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ABSTRACT

Given the varying manifestations of climate change over time and the influence of climate perceptions

on adaptation, it is important to understand whether farmer perceptions match patterns of environmental

change from observational data. We use a combination of social and environmental data to understand

farmer perceptions related to rainy season onset. Household surveys were conducted with 1171 farmers

across Zambia at the end of the 2015/16 growing season eliciting their perceptions of historic changes in

rainy season onset and their heuristics about when rain onset occurs. We compare farmers’ perceptions

with satellite-gauge-derived rainfall data from the Climate Hazards Group Infrared Precipitation with

Station dataset and hyper-resolution soil moisture estimates from the HydroBlocks land surface model.

We find evidence of a cognitive bias, where farmers perceive the rains to be arriving later, although the

physical data do not wholly support this. We also find that farmers’ heuristics about rainy season onset

influence maize planting dates, a key determinant of maize yield and food security in sub-Saharan Africa.

Our findings suggest that policy makers should focus more on current climate variability than future

climate change.

1. Introduction

There is mounting evidence of climatic changes in sub-

Saharan Africa (SSA), including changes in average and

extreme temperatures, changes in rainfall amounts and

spatiotemporal patterns, and changes in the frequency

and intensity of extremeweather events [seeKotir (2011)

for a review]. In addition to the extreme variation in

rainfall from year to year, common in semiarid areas,

there has been a widespread trend toward more arid

conditions and a downward trend in rainfall at the

seasonal scale (Nicholson et al. 2018). Although there

is substantial uncertainty as to the impacts of climate

change on regional rainfall, the twomost recent generations

of global climate models project reduced spring rainfall

over southern Africa by 2100 under a business-as-usual

emissions scenario (Lazenby et al. 2018). This result,

along with widespread increases in dry spell length, was

more recently found by a regional climatemodel ensemble

that simulated the impacts of 1.58 and 28 of warming over

southern Africa (Maúre et al. 2018).

These climatic changes contribute to the riskiness of

farming and pose a threat to food security in developing

countries (Campbell et al. 2016; IPCC 2014; Schmidhuber

and Tubiello 2007), particularly for agrarian households

who rely on rainfall for agriculture (Jarvis et al. 2011).

The impacts of these changes on agriculture are expected

to fall most heavily on staple crops, such as maize, grown

in SSA’s marginal climatic regions (Lobell et al. 2011;

Rippke et al. 2016). Climate changes are expected to re-

duce maize yields by 15% and increase total crop loss by

3% in Zambia by 2055 (Jones and Thornton 2003). In the

hottest sites, 18 of warming is expected to lead to maize

yield losses exceeding 40% (Lobell et al. 2011).Corresponding author: Kurt B. Waldman, kbwaldma@iu.edu
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While smallholder farmers are particularly vulnera-

ble to climate change, there has been relatively little

empirical research about how they perceive climate

change or how their perceptions of climate change match

observational records and influence their agricultural de-

cisions. A growing body of literature documents small-

holder awareness of climate change (Grothmann and Patt

2005;Mertz et al. 2009; Nyanga et al. 2011). There are also

studies documenting the prevalence of smallholder ex

ante agricultural strategies to adapt to climatic change

such as water harvesting or changing to drought-resistant

crops (e.g., Eakin 2005; Smit and Skinner 2002; Thomas

et al. 2007; Mertz et al. 2009; Jarvis et al. 2011; Mercer

et al. 2012). A small but growing number of studies sug-

gest that smallholder perceptions of climate change are

not consistent with climate data (Sutcliffe et al. 2016;

Simelton et al. 2013; Rao et al. 2011; Osbahr et al. 2011),

highlighting the assertion that farmers’ behavior can be

shapedmore by their perceptions of climate change than

by the actual patterns of change (Adger et al. 2009).

Scholarship to date has relied on meteorological station

data to measure patterns of change, which has limited

spatial applicability, whereas we compare farmers’ per-

ceptions of climate variability with satellite-derived ob-

servational data at a national level.

Given the multidimensional nature of the concept

of climate, it is not easy to accurately identify changes

without extensive recording and processing of hydro-

climate data. Even with processing capability, interpre-

tation is often debated and can differ based on factors

such as political ideology (Weber 2010;Weber and Stern

2011). The same information can lead two people to

opposite conclusions about climate change based on

how they personally experience climate impacts (Howe

et al. 2015) or how they are economically impacted by

climate change (Hsiang et al. 2017). For example, peo-

ple’s attitudes about climate change are affected by

whether they locally experience unseasonably warm (or

cold) temperatures as opposed to milder temperatures

(Bohr 2017). There is evidence of intergenerational

changes in the perception of the state of the environ-

ment, suggesting that climate change perceptions can

vary based on formative experiences (Sáenz-Arroyo

et al. 2005). This literature highlights the importance of

understanding how individuals interpret climate events

or patterns when trying to understand the relationship of

climate perceptions with physical data.

Research has shown that people’s perceptions and

synthesis of climate information can be influenced by

psychological biases. A major development in the area

of understanding biases in decision-making was the

discovery of decision heuristics, or cognitive shortcuts

that people use to make decisions, often in situations

of uncertainty (Kahneman et al. 1982). One such ex-

ample is the ‘‘availability heuristic,’’ a psychological

mechanism where people evaluate the probability of

events by the ease with which they come to mind

(Tversky and Kahneman 1973). People judge more re-

cent or extreme environmental shocks and disturbances

as having a higher probability of occurrence (Morton

2007; Marx et al. 2007; Hertwig and Todd 2005). Per-

ceptions of climate change, therefore, may more accu-

rately reflect perceptions of recent weather events as

opposed to long-term climate trends (Zaval et al. 2014;

NRC 1999). Another heuristic example is that people

tend to underestimate large probabilities (Kahneman and

Tversky 1979) and thus underestimate their personal

exposure to risk from natural hazards such as extreme

weather events (Freeman and Kunreuther 2002). There

has been little research addressing climate-related per-

ceptions and, in particular, instances where smallholder

farmers may exhibit cognitive bias related to narratives

about climate trends. We address a key gap in the liter-

ature by matching rich empirical survey data on climate

perceptions from small-scale farmers with robust rainfall

estimates, typically used to assess regional patterns of

climate conditions. We further match perceptions with

soil moisture estimates, which are rarely, if ever, consid-

ered despite their greater importance for agriculture.

In this paper, we explore farmers’ perceptions about

rainy season onset related to the fundamental agricul-

tural decision of when to plant the staple maize crop.

There is a dearth of meteorological stations across

SSA and a lack of capacity in providing or receiving

weather information (Parker et al. 2011; Washington

et al. 2006), so farmers receive little geospatially rele-

vant weather information to aid decision-making. Hy-

droclimatological definitions of rainy season onset often

use a combination of several empirical rainfall thresh-

olds, involving consecutive days with minimum rainfall

amounts without a dry spell in the following days

(Boyard-Micheau et al. 2013). However, these defini-

tions do not reflect how farmers individually define rainy

season onset and thus are of limited help in under-

standing actual farm behavior. Our paper demonstrates

that rainy season onset is both a hydrometeorological

and a social concept. The best time to plant maize in a

rain-fed system is highly uncertain. Planting maize too

early, prior to consistent rainy season onset, can stunt

crop growth or lead to total crop failure, and the farmer

will incur the cost to replant. If farmers plant maize too

late, they do not maximize the full length of the growing

season and thus fail to achieve potential yield.

Farmers in sub-Saharan Africa face a fundamental

challenge in choosing the right seed and the right

planting date. Hybrid varieties have different maturity
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periods designed to fit with varying lengths of growing

seasons, and in many African countries, earlier-maturing

hybrid maize is heavily promoted through government

policies (Smale and Jayne 2003). Many parts of SSA are

characterized by a distinct wet and dry season, so most

farmers only have one chance per year to plant maize,

and thus the combination of seed choice and timing of

planting is crucial. Farmers are faced with a tradeoff

between minimizing weather-related risk by planting a

variety that will mature quickly and maximizing yield

by planting a later-maturing variety that will produce

more grain during the longer maturation period. Se-

lecting a seed variety that will perform well in a given

agroecological environment and choosing the optimal

sowing date is cognitively challenging and can have

very large differences in yield outcomes for farmers

(Akinnuoye-Adelabu and Modi 2017).

