of 25 studies published in 2003–2004 in Ecology. 
The mean interval was 178 days, compared with 684 days in our 
sample, but the eightieth percentile value in our study was 169 days 
compared with 329 days in theirs. Extent in our sample was sub-
stantially larger according to multiple summary statistics, including 
the mean (368,403 ha versus 114,965,072 ha in our study), median 
(9 ha versus 5,051 ha) and ninetieth percentile (136,000 ha versus 
46,424,808 ha; this value is smaller than the mean, which is skewed 
by a small number of very-large-extent observations).

Although limited due to methodological differences (for exam-
ple, a focus on experiments versus unmanipulated systems), these 
comparisons suggest that the duration and resolution of ecological 
observations have changed little in the past 30 years, but observa-
tional frequency and extent have both increased. A weak positive 
trend in our data also suggests that the mean extent of ecologi-
cal observations is steadily increasing (Supplementary Fig. 5), 
which probably corresponds to increasing use of remote sensing 
(Supplementary Fig. 4).

Despite this apparent increase in observational extent, there 
remains a large gulf between the areas that ecologists actually 
observe and the areas their observations are intended to represent 
(Fig. 3a). A substantial discrepancy also exists between the amount 
of time spent observing phenomena and the time spans those obser-
vations theoretically represent (Fig. 3b). These differences between 
the actual and ostensible scales of observation have implications 
for ecological understanding, as the unobserved portions of space 
and time may contain important patterns and processes that are 
not captured by replicates, due to phenomenon-dependent factors  

such as autocorrelation and representativeness of the sampling 
scheme16–20. Brief, infrequent snapshots, or fine-grained, spatially 
sparse replicates, may be sufficient to characterize many phenom-
ena (for example, annual changes in tree cover are well-represented 
by low-frequency satellite imaging21), but may be inadequate for 
more dynamic phenomena. For example, wildfire extent and dura-
tion can be mapped by daily return satellites22,23, but the instan-
taneous nature of the imaging means that they cannot be used to 
observe fire behaviour24. To capture such behaviour, long periods 
of continuous observation may be more important than frequent 
repeats for understanding the dynamics.

It is therefore important to examine whether the scales of 
the phenomena being observed are adequately captured by the 
design of replicates. Our methods suggest one possible proce-
dure for assessing the scale representativeness of observations, 
which is to (1) calculate the autocorrelation (spatial or temporal) 
within the observations (for example, using a semi-variogram), 
(2) find the threshold distance (or time) below which a suit-
ably strong correlation (for example, r =  0.7) will exist between 
neighbouring sampled values, (3) add that distance (or time) to 
the sample resolution (or duration) and (4) recalculate actual 
extent (or duration) using the adjusted resolution (or sampling 
duration). The difference between this autocorrelation-adjusted 
actual extent (or actual duration) and extent (or duration) may 
provide a useful additional measure of how well the replicates 
represent the intended scale of observation. Although increas-
ing spatial or temporal coverage may not always be the goal of 
a study, if the gap between actual and ostensible values remains 
large, alternative sampling methods may be used to close it. For 
example, remote sensing provides wall-to-wall spatial coverage 
of a study area, erasing the difference between actual extent and 
extent. Furthermore, the interval of high-resolution imaging 
(higher resolution is preferred in images as it allows individual 
features to be better discerned25,26) is now approaching daily to 
sub-daily scales27,28, allowing improved representation of spatial 
and temporal dynamics. For phenomena that cannot be measured 
from space—either because they are not visible or because they 
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Fig. 3 | The magnitudes of the difference between actual and ostensible scales. a,b, Difference between extent and actual extent (the summed area of 
spatial replicates) (a), and duration and actual duration (the summed sampling duration across temporal replicates) (b). Difference values are expressed 
in terms of how many orders of magnitude larger (longer) extent (duration) is than actual extent (actual duration), and are summarized (as box plots, with 
the circle in the box representing the mean and the line the median) in bins representing the increasing scales of extent (duration). The percentages of 
observations falling within each bin are indicated by the colour of the interquartile and the numerical value above the upper whisker.
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require continuous observation—new approaches for collecting 
in situ or near-surface observations (for example, low-cost wire-
less sensors10,29,30, citizen observers31 and autonomous vehicles32) 
can be used to increase the spatial and temporal coverage of  
observations.