Agricultural subsidy programs, providing fertilizer

and often hybrid seed, are ubiquitous and politi-

cally popular in Africa, including in Ethiopia, Ghana,

Malawi, Nigeria, Tanzania, and Zambia (Mason and

Ricker-Gilbert 2013). In Zambia, new hybrid maize

varieties combined with subsidized credit for seed and

fertilizer led to a doubling ofmaize area during the 1970s

and 1980s (Smale et al. 2015) and near-universal adop-

tion in Zambia (Smale and Jayne 2003). Hybrid maize

varieties in Zambia are bred for a single predominant

characteristic: to mature earlier in the season. These

hybrids are characterized as very-early-, early-, and

medium-maturing varieties, and their potential yield

and price are inversely correlated with their length of

maturity. The current version of the support program

is the Farmer Input Support Program (FISP), which

originally distributed a single medium-maturing hy-

brid maize variety to all eligible farmers. In the last

decade, the program has gradually allowed farmers

greater choices of seeds, although poor information

exchange about varieties from seed companies and ag-

ricultural extension has resulted in ‘‘choice overload’’

for farmers (Waldman et al. 2017).

We examine farmers’ perceptions of rainy season

onset, using their heuristics, and compare these with

satellite-derived rainfall data and high-resolution soil

moisture estimates. We elicited heuristics farmers use

to determine both (i) rain onset and (ii) appropri-

ate planting time through household surveys across

Zambia. Farmers were asked to recall rain onset in

the previous four seasons and approximately a de-

cade ago [see the methods section (section 2) for more

detail]. Rainfall data are at 5-km daily resolution from

the Climate Hazards Group Infrared Precipitation

with Station (CHIRPS) dataset (Funk et al. 2015).

Soil moisture estimates are at a 1-km daily resolution

estimated using HydroBlocks, a hyper-resolution,

physically based land surface model (Chaney et al.

2016). We translated farmer heuristics into biophysi-

cal metrics that best represent those heuristics. For

farmers who expressed heuristics based on rainfall

duration or frequency, we used CHIRPS, and for

heuristics related to soil moisture amount, we used the

HydroBlocks model to determine a rain onset date. We

then compared the physically derived rain onset date

with farmer-recalled rain onset and their actual planting

dates during the 2015/16 season.

The following research questions guide our analysis:

1) Are smallholder farmers’ perceptions of climate vari-

ability consistent with observational records?

2) Is there evidence that farmer perceptions are cogni-

tively biased, and if so, what is the source of this bias?

3) Are heuristics about rainy season onset and planting

time associated with agricultural decisions, and if so,

does this alter how farmers can adapt to climate

variability?

We choose to frame the problem as a ‘‘cognitive bias’’

in the sense that we investigate whether there is a per-

ceptual distortion related to narratives about climate

change. We acknowledge that climate data are not

necessarily the ‘‘truth,’’ and farmers’ perceptions are not

necessarily right or wrong, but rather focus on whether

there is a systematic pattern to farmers’ perceptions of

rainy season onset.

These research questions are explored in Zambia, a

country in SSA that chronically struggles with food

insecurity and where drought events frequently result

in local- or even regional-scale crop failure. Our study

focuses on smallholder farmers in a region charac-

terized by strong rainfall seasonality and substantial

rainfall variability (see Figs. 3, 4, and 10). Zambia is

typical of savanna range countries, which are expected

to be the global center of agricultural development in

SSA in the next few decades (Estes et al. 2016).

2. Methods

a. Rainfall and maize production in Zambia

The majority of farming in Zambia is rain-fed agri-

cultural production with little possibility of irrigation.

The rainy season is unimodal and runs from October or

November until March or April. Mean annual rainfall

ranges from 500 to 1400mm annually, depending on

the location within Zambia. The map below (Fig. 1)

illustrates mean annual rainfall in Zambia from the pe-

riod 2000–16, showing annual rainfall as low as 500mm

in the south and as high as 1400mm in the north and

northwest of the country. Figures 2 and 3 illustrate the
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coefficient of variation of rainfall and the mean soil

moisture estimates over the same period.

There is a significant difference in rainfall patterns

within the country, defined by distinct precipitation

zones. Figure 1 displays three zones over the 2000–16

period constructed by tracing natural breaks in the

climatological data. The zones range from dry (zone

1: ,800mm annually) to intermediate (zone 2: 800–

1000mm annually) to wet (zone 3:.1000mm annually)

and are used in the proceeding analysis to disaggre-

gate the data for clearer comparison. These different

precipitation zones define the potential growing season

length. The respective season length in dry, intermedi-

ate, and wet zones is ,120, 120–150, and 150–190days,

respectively. These growing season lengths roughly ac-

commodate early-, medium-, and late-maturing hybrid

maize varieties, respectively. In addition to significant

variation in mean annual rainfall, there is significant

intra-annual variation in rainfall.While 500mmyr21 can

be a sufficient amount of rainfall for crop production,

high variation in the form of long dry periods or intense

weather events could translate into a poor growing

season or total crop loss. In other words, interannual

variability could be the difference between a very good

year and a famine.

Smallholder farmers comprise more than 95% of

farmers in the country of Zambia, cultivating fewer than

5 hectares of land, although the number of medium-size

farmers (cultivating between 5 and 20 hectares of land)

is increasing (Sitko and Jayne 2014). Maize is the dom-

inant staple crop in Zambia, grown by 82% of farm-

ing households and accounting for approximately 57%

of total caloric consumption (Sitko et al. 2011). Average

maize yields are approximately 2.2 t per hectare (1 t 5
;907 kg) in Zambia, approximately 20% of the average

yield in theUnited States (Purdy and Langemeier 2018).

b. Household perceptions of rainfall

Household-level surveys were conducted with 1171

farmers in June and July 2016, following the crop har-

vest. Survey questions focused on basic demographics;

socioeconomic indicators; production data from the

2015/16 season; and perceptions about rainfall onset,

drought probabilities, and precipitation uncertainty. We

sampled households in two districts in each of six prov-

inces as follows: Central (Mkushi, Mumbwa), Copperbelt

FIG. 1. Mean annual rainfall map of Zambia, 2000–16. Author derived estimate using CHIRPS

(Funk et al. 2015) and displays three zones over the 2000–16 period constructed by tracing natural

breaks in the climatological data. These rainfall zones range fromdry (zone 1:,800mmannually)

to intermediate (zone 2: 800–1000mm annually) to wet (zone 3: .1000mm annually).

372 WEATHER , CL IMATE , AND SOC IETY VOLUME 11

Brought to you by CLARK UNIVERSITY | Unauthenticated | Downloaded 04/26/23 02:11 PM UTC



(Mpongwe,Masaiti), Eastern (Lundazi, Petauke),Northern

(Mbala, Mungwi), Northwestern (Mufumbwe, Solwezi),

and Southern (Choma, Namwala). These districts span

all three precipitation zones.

Our sampling methodology involved identifying pri-

mary, secondary, and tertiary markets from the district

town in two directions and sampling households around

the tertiary markets. Primary markets are largely ag-

gregating markets in the district town, secondary mar-

kets are markets along main paved roads where vendors

travel to sell goods to people from other areas within the

district or camp, and tertiary markets are an assemblage

of vendor stands in rural areas accessed on foot by the

local community. Once we identified a tertiary market,

we sampled 30 households by walking along dirt paths or

roads from those markets in each direction and ran-

domly selecting households along the paths. The spatial

structure of the road network and household settlement

patterns varied across market locations. In general,

households were located within an 8km 3 8 km area

in each sampled market area. We followed the same

protocol but with a denser sampling ofmarket nodes and

households in Southern Province because of the smaller

area that falls within this precipitation zone. We chose

this sampling strategy as a way to ensure that we were

consistently selecting rural households in each district.

The central survey questions we used to character-

ize farmer perceptions of climate variability included

farmer recollection of when the rains arrived in previous

seasons and heuristics the farmer uses to determine (i)

rainy season onset and (ii) when to plant maize. We

asked farmers to recall when the rainy season arrived in

each of the last four growing seasons and about 10 years

ago. Based on informal interviews with farmers, we

were not confident farmers could reliably recall spe-

cific planting dates prior to four growing seasons ago.

Thus, when asking about rainy season onset from 10 years

ago, we emphasized that we were not asking about a

specific year and rather asked the farmer to think gen-

erally about the rains ‘‘around 10 years ago.’’ Farmers

generally were able to recall planting dates with a pre-

cision of a 1-week window, so predefined responses were

based on weekly intervals (first week of October, second

week of November, etc.). We also asked farmers a series

of structured questions related to heuristics about rainy

season onset. Response categories were developed

through informal interviews and field testing prior to

development of the structured surveys. We provided

respondents with four categories that consistently

emerged from the field testing and an open-ended cat-

egory to capture other responses. Farmers were asked to

only offer a single response.

FIG. 2. Coefficient of variation of annual rainfall, 2000–16. Scale is the coefficient of variation

(standard deviation/mean) in annual rainfall.
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In addition to these questions, we also asked farmers

about their perceptions of the likelihood of drought

occurring and their general perceptions of risk associ-

ated with drought and dry spells. The date, variety,

and quantity of each time a farmer planted maize

were also recorded. In the analysis, we included various

socioeconomic variables related to asset ownership.

We created an asset index based on the first princi-

pal component of a list of common household assets

owned by each household and divided it into quintiles.

This approach is similar to common approaches of

estimating asset ownership in areas where formal in-

come is not common (Filmer and Pritchett 2001).

We created a livestock index by converting livestock to

tropical livestock units (TLU). We used a weighting

formula to calculate TLU, according to index guide-

lines developed at the Food and Agriculture Organi-

zation (Jahnke et al. 1988).

c. Matching farmer perceptions and
observational data

Physical estimates use the best currently available

high-resolution gridded rainfall and soil moisture

hydrometeorological products. We use satellite-derived

rainfall from the CHIRPS dataset (Funk et al. 2015). This

dataset was selected given its quasi-global coverage

from 1981 to present with 5-km daily resolution. CHIRPS

combines satellite imagery and station data to create a

bias-corrected gridded rainfall time series for trend

analysis. The technique was developed to produce

precipitation maps for drought detection and environ-

mental monitoring in areas where there is a dearth of

surface data. Although rainfall station data are sparse

in developing countries, the CHIRPS dataset per-

forms better than coarser satellite-derived and gauge-

corrected rainfall products (Beck et al. 2017). The high

spatial resolution of CHIRPS captures rainfall spatial

variability and land heterogeneity (Musau et al. 2016),

which are important in this context given the ubiquity of

convective rainfall in this region and the finescale of

household-level perceptions.

The high-resolution 1-km daily soil moisture esti-

mates were derived with one of the latest-generation

land surface models: HydroBlocks. HydroBlocks is a

physically based hyper-resolution land surface model

based on the Noah-MP (Ek et al. 2003) vertical land

surface scheme applied to the concept of hydrologic

response units (HRUs). The HRUs represent areas

of similar hydrological behavior that are derived

by clustering high-resolution proxies of the drivers of

FIG. 3. Mean annual soil moisture, 2000–16. Soil moisture at 1-km resolution derived from the

HydroBlocks model in units of volume of water/volume of soil.
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spatial heterogeneity including soil properties, topog-

raphy, and land cover. At each time step, the land

surface scheme updates each HRU, and the HRUs

dynamically interact laterally via subsurface and sur-

face flow. HydroBlocks outperforms both satellite-

derived soil moisture and large-scale land surface

models when compared to in situ groundmeasurements

(Pan et al. 2016; Cai et al. 2017).

The hydrological processes were simulated at 3-hourly,

30-m resolution between 1980 and 2016.Weused 3-hourly,

5-km meteorological data (Princeton Global Forcing;

Sheffield et al. 2006); 30-m topography (SRTM; Farr

et al. 2007); 30-m Landsat-derived land-cover type

(GlobeLand; Chen et al. 2014); 250-m soil properties

(SoilGrids; Hengl et al. 2017); 30-m Landsat-derived

NDVI (USGS; Roy et al. 2010); and 30-m Landsat-

derived fraction of water, bare soil, and tree cover

(USGS; Hansen et al. 2013). The simulation ran for

120 h with 500 cores on the Princeton University

High-Performance Supercomputing facility. The soil

moisture output was upscaled to 1-km daily resolu-

tion to reduce data volume.

We obtained the coordinates of each interviewed

household following the household survey using a GPS

device. The household location was then overlaid on

the 5-km-resolution gridded rainfall data and 1-km-

resolution soil moisture data, allowing us to obtain a

precipitation and soil moisture history for each house-

hold. To harmonize the social and environmental data,

we translated farmer heuristics into hydrometeorologi-

cal physically based metrics to define the rain onset and

planting dates. This allowed us to interpret rainy season

onset using physical data in the same way that a farmer

perceives the onset of the rainy season. Thus, we used

the farmers’ reported heuristics as a guideline to define

these metrics, as well as to capture the uncertainties in

the environmentally based metrics. When farmers were

asked about how they decided when it was the start of

the rainy season, their answers ranged from after the first

day of heavy rainfall, after a few consecutive days of rain,

or when there is enough soil moisture to various other

natural signs related to cloud density and movement or

ecological indicators. We created rainfall- and soil-

moisture-based metrics for each of the three major re-

ported heuristics (details below). We did not create a

metric for the natural signs, given the lack of rainfall-

based translations.

To evaluate the degree to which farmers’ percep-

tions were consistent with the physical data of rainy

season onset, we compare farmers’ perceptions with the

physically estimated rainy season onset adjusted by

farmers’ heuristics. Using farmers’ own cognitive rules

for determining rainy season onset gives us a more

nuanced way to capture the subjectivity of the onset of

the rainy season. This approach allows us to control for

error related to the subjectivity of onset perception and

highlights the heterogeneity in these perceptions. Our

analytical approach is novel in that it goes beyondmuch

simpler approaches comparing perceptions with single

meteorological station records to attain a much finer-

scale measure of rainy season onset. In addition, rather

than simply using a standard metric for rainy season

onset, we use an approach that accounts for differences in

how people cognitively process rainy season onset.

The first day of heavy rain heuristic was translated

into a rainfall-based metric in which rainy season onset

was defined as the first day in which at least 10mm of

rain fell following the end of the dry season. To account

for uncertainties in this metric, we also tested alternative

versions using daily rainfall thresholds of 5 and 15mm

and include this range of uncertainty in the visual display

of data. Excluding amounts of precipitation less than

5mm omits what farmers often refer to as ‘‘false rains,’’

which are brief precipitation events that are not conse-

quential for crop production.

The few consecutive days of rain heuristic was trans-

lated to ametric wherein the rain onset was defined as the

last of at least 3 consecutive days during which rainfall

was greater than 1mmon each day. Since ‘‘a few days’’ of

rain is a vague definition, we include an uncertainty range

for this metric varying between 2 and 4days. This metric

focuses on rainfall duration.

The soil moisture heuristic for the start of the rainy

season was implemented based on the total available

water (TAW; Allen et al. 1998). A certain threshold of

TAW is the soil moisture level at which plants can easily

extract water from the soil, with unrestricted growth,

being neither waterlogged nor water stressed.We assume

this TAW threshold to be the soil moisture held between

field capacity and wilting point and use the date at which

70% TAW is first reached as the soil moisture heuristic,

with 25% uncertainty bounds above and below.