The aforementioned insights regarding modern observational 
domains must be tempered by the uncertainty within our own 
scale estimates, as detailed above. However, most of this uncer-
tainty is attributable to unclear reporting of scale values in the 
majority of papers we reviewed (a problem also noted in geog-
raphy studies33). This tendency towards vague documentation 
offers one final insight: despite decades of accumulated knowl-
edge regarding its importance1–3,34, scale appears to remain a low 
priority throughout much of the ecological discipline. Beyond 
contributing to the broader problem of scientific reproducibil-
ity35, inattentiveness to scale increases the risk that observations 
inadequately represent the phenomenon of interest, thereby limit-
ing the generalizability of any derived ecological knowledge3,33,34. 
To mitigate this problem, we recommend that ecological journals 
require authors to quantify and clearly report the values of reso-
lution, extent, interval and duration. Fortunately, some journals 
already appear to be implementing such policies. For example, 
Global Ecology and Biogeography now requires information on 
the spatial, temporal and taxonomic scale of studies to be in the 
abstract (a policy adopted in early 2016).

Looking forwards. Our study suggests that the concept of scale 
has yet to fully permeate the discipline of ecology. Evidence for this 
assertion lies in the continued narrowness of ecology’s observa-
tional scale domains and the poor documentation of scale dimen-
sions in the literature. However, the increasing extent of ecological 
observations, enabled by remote sensing and presumably motivated 
by many ecologists’ appreciation of scale-related issues, suggests 
that ecology’s scale domains are gradually changing. In the coming 
years, the accelerating gains in technology and analytical methods 
will allow researchers new and unprecedented capabilities to peer 
into, and thus close, the prominent holes in observational domains. 
A renewed, discipline-wide focus on scale’s importance, including 
the adoption of stricter scale-reporting standards by journals, will 
help to spur ecologists to address these gaps, while fostering the 
improved transferability of knowledge within the discipline.

Methods
Paper selection and review. We used the 2012 Web of Science impact factors to 
select the 30 highest-ranked ecology-themed journals that published studies with 
an observational component, excluding journals devoted to reviews, meta-analyses, 
or laboratory, cellular or experimental studies. To select a representative sample of 
recent ecology studies, we downloaded the metadata for all papers published in the 
selected journals (Supplementary Table 1) between 2004 and 2014. 

Our study involved 6 different observers (those reviewing the papers to extract 
the observational scales), each of whom was given a randomly selected batch of 
500 titles. A separate set of 20 papers was also randomly selected and given to all 
observers to review independently. This was to (1) calibrate the interpretations 
and extraction of scale-related information between observers and (2) estimate 
between-observer variance.

Each observer first reviewed the papers in the calibration set and then 
commenced reviewing papers in their individual random draws, beginning at the top 
of the list and then proceeding until at least 20 eligible papers describing ecological 
observations were reviewed. In cases where the reviewed papers used observations 
that were described in another publication, we reviewed those source papers to 
extract the observational dimensions. We excluded papers that were opinion or 
perspectives pieces (unless they presented or used existing observational data), or 
theoretical studies based on generated data. We also did not collect scale information 
from papers (or the relevant parts of papers) describing experimental manipulations 
because experiments tend to be of limited extent, duration and resolution due to their 
higher logistical costs8,9. Including data from experiments would therefore probably 
have biased our findings towards finer scales, while minimizing the impact that new 
observing methods (for example, satellite imaging and wireless sensing) may have 
had in expanding the scales of ecological investigation10,36,37. A bibliography of the 
reviewed papers appears in the Supplementary Information.

Estimating observational scales. We recorded six primary dimensions of 
ecological observations—three related to space and three related to time. The 
space-related dimensions were resolution, extent and actual extent. Here, extent 
was primarily defined as the area falling within a perimeter defined by the 
outermost spatial replicates, while actual extent was the summed area of all spatial 
replicates (that is, N ×  resolution, where N is the number of spatial replicates, 
which we also recorded), or the area that ecologists observe in practice. In assessing 
spatial scales, our analysis only considered the Cartesian plane; we did not calculate 
the z (or depth) dimension, although this dimension is of greater importance for 
certain sub-disciplines of ecology (for example, depth profiles in marine ecology). 
In some cases (primarily palaeoecological studies), values extracted from the z 
dimension provided temporal information that was used to calculate both the 
interval and the duration of the observation.