Table 1 summarizes the translation of the rainy sea-

son onset heuristics into physically based rainfall and

soil moisture metrics. Once the physically based metrics

were defined, we computed these for each household

TABLE 1. Farmers’ heuristics on the start of the rainy season and

rainfall-derived metrics.

Farmers’ heuristics

Rainfall-based metric with

confidence bounds

First day of heavy rain First day . 10 6 5mm

Few consecutive days of rain 3 consecutive days .1mm

rain 6 1 day

Soil moisture (0.70 6 0.25) 3 TAW
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location based on the heuristic they specified. We then

compared the density distribution of the physically

defined rainy season onset with the farmer’s stated

perception of rainy season onset for the following

growing seasons: 2015, 2014, 2013, 2012, and about

10 years ago (which is an average of the 2004–06 sea-

sons). Because of limitations in farmer recall, the per-

ceptions were reported based on the week of the year

(first week of October, second week of November,

etc.), so for practicality, we used the central day of the

given week, which presents some inconsistency in the

alignment of the social and environmental data.

3. Results and discussion

a. Farmer perceptions of rainfall

Farmers perceive that rains began earlier the farther

back in time they were asked to recall rainfall onset

dates (see Table 2). See Fig. 4 for a crop calendar

displaying the range of planting months and variability

in growing season length. On average, farmers per-

ceived that the rainy season onset during the 2015/16

growing season (2015 from here on) was 21.8 days later

than it was 10 years ago and approximately 12.6 days

later than it was during the 2012/13 season. The stan-

dard deviation in their responses also decreased with

recall, with the highest standard deviation occur-

ring in the previous season and the lowest occur-

ring approximately 10 years ago. This suggests that the

heterogeneity in farmer responses is trending toward a

mean as a result of cognitive bias. Additionally, the

number of people who were unable to recall rainy sea-

son onset increased with recall each year, except

for ‘‘about a decade ago’’ (;2005), when 98% of re-

spondents provided a rainy season onset date. While

farmers admittedly have difficulty recalling rainy season

onset two to four seasons ago, they nearly all have a

perception about a longer time horizon.

The different hydroclimate patterns across Zambia

create wide variation in rainy season onset among and

within the three rainfall zones. Despite these climatic

differences, trends in farmers’ perceptions are clear

across Zambia. To look more closely by precipitation

zone, we subdivided the data and plotted distributions

of the perceived rainy season onset. Figure 5 depicts

the distribution of farmers’ rain onset estimates by week

for each rainfall zone from dry (Fig. 2a) to intermediate

(Fig. 2b) to wet (Fig. 2c). Despite the differences in

rainfall seasonality among the zones, the same pattern of

farmers’ perceptions seen in Table 3 holds across all

three zones but is clearest in the driest zone (zone 1;

Fig. 5a). The more recent seasons have wider variation

in responses, with the 2015/16 season demonstrating the

widest variation and also the latest average onset. The

2014/15 season showed less spread and earlier peaks.

The relationship persists throughout the data to 10 years

ago, when farmers recall the rainy season onset to have

taken place during the last week of October. These data

depict a clear perception among farmers that rainy

season onset is getting later.

Figure 6 summarizes the difference between farmers’

perceptions of rainy season onset in the previous season

(2015/16) and about 10 years ago (;2005). The vast

majority of farmers (88%) perceive the rain onset to

be getting later over the last 10 years, indicated by a

positive difference between 2015/16 and;2005. Fewer

than 5% of farmers perceived the rains to be getting

earlier (negative value), and approximately 7% perceived

no difference in rain onset. On average, farmers per-

ceive the rains to be arriving 21.9 days (or about

3 weeks) later over the 10-yr period.

FIG. 4. Maize production calendar for Zambia.

TABLE 2. Date farmers perceived rainy season onset (all

observations).

Year Mean datea Std dev Obs (n) Response rate

2015 324.3 16.9 1172 100%

2014 319.6 15.3 1131 97%

2013 315.5 12.7 1037 88%

2012 311.7 12.3 1016 87%

;2005 302.5 10.1 1146 98%

a For comparison, farmer perceptions were converted from weeks

to the central date of the week expressed in Julian calendar days.

376 WEATHER , CL IMATE , AND SOC IETY VOLUME 11

Brought to you by CLARK UNIVERSITY | Unauthenticated | Downloaded 04/26/23 02:11 PM UTC



b. Perceptions and cognitive biases

To understand factors associated with the perceived

change in rainy season onset, we estimated a fixed ef-

fects regression model, where the dependent variable is

the difference between an individual farmer’s per-

ceptions of the change in rain onset from 10 years

ago and from the 2015/16 season (see Table 4 for

summary statistics of households). The fixed parameter

included is the district to roughly capture location-specific

effects such as the clustering of observations resulting

from similar rainfall patterns across space. As indepen-

dent variables, we included basic sociodemographic

variables such as age, gender, the number of maize

fields planted, a basic asset index, a livestock index,

the amount of income they derive off farm, and the

FIG. 6. Farmers’ perceived changes in the rainy season onset over

the last 10 years. Values to the right of zero indicate a positive

change in the onset week (rains later), while values to the left in-

dicate a negative change (rains earlier).

TABLE 3. Variables associated with the perception of later rainy

season onset. Note that *** indicates statistical significance at the

1% level; ** indicates statistical significance at the 5% level. SE is

standard error.

Variable Coeff SE P . t

Gender of household head (male 5 1) 3.644 1.410 0.01

Education of household head (years) 20.897 0.400 0.03

Number of plantings 20.411 0.620 0.51

Asset index (1–5) 20.382 0.465 0.41

Livestock (TLU) 0.039 0.035 0.25

Off farm income (Kwacha) 20.006 0.005 0.24

Maize in storage (kg) 20.032 0.020 0.10

Longest dry spell length (days) 0.157 0.062 0.01

Perceived frequency of drought (years) 20.200 0.146 0.17

Constant 21.977 2.347 0.00

Observations 1105

Groups (fixed effect 5 district) 12

R2 (within) 0.03

R2 (between) 0.45

FIG. 5. Percentage of farmers indicating different rainy season onset dates for ;2005, 2012, 2013, 2014, and 2015.
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amount of maize they have in storage. We also

included a set of independent variables to capture

psychological factors that might impact a farmer’s

cognitive bias related to rainy season onset. These in-

clude the length of the longest dry spell they experi-

enced during the growing season and their perceptions

of the frequency of drought.

Our findings support the notion that climate percep-

tions and biases may be related to sociodemographic

factors, such as gender and education, as wel as psycho-

logical factors related to food insecurity and rainfall

events (see Table 3). On average, men perceive the rains

to start 3.5 days later over a 10-yr period than women.

One additional year of education reduces the perception

of the rainy season onset arriving later by almost a week.

Another significant variable that is associated with the

perception that the rains are getting later is the length of

the longest dry spell in the previous season. For each

additional day of dry spell, farmers perceive the rains to

be 0.15 days later.

Figure 7 displays the distribution of heuristics farmers

use to characterize rainy season onset. The most prev-

alent response from 36% of respondents is that they

perceive the rainy season to start after the first day

of heavy rainfall. Slightly fewer respondents (31%)

reported that they perceive the rainy season to start

after a few consecutive days of rainfall. Approxi-

mately 17% of respondents reported using a heuristic

that could be categorized as other, mostly involving

movement, size, and density of storm clouds but also

ecological indicators such as the presence of certain

butterfly species. About 15% of respondents perceive

the rainy season to start when there is sufficient soil

moisture. Only about 2%of respondents define the rainy

season by the cumulative amount of rain.

c. Comparing perceptions and physical estimates of
rainfall onset

Figure 8 displays a series of individual figures com-

paring the density of farmer-perceived and biophys-

ical rainy season onset for each zone in each year. The

areas under the curves represent the density of farmer

‘‘perceptions’’ of rainy season onset and the ‘‘physical

metric’’ defining rainy season onset across the initial

weeks of the growing season. Biophysical metrics of rain

onset are defined by using farmer heuristics to deter-

mine the biophysical threshold of rain onset. For ex-

ample, if a farmer reported that they perceive rain onset

to start after the first day of heavy rain, we compared

their perceived date of rain onset with rain onset as

defined by the first day of heavy rain recorded in the

CHIRPS data for that household location. The shaded

area around the physical metric represents the uncertainty

involved in converting heuristics into physical metrics.

Figure 8 shows that on average, the accuracy of

farmers’ perceptions gets worse when they are asked to

recall more distant seasons. Farmers’ perceptions of

onset and the physically derived onset have similar dis-

tributions in the most recent season (2015), where the

mean perceived rain onset is almost identical to the

mean physically derived onset. The physically derived

data are less smooth than the perception data and often

have multiple peaks, reflecting the heterogeneity in

rainy season onset across the country. The smoothness

FIG. 7. Heuristic determining perceived rainy season onset (% of farmers using each heuristic).

TABLE 4. Descriptive statistics of farmers/households sampled. Asset index ranges from 1 (lowest) to 5 (highest). Educational at-

tainment categories are as follows: none (1), some primary (2), completed primary (3), some secondary (4), completed secondary (5),

some postsecondary (6), and completed postsecondary (7).

Variable Mean Std dev Min Max

Gender of household head (male 5 1) 0.8 0.4 0 1

Education of household head (1–7 categories) 3.2 1.6 0 7

Number of plantings 1.7 1.0 0 5

Asset index (1–5 categories) 3.0 1.4 1 5

Livestock (TLU) 3.4 22.8 0 722

Off farm income (in hundreds of Kwacha) 72.7 138.6 0 1800

Maize in storage (in hundreds of kg) 17.4 40.7 0 1000

Longest dry spell length (days) 21.0 10.0 0 60

Perceived frequency of drought (years) 5.5 3.9 1 10
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of the perceptions is likely attributable to recall bias.

Starting in 2013, the mean of the perceptions and the

physical data diverges as farmers recall earlier rainy

season onset for previous seasons. In 2012, there is the

largest discrepancy between perceived and actual ob-

servations, with average farmers’ perceptions of rainy

season onset occurring almost 5 weeks earlier than the

average physically derived onset. This suggests that their

perceptions of the typical interannual variability of

rainfall are overridden by a narrative among farmers

that the rains are arriving later. This narrative has been

documented by Mulenga et al. (2017). The data provide

evidence of recall bias that sets in as early as 1 year after

harvesting and a systematic deviation resulting from the

widely held perception that the rainy season starts later

each year. Statistical tests of the differences between

perceived and observed rainy season onsets can be

found in Table 5.

In addition to a perceptual distortion about rainy

season onset getting later, there is also evidence of

cognitive bias related to anchoring in the more dis-

tant past. Farmers’ perceptions of rainy season onset

‘‘about a decade ago’’ appear to reach a ceiling, with a

narrower range of responses with a median around

the fourth week of October. There is a common narra-

tive among farmers in Zambia that the rainy season is

getting later and previously started in October, and we

see that farmers’ perceptions form a relatively normal

distribution with a steep peak anchored around the last

week of October. In other words, their perceptions of

rainy season onset in the distant past (more than a few

years ago) appear to be anchored around this narra-

tive and date. While using approximately 10 years ago

does not capture perceptions of the multidecadal nature

of climate perceptions, it does start to uncover farmer

cognition about weather beyond simply interannual

variability. While there are some limitations to asking

farmers in this way, we felt it was better than directly

asking about a trend, which would likely prime them to

recall what they have heard about trends in the climate.

d. Influence of perceptions on planting behavior

We included several questions in our survey to

better understand how heuristics influence not just

perceptions of rainy season onset, but also actual ag-

ricultural practices. We asked farmers what heuris-

tic they use when they decide when to plant maize

(Fig. 9). The most common heuristic, cited by ap-

proximately 43% of the sample, is soil moisture.

TABLE 5. Paired t test between average perceived and observa-

tional rainy season onset dates (in days).

Zone 1 Zone 2 Zone 3

Diff t Diff t Diff t

2015 21.6a 21.1 10.2 7.6 5.4 5.3

2014 24.5 23.0 10.0 7.7 13.1 9.7

2013 213.2 210.8 29.1 29.1 26.1 27.3

2012 234.1 243.9 222.3 222.2 222.8 227.6

2005 27.2 25.5 215.0 213.3 27.3 210.0

a Not significantly different at any conventional level. All other paired

comparisons statistically significant at the 1% level or better.

FIG. 8. Farmer perceptions vs physically derived rain onset (physical metric) by year and precipitation zone. Perceived and physical

metrics are different in all but zone 1, 2015. The figures for 2005 are an average for the seasons beginning in 2004, 2005, and 2006. Shaded

area represents the uncertainty parameters described in Table 1.

APRIL 2019 WALDMAN ET AL . 379

Brought to you by CLARK UNIVERSITY | Unauthenticated | Downloaded 04/26/23 02:11 PM UTC



The next most common response (35%) was from

farmers who reported that they wait for a few days of

consecutive rain before planting. Approximately 12%

of farmers reported that they plant after the first day

of heavy rain, while fewer than 10% wait for a specific

date or until the rain is imminent.

To evaluate whether farmers’ choices of heuristic

influence their maize planting dates, we examined how

the heuristics are related to when farmers planted their

first maize crop in the 2015 season. Planting dates

differ across precipitation zones in Zambia, as they

are based on the length of the growing season and the

total quantity of rainfall. Since farmers can have mul-

tiple maize plantings, we focus on the date of each

farmer’s earliest maize planting. Figure 10 displays

the distribution of farmers’ earliest maize plantings

in each week, disaggregated by precipitation zone.

Farmers in zones 1 and 2 planted maize with rela-

tively normal distributions centered on the first week

of December. Farmers in the wettest zone were able to

plant earliest on average, with a median planting date in

the second week of November.

We then group their actual planting dates by heuristic

category to look for differences in mean planting date.

Heuristics about when it is time to plant maize influ-

ence the date farmers actually plant (Fig. 11). Farmers

who use heuristics such as on a specific date plant the

earliest, followed by those who rely on a sense that the

rains are coming or plant after a single day of heavy

rain. The latest median planting date is for farmers who

wait for several days of consecutive rain or for adequate

soil moisture. Importantly, the use of heuristics clearly

influences not only the perception of rain onset, but also

the actual planting date in a given season. Further details

about how perceptions of rain onset getting later influ-

ence seed choice are presented in a separate publication

(Waldman et al. 2017).

4. Conclusions

We find that while the vast majority of farmers per-

ceive the rainy season onset to be getting later, this

perception is not wholly consistent with observed physi-

cal data. This mismatch is important for multiple rea-

sons. Farmers are unable to accurately recall when the

rains started beyond 2–3 years, so it is not surprising that

their longer-term recall about weather trends is biased

as well. Biases related to rainy season onset influence the

decision of what date to plant, which is an important

determinant of yield outcomes. While some of this bias

can be explained by sociodemographic factors such as

gender and education, or psychological factors such as

FIG. 10. Actual planting dates by precipitation zones. Zone 1 is dry, zone 2 is intermediate, and

zone 3 is wet.

FIG. 9. Heuristic determining when to plant (% of farmers using each heuristic).
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food inadequacy, much of this bias appears to be related

to perceptions of climate trends. We also provide evi-

dence that heuristics about the appropriate time to plant

are correlated with actual planting dates, and this reli-

ance on heuristics is presumably related to uncertainty

about when to plant. Certain heuristics are associated

with earlier planting, while other heuristics are associated

with later planting decisions. While cognitive shortcuts

can be efficient and alleviate taxing mental calculations

(Goldstein and Gigerenzer 2002), they can also be associ-

ated with recall bias and lead farmers to suboptimal

decision-making. We explore this suboptimality in a sep-

arate publication, where we find that perceptions of the

rain onset getting later influence seed choice and that in

general, seed choice does not correlate well with growing

season length (Waldman et al. 2017).