For time dimensions, we extracted information related to the observational 
interval, duration and actual duration. Duration was defined as the time between 
the first and last temporal replicate, whereas actual duration quantifies the amount 
of time spent observing a particular location, which we calculated by multiplying 
the sampling duration (the time spent collecting a single temporal replicate) by the 
number of temporal replicates.

A full definition of all dimensions and how they were recorded is contained 
within a list of frequently asked questions (see Supplementary Methods), which 
was provided to each observer for initial study and reference, and adapted as 
necessary during the course of the study to ensure methodological consistency.

To account for potential differences in scales related to methodology, we 
classified each observation according to the following broad categories: field 
methods (manual in situ data collection), automated (in situ) sensing, remote 
sensing/other geographic data (hereafter remote observations) and palaeo-
reconstruction approaches. We also recorded when observations were reported in 
any study with an unclear or missing scale value.

Calibration and consistency. Most studies did not explicitly report values for 
all the assessed scales, and thus interpretation and judgement had to be applied 
to develop reasonable estimates for their values. The frequently asked questions 
(Supplementary Methods) provided the protocol we followed, and were initially 
developed following consultation between observers before reviewing commenced. 
We conducted an iterative process of calibration to ensure consistency and 
reliability of the estimates. First, we used the calibration set to calculate between-
observer variability with respect to paper selection/rejection and the estimation of 
scales. Based on this, the lead author reviewed individual records in each observer’s 
calibration set, flagged values where the estimation procedure departed from the 
protocol and returned these to observers for re-estimation without providing 
an estimate of the actual value. Instead, the relevant section of the protocol was 
highlighted, and further explanation and clarifying discussion were undertaken 
as needed. The protocol language was adjusted for clarity during this process, and 
new items were added to cover circumstances that had not been addressed by the 
initial version. The variability measures were recalculated after each iteration.

To ensure consistency within the main analysis, the lead author also reviewed 
each observer’s results from their individual draw of papers and flagged values that 
appeared to deviate from the protocol for re-review by the observer. Revised values 
were re-inspected, and in some cases a secondary review of particular papers was 
undertaken to cross-check the estimated scales.

Scale-estimation uncertainty. Two major and related sources of uncertainty 
affected our estimation of observational scales: (1) unclear documentation of 
observational scales in the reviewed studies; and (2) variation between observers 
in estimating observational scales (largely in cases where scales were not explicitly 
reported). To account for these uncertainties, we first quantified the between-
observer variability in scale estimates (expressed as the coefficient of variation), 
which was constructed from each observer’s final reported calibration set results. 
We then used the coefficients of variation for each dimension as the basis for 
randomly perturbing—over the course of 1,000 iterations—the scale values for 
each of the sampled observations. For each observational dimension at each 
iteration, we perturbed its observer-estimated scale value by: (1) randomly 
selecting (from a uniform distribution) a percentage value p that fell between 
100 +  y and 100 −  y (where y was the dimension-specific coefficient of variation, 
expressed as a percentage) and (2) multiplying the scale value by the corresponding 
proportion (p / 100). The perturbation occasionally resulted in physically 
impossible values (for example, interval or actual duration longer than duration, or 
actual extent larger than extent). In these cases, we capped the perturbed value in 
the smaller of the two dimensions (that is, resolution or interval) so that it equalled 
the corresponding value in the largest (that is, extent or duration). We used the 
resulting set of perturbed observations to quantify uncertainty within our scale 
estimates.

In addition to the scale-estimation coefficient of variation, we also examined 
how well observers agreed regarding paper inclusion/exclusion, and how many 
extractable observations there were per included paper (see Supplementary Results).

Analyses. To characterize the scale domains of observations, we first log-
transformed (base-10) the scale values within the 1,000 member perturbed 
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ensemble to account for the large range in values. To examine the distributions of 
observational scales within individual dimensions (Fig. 1), we first constructed 
relative frequency histograms for each of the 1,000 transformed ensemble members 
for each dimension and then plotted the bin means across all members, as well 
as the upper and lower 2.5th percentile values for each bin. This produced a 
histogram of observational scales within each dimension that accounted for scale-
estimation uncertainty.

To evaluate the distributions of observations within two scale dimensions 
(Fig. 2), we used the splancs package38 of R39 to calculate a kernel density estimate 
of the log-transformed values across all ensemble members, using a bandwidth 
of 1 on a 0.1 resolution image to provide a smoothed result that served to more 
effectively highlight domains in which ecological observations were concentrated. 
Bandwidths of varying resolutions were tested on kernel density estimates of 
sampling interval versus plot resolution to test how sensitive our results were to the 
bandwidth value (see Supplementary Results). For comparisons involving interval, 
we removed temporally unreplicated observations because these lacked interval 
values.

To compare the differences between actual extent and extent and actual 
duration and duration (Fig. 3), we calculated the magnitude of difference (decade) 
between each pair as:

= − =x y x
y

decade log log log10 10 10

Where x is either extent or duration and y is actual extent or actual duration, 
respectively. We then evaluated how the magnitudes of difference varied with 
increasing values of extent/duration, using box plots to summarize decades 
within the same bins used to summarize the frequency distributions of the extent 
and duration of observations (Fig. 1b,d). Decades were calculated for each pair 
for all bootstrap replicates. We plotted the box plots against their corresponding 
bin means to evaluate how these differences varied with scale (Fig. 3).

Trends in methods and scale. To evaluate the potential impact that excluding 
studies from 2015–2017 would have on our findings, we analysed the trends in 
(1) ecological observing methods and (2) typical scales of ecological observations 
over the 10 year period. To undertake the former assessment, we calculated the 
percentage of observations made using remote sensing, general field methods and 
automated in situ methods, and fit a linear regression between these percentages 
and the publication year, weighting the regression by the total number of 
observations in each year. For the second analysis, we applied the same regression 
approach to the four primary dimensions (resolution, extent, interval and 
duration) to assess whether there were any trends in observational scales.

The regressions and resulting code for trend extrapolations can be found in 
the ‘additional analyses’ vignette in the accompanying R package/code repository 
(available at https://github.com/agroimpacts/ecoscales).

Extracting and analysing data from earlier meta-analyses. To compare the 
results of our analysis with the observational scales of earlier ecological studies, we 
used graph capture software (https://automeris.io/WebPlotDigitizer/) to extract the 
data values from figure 6.1 of ref. 8, figure 1 of ref. 9 and figure 2 of ref. 10.  
To maintain as much comparability as possible with our inclusion criteria, we 
excluded experimental studies in the data from ref. 8, as well as the values of any 
studies exceeding 100 years’ duration (no upper time bound was provided for 
these), leaving duration values for 419 (out of 623) studies. Since ref. 8 presented 
duration values as a histogram, we calculated the mean duration across all studies 
as the weighted (by number of observations per bin) mean of bin centre-point 
values (that is, the weighted mean of the bin means). We also excluded 4 (of 29) 
observation values from the data in ref. 10 on observational extent and frequency, 
which, in contrast with the other 25, were not randomly selected. Ref. 10 also used 
irregular scales for both x (frequency) and y (extent) axes; therefore, we had to 
visually estimate the scale values for each data point after graphical extraction, 
and converted their extent values (in km) to hectares and their frequency values 
to intervals. Ref. 9 presented resolution as plot diameters (m), which we squared to 
make comparable to our resolution metric.

Calculations of scale values from these studies can be found in the ‘additional 
analyses’ vignette in the accompanying R package/code repository (available at 
https://github.com/agroimpacts/ecoscales).

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. The code supporting this manuscript is available online at 
https://github.com/agroimpacts/ecoscales.

Data availability. The data supporting this manuscript are available online at 
https://github.com/agroimpacts/ecoscales.
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The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

R and associated libraries. Full code and data will be released upon acceptance of 
paper for publication. 

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

N/A

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

N/A

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. N/A

b.  Describe the method of cell line authentication used. N/A

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

N/A

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

N/A

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

N/A

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

N/A
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