Farmers receive information about the climate through

various channels, including through signals sent by

agricultural policies. Policies promoting earlier-maturing

hybrids likely intensify the perception that the season

is getting shorter, thus nudging farmers toward behav-

ior that aligns with this perception. Our findings raise

questions about the drawbacks from national policies

that fail to consider heterogeneous weather and climate

conditions and are more focused on future climate

change than current climate variability. Policy and tech-

nology that focus on understanding rainfall and cli-

mate variability and that involve information exchange

with farmers are crucial to addressing current food se-

curity needs.

Acknowledgments. Funding for this research came

fromNational Science FoundationAwards SES-1360463,

BCS-1115009, and BCS-1026776. Our deep gratitude to

our colleagues from the Zambian Agricultural Research

Institute (ZARI) who helped us with the logistics and

data collection for this work.

REFERENCES

Adger, W. N., and Coauthors, 2009: Are there social limits to ad-

aptation to climate change? Climatic Change, 93, 335–354,

https://doi.org/10.1007/s10584-008-9520-z.

Akinnuoye-Adelabu, D. B., and A. T. Modi, 2017: Planting dates

and harvesting stages influence on maize yield under rain-

fed conditions. J. Agric. Sci., 9, 43–55, https://doi.org/

10.5539/jas.v9n9p43.

Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop

evapotranspiration (guidelines for computing crop water re-

quirements). FAO Irrigation and Drainage Paper 56, 333 pp.

Beck, H., and Coauthors, 2017: Global-scale evaluation of 22

precipitation datasets using gauge observations and hydro-

logical modeling. Hydrol. Earth Syst. Sci., 21, 6201–6217,

https://doi.org/10.5194/hess-21-6201-2017.

Bohr, J., 2017: Is it hot in here or is it just me? Temperature

anomalies and political polarization over global warming in

the American public. Climatic Change, 142, 271–285, https://

doi.org/10.1007/s10584-017-1934-z.

Boyard-Micheau, J., P. Camberlin, N. Philippon, and V. Moron,

2013: Regional-scale rainy season onset detection: A new

approach based on multivariate analysis. J. Climate, 26, 8916–

8928, https://doi.org/10.1175/JCLI-D-12-00730.1.

Cai, X., and Coauthors, 2017: Validation of SMAP soil moisture

for the SMAPVEX15 field campaign using a hyper-resolution

model.Water Resour. Res., 53, 3013–3028, https://doi.org/10.1002/

2016WR019967.

Campbell, B. M., and Coauthors, 2016: Reducing risks to food se-

curity from climate change. Global Food Secur., 11, 34–43,

https://doi.org/10.1016/j.gfs.2016.06.002.

Chaney, N.W., P.Metcalfe, andE. F.Wood, 2016: HydroBlocks: A

field-scale resolving land surface model for application over

continental extents. Hydrol. Processes, 30, 3543–3559, https://

doi.org/10.1002/hyp.10891.

Chen, J., Y. Ban, and S. Li, 2014: Open access to Earth land-cover

map. Nature, 514, 434, https://doi.org/10.1038/514434c.

Eakin, H., 2005: Institutional change, climate risk, and rural vul-

nerability: Cases from central Mexico. World Dev., 33, 1923–

1938, https://doi.org/10.1016/j.worlddev.2005.06.005.

Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann,

V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation

of Noah land surface model advances in the National Centers

for Environmental Prediction operational mesoscale Eta

model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/

2002JD003296.

Estes, L. D., and Coauthors, 2016: Reconciling agriculture,

carbon and biodiversity in a savannah transformation

frontier. Philos. Trans. Roy. Soc. London, 371B, 20150316,

https://doi.org/10.1098/rstb.2015.0316.

Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography

Mission. Rev. Geophys., 45, RG2004, https://doi.org/10.1029/

2005RG000183.

Filmer, D., and L. H. Pritchett, 2001: Estimating wealth effects

without expenditure data—or tears: An application to

educational enrollments in states of India. Demography, 38,

115–132.

Freeman, P. K., and H. Kunreuther, 2002: Environmental risk

management for developing countries. Geneva Papers, 27,

196–214, https://ssrn.com/abstract5312510.

FIG. 11. Boxplots of planting date by rain onset heuristic cate-

gory. Boxplots represent 25th, 50th (median), and 75th percentiles

of observed data.

APRIL 2019 WALDMAN ET AL . 381

Brought to you by CLARK UNIVERSITY | Unauthenticated | Downloaded 04/26/23 02:11 PM UTC

https://doi.org/10.1007/s10584-008-9520-z
https://doi.org/10.5539/jas.v9n9p43
https://doi.org/10.5539/jas.v9n9p43
https://doi.org/10.5194/hess-21-6201-2017
https://doi.org/10.1007/s10584-017-1934-z
https://doi.org/10.1007/s10584-017-1934-z
https://doi.org/10.1175/JCLI-D-12-00730.1
https://doi.org/10.1002/2016WR019967
https://doi.org/10.1002/2016WR019967
https://doi.org/10.1016/j.gfs.2016.06.002
https://doi.org/10.1002/hyp.10891
https://doi.org/10.1002/hyp.10891
https://doi.org/10.1038/514434c
https://doi.org/10.1016/j.worlddev.2005.06.005
https://doi.org/10.1029/2002JD003296
https://doi.org/10.1029/2002JD003296
https://doi.org/10.1098/rstb.2015.0316
https://doi.org/10.1029/2005RG000183
https://doi.org/10.1029/2005RG000183
https://ssrn.com/abstract=312510


Funk, C., and Coauthors, 2015: The climate hazards infrared

precipitation with stations—A new environmental record

for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/

10.1038/sdata.2015.66.

Goldstein, D. G., and G. Gigerenzer, 2002: Models of ecological

rationality: The recognition heuristic. Psychol. Rev., 109, 75–

90, https://doi.org/10.1037/0033-295X.109.1.75.

Grothmann, T., and A. Patt, 2005: Adaptive capacity and human

cognition: The process of individual adaptation to climate

change. Global Environ. Change, 15, 199–213, https://doi.org/

10.1016/j.gloenvcha.2005.01.002.

Hansen, M. C., and Coauthors, 2013: High-resolution global maps

of 21st-century forest cover change. Science, 342, 850–853,

https://doi.org/10.1126/science.1244693.

Hengl, T., and Coauthors, 2017: SoilGrids250m: Global gridded

soil information based on machine learning. PLOS ONE, 12,

e0169748, https://doi.org/10.1371/journal.pone.0169748.

Hertwig, R., and P. M. Todd, 2005: More is not always better: The

benefits of cognitive limits.Thinking: Psychological Perspectives

on Reasoning, Judgment and Decision Making, D. Hardman

and L. Macchi, Eds., JohnWiley & Sons, Ltd, 213–231, https://

doi.org/10.1002/047001332X.ch11.

Howe, P. D., M. Mildenberger, J. R. Marlon, and A. Leiserowitz,

2015: Geographic variation in opinions on climate change at

state and local scales in the USA.Nat. Climate Change, 5, 596–

603, https://doi.org/10.1038/nclimate2583.

Hsiang, S., and Coauthors, 2017: Estimating economic damage

from climate change in the United States. Science, 356, 1362–

1369, https://doi.org/10.1126/science.aal4369.

IPCC, 2014: Climate Change 2014: Synthesis Report. Cambridge

University Press, 151 pp., https://www.ipcc.ch/site/assets/uploads/

2018/02/SYR_AR5_FINAL_full.pdf.

Jahnke, H. E., G. Tacher, P. Keil, and D. Rojat, 1988: Livestock

production in tropical Africa with special reference to the

tsetse-afferent zone. FAO, http://www.fao.org/Wairdocs/ILRI/

x5443E/x5443e04.htm.

Jarvis, A., C. Lau, S. Cook, E. Wollenberg, J. Hansen, O. Bonilla,

and A. Challinor, 2011: An integrated adaptation and miti-

gation framework for developing agricultural research: Syn-

ergies and trade-offs. Exp. Agric., 47, 185–203, https://doi.org/

10.1017/S0014479711000123.

Jones, P., and P. Thornton, 2003: The potential impacts of climate

change on maize production in Africa and Latin America in

2055.Global Environ. Change, 13, 51–59, https://doi.org/10.1016/

S0959-3780(02)00090-0.

Kahneman, D., and A. Tversky, 1979: Prospect theory: An analysis

of decision under risk. Econometrica, 47, 263–292, https://

doi.org/10.2307/1914185.

——, P. Slovic, and A. Tversky, 1982. Judgment under Uncertainty:

Heuristics and Biases. Cambridge University Press, 95 pp.

Kotir, J. H., 2011: Climate change and variability in sub-Saharan

Africa: A review of current and future trends and impacts on

agriculture and food security. Environ. Dev. Sustain., 13, 587–

605, https://doi.org/10.1007/s10668-010-9278-0.

Lazenby, M. J., M. C. Todd, R. Chadwick, and Y. Wang, 2018:

Future precipitation projections over central and southern

Africa and the adjacent Indian Ocean: What causes the

changes and the uncertainty? J. Climate, 31, 4807–4826, https://

doi.org/10.1175/JCLI-D-17-0311.1.

Lobell, D. B., M. Bänziger, C. Magorokosho, and B. Vivek, 2011:

Nonlinear heat effects on African maize as evidenced by his-

torical yield trials.Nat. ClimateChange, 1, 42–45, https://doi.org/

10.1038/nclimate1043.

Marx, S. M., E. U. Weber, B. S. Orlove, A. Leiserowitz, D. H.

Krantz, C. Roncoli, and J. Phillips, 2007: Communication and

mental processes: Experiential and analytic processing of

uncertain climate information. Global Environ. Change, 17,

47–58, https://doi.org/10.1016/j.gloenvcha.2006.10.004.

Mason, N. M., and J. Ricker-Gilbert, 2013: Disrupting demand for

commercial seed: Input subsidies inMalawi andZambia.World

Dev., 45, 75–91, https://doi.org/10.1016/j.worlddev.2012.11.006.

Maúre, G., I. Pinto, M. Ndebele-Murisa, M. Muthige, C. Lennard,

G. Nikulin, A. Dosio, andA.Meque, 2018: The southernAfrican

climate under 1.58C and 28C of global warming as simulated

by CORDEX regional climate models.Environ. Res. Lett., 13,

065002, https://doi.org/10.1088/1748-9326/aab190.

Mercer, K. L., H. R. Perales, and J. D. Wainwright, 2012: Climate

change and the transgenic adaptation strategy: Smallholder

livelihoods, climate justice, and maize landraces in Mexico.

Global Environ. Change, 22, 495–504, https://doi.org/10.1016/

j.gloenvcha.2012.01.003.

Mertz, O., C. Mbow, A. Reenberg, and A. Diouf, 2009: Farmers’

perceptions of climate change and agricultural adaptation

strategies in rural Sahel. Environ. Manage., 43, 804–816,

https://doi.org/10.1007/s00267-008-9197-0.

Morton, J. F., 2007: The impact of climate change on smallholder

and subsistence agriculture. Proc. Natl. Acad. Sci. USA, 104,

19 680–19 685, https://doi.org/10.1073/pnas.0701855104.

Mulenga, B. P., A. Wineman, and N. J. Sitko, 2017: Climate

trends and farmers’ perceptions of climate change in

Zambia. Environ. Manage., 59, 291–306, https://doi.org/

10.1007/s00267-016-0780-5.

Musau, J., S. Patil, J. Sheffield, and M. Marshall, 2016: Spatio-

temporal vegetation dynamics and relationship with cli-

mate over East Africa.Hydrol. Earth Syst. Sci. Discuss., https://

doi.org/10.5194/hess-2016-502.

Nicholson, S. E., C. Funk, and A. H. Fink, 2018: Rainfall over the

African continent from the 19th through the 21st century.

Global Planet. Change, 165, 114–127, https://doi.org/10.1016/

j.gloplacha.2017.12.014.

NRC, 1999: Making Climate Forecasts Matter. P. C. Stern and

W. E. Easterling, Eds., National Academies Press, 192 pp.,

https://doi.org/10.17226/6370.

Nyanga, P. H., F. H. Johnsen, J. B. Aune, and T. H. Kalinda, 2011:

Smallholder farmers’ perceptions of climate change and con-

servation agriculture: Evidence fromZambia. J. Sustain. Dev.,

4, 73–85, https://doi.org/10.5539/jsd.v4n4p73.
Osbahr, H., P. Dorward, R. Stern, and S. Cooper, 2011: Sup-

porting agricultural innovation in Uganda to respond to

climate risk: Linking climate change and variability with

farmer perceptions. Exp. Agric., 47, 293–316, https://doi.org/

10.1017/S0014479710000785.

Pan, M., X. Cai, N. W. Chaney, D. Entekhabi, and E. F. Wood,

2016: An initial assessment of SMAP soil moisture retrievals

using high-resolution model simulations and in situ obser-

vations. Geophys. Res. Lett., 43, 9662–9668, https://doi.org/

10.1002/2016GL069964.

Parker, D., E. Good, and R. Chadwick, 2011: Reviews of obser-

vational data available over Africa for monitoring, attribution

and forecast evaluation. Hadley Centre Tech. Note 86, 62 pp.

Purdy, R., and M. Langemeier, 2018: International bench-

marks for corn production. farmdoc daily, 8, 100, https://

farmdocdaily.illinois.edu/2018/06/international-benchmarks-

for-corn-production-3.html.

Rao, K. P. C.,W. G. Ndegwa, K. Kizito, and A. Oyoo, 2011: Climate

variability and change: Farmer perceptions and understanding

382 WEATHER , CL IMATE , AND SOC IETY VOLUME 11

Brought to you by CLARK UNIVERSITY | Unauthenticated | Downloaded 04/26/23 02:11 PM UTC

https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1037/0033-295X.109.1.75
https://doi.org/10.1016/j.gloenvcha.2005.01.002
https://doi.org/10.1016/j.gloenvcha.2005.01.002
https://doi.org/10.1126/science.1244693
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1002/047001332X.ch11
https://doi.org/10.1002/047001332X.ch11
https://doi.org/10.1038/nclimate2583
https://doi.org/10.1126/science.aal4369
https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf
https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf
http://www.fao.org/Wairdocs/ILRI/x5443E/x5443e04.htm
http://www.fao.org/Wairdocs/ILRI/x5443E/x5443e04.htm
https://doi.org/10.1017/S0014479711000123
https://doi.org/10.1017/S0014479711000123
https://doi.org/10.1016/S0959-3780(02)00090-0
https://doi.org/10.1016/S0959-3780(02)00090-0
https://doi.org/10.2307/1914185
https://doi.org/10.2307/1914185
https://doi.org/10.1007/s10668-010-9278-0
https://doi.org/10.1175/JCLI-D-17-0311.1
https://doi.org/10.1175/JCLI-D-17-0311.1
https://doi.org/10.1038/nclimate1043
https://doi.org/10.1038/nclimate1043
https://doi.org/10.1016/j.gloenvcha.2006.10.004
https://doi.org/10.1016/j.worlddev.2012.11.006
https://doi.org/10.1088/1748-9326/aab190
https://doi.org/10.1016/j.gloenvcha.2012.01.003
https://doi.org/10.1016/j.gloenvcha.2012.01.003
https://doi.org/10.1007/s00267-008-9197-0
https://doi.org/10.1073/pnas.0701855104
https://doi.org/10.1007/s00267-016-0780-5
https://doi.org/10.1007/s00267-016-0780-5
https://doi.org/10.5194/hess-2016-502
https://doi.org/10.5194/hess-2016-502
https://doi.org/10.1016/j.gloplacha.2017.12.014
https://doi.org/10.1016/j.gloplacha.2017.12.014
https://doi.org/10.17226/6370
https://doi.org/10.5539/jsd.v4n4p73
https://doi.org/10.1017/S0014479710000785
https://doi.org/10.1017/S0014479710000785
https://doi.org/10.1002/2016GL069964
https://doi.org/10.1002/2016GL069964
https://farmdocdaily.illinois.edu/2018/06/international-benchmarks-for-corn-production-3.html
https://farmdocdaily.illinois.edu/2018/06/international-benchmarks-for-corn-production-3.html
https://farmdocdaily.illinois.edu/2018/06/international-benchmarks-for-corn-production-3.html


of intra-seasonal variability in rainfall and associated risk in

semi-arid Kenya. Exp. Agric., 47, 267–291, https://doi.org/

10.1017/S0014479710000918.

Rippke, U., and Coauthors, 2016: Timescales of transformational

climate change adaptation in sub-Saharan African agricul-

ture. Nat. Climate Change, 6, 605–609, https://doi.org/10.1038/

nclimate2947.

Roy, D. P., and Coauthors, 2010: Web-enabled Landsat Data

(WELD): Landsat ETM1 composited mosaics of the con-

terminous United States. Remote Sens. Environ., 114, 35–49,

https://doi.org/10.1016/j.rse.2009.08.011.

Sáenz-Arroyo, A., C. M. Roberts, J. Torre, M. Cariño-Olvera,

and R. R. Enríquez-Andrade, 2005: Rapidly shifting

environmental baselines among fishers of the Gulf of

California. Proc. Biol. Sci., 272, 1957–1962, https://doi.org/

10.1098/rspb.2005.3175.

Schmidhuber, J., and F. N. Tubiello, 2007: Global food security

under climate change.Proc. Natl. Acad. Sci. USA, 104, 19 703–

19 708, https://doi.org/10.1073/pnas.0701976104.

Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a

50-yr high-resolution global dataset of meteorological forcings

for land surface modeling. J. Climate, 19, 3088–3111, https://

doi.org/10.1175/JCLI3790.1.

Simelton, E., and Coauthors, 2013: Is rainfall really changing?

Farmers’ perceptions, meteorological data, and policy impli-

cations. Climate Dev., 5, 123–138, https://doi.org/10.1080/
17565529.2012.751893.

Sitko, N. J., and T. S. Jayne, 2014: Structural transformation or

elite land capture? The growth of ‘‘emergent’’ farmers in

Zambia. Food Policy, 48, 194–202, https://doi.org/10.1016/

j.foodpol.2014.05.006.

——, and Coauthors, 2011: Descriptive agricultural statistics and

analysis for Zambia in support of the USAID Mission’s feed

the future strategic review. Food Security Research Project

Working Paper 52, 172 pp., https://ageconsearch.umn.edu/

bitstream/104016/2/wp52.pdf.

Smale,M., and T. Jayne, 2003: Maize in eastern and southernAfrica:

‘‘Seeds’’ of success in retrospect. Environment and Production

Technology Division Discussion Paper 97, 90 pp., http://www.

fao.org/docs/eims/upload/166420/Smale,Jayne.pdf.

——, E. Simpungwe, E. Birol, G. T. Kassie, H. de Groote, and

R. Mutale, 2015: The changing structure of the maize seed

industry in Zambia: Prospects for orange maize.Agribusiness,

31, 132–146, https://doi.org/10.1002/agr.21384.

Smit, B., and M. W. Skinner, 2002: Adaptation options in agricul-

ture to climate change: A typology. Mitigation Adapt. Strategies

Global Change, 7, 85–114, https://doi.org/10.1023/A:1015862228270.

Sutcliffe, C., A. J. Dougill, and C. H. Quinn, 2016: Evidence and

perceptions of rainfall change in Malawi: Do maize cultivar

choices enhance climate change adaptation in sub-Saharan

Africa? Reg. Environ. Change, 16, 1215–1224, https://doi.org/

10.1007/s10113-015-0842-x.

Thomas, D. S. G., C. Twyman, H. Osbahr, and B. Hewitson, 2007:

Adaptation to climate change and variability: Farmer responses

to intra-seasonal precipitation trends in South Africa. Climatic

Change, 83, 301–322, https://doi.org/10.1007/s10584-006-9205-4.

Tversky, A., and D. Kahneman, 1973: Availability: A heuristic for

judging frequency and probability. Cognit. Psychol., 5, 207–

232, https://doi.org/10.1016/0010-0285(73)90033-9.

Waldman, K. B., J. P. Blekking, S. Z. Attari, and T. P. Evans, 2017:

Maize seed choice and perceptions of climate variability

among smallholder farmers. Global Environ. Change, 47,

51–63, https://doi.org/10.1016/j.gloenvcha.2017.09.007.

Washington, R., and Coauthors, 2006: Africa climate change:

Taking the shorter route. Bull. Amer. Meteor. Soc., 87, 1355–

1366, https://doi.org/10.1175/BAMS-87-10-1355.

Weber, E. U., 2010: What shapes perceptions of climate change?

Wiley Interdiscip. Rev.: Climate Change, 1, 332–342, https://
doi.org/10.1002/wcc.41.

——, and P. C. Stern, 2011: Public understanding of climate change

in the United States.Amer. Psychol., 66, 315–328, https://doi.org/

10.1037/a0023253.

Zaval, L., E. A. Keenan, E. J. Johnson, and E. U. Weber,

2014: How warm days increase belief in global warming.

Nat. Climate Change, 4, 143–147, https://doi.org/10.1038/
nclimate2093.

APRIL 2019 WALDMAN ET AL . 383

Brought to you by CLARK UNIVERSITY | Unauthenticated | Downloaded 04/26/23 02:11 PM UTC

https://doi.org/10.1017/S0014479710000918
https://doi.org/10.1017/S0014479710000918
https://doi.org/10.1038/nclimate2947
https://doi.org/10.1038/nclimate2947
https://doi.org/10.1016/j.rse.2009.08.011
https://doi.org/10.1098/rspb.2005.3175
https://doi.org/10.1098/rspb.2005.3175
https://doi.org/10.1073/pnas.0701976104
https://doi.org/10.1175/JCLI3790.1
https://doi.org/10.1175/JCLI3790.1
https://doi.org/10.1080/17565529.2012.751893
https://doi.org/10.1080/17565529.2012.751893
https://doi.org/10.1016/j.foodpol.2014.05.006
https://doi.org/10.1016/j.foodpol.2014.05.006
https://ageconsearch.umn.edu/bitstream/104016/2/wp52.pdf
https://ageconsearch.umn.edu/bitstream/104016/2/wp52.pdf
http://www.fao.org/docs/eims/upload/166420/Smale,Jayne.pdf
http://www.fao.org/docs/eims/upload/166420/Smale,Jayne.pdf
https://doi.org/10.1002/agr.21384
https://doi.org/10.1023/A:1015862228270
https://doi.org/10.1007/s10113-015-0842-x
https://doi.org/10.1007/s10113-015-0842-x
https://doi.org/10.1007/s10584-006-9205-4
https://doi.org/10.1016/0010-0285(73)90033-9
https://doi.org/10.1016/j.gloenvcha.2017.09.007
https://doi.org/10.1175/BAMS-87-10-1355
https://doi.org/10.1002/wcc.41
https://doi.org/10.1002/wcc.41
https://doi.org/10.1037/a0023253
https://doi.org/10.1037/a0023253
https://doi.org/10.1038/nclimate2093
https://doi.org/10.1038/nclimate2093

	Cognitive biases about climate variability in smallholder farming systems in Zambia
	Repository Citation
	Authors

	Cognitive Biases about Climate Variability in Smallholder Farming Systems in Zambia

