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Abstract 
Collecting high-frequency social-environmental data about farming practices in sub-

Saharan Africa can provide new insight into environmental changes that farmers face and how 

they respond within smallholder agro-ecosystems. Traditional data collection methods such as 

agricultural censuses are costly and not useful for understanding intra-annual and real-time 

decisions. Short-message service (SMS) has the potential to transform the nature of data 

collection in coupled social-ecological systems. We present a system for collecting, managing, 

and synthesizing weekly data from farmers, including data infrastructure for management of big 

and heterogeneous datasets; probabilistic data quality assessment tools; and visualization and 

analysis tools such as mapping and regression techniques. We discuss limitations of collecting 

social-environmental data via SMS and data integration challenges that arise when linking these 

data with other social and environmental data. In combination with high-frequency 

environmental data, such data will help ameliorate issues of scale mismatch and build resilience 

in environmental systems. 
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Highlights 
 Many geographic regions suffer from sparse social-environmental data resources. 

 Data collected from farmers via SMS can address gaps in social-environmental data. 

 Data gathered via SMS present unique quality, management, and use challenges. 

1. Introduction 

Smallholder farmers provide up to 80% of the food supply in Asia and sub-Saharan 

Africa (SSA) (FAO 2013), and small farms (i.e., less than two hectares) operate about 12% of 

agricultural land in the world (Lowder et al. 2016). These farmers live in an uncertain 

environment where climate variability is tightly related to the potential for agricultural decisions 

to ensure food security (Kotir 2011, Mendelsohn 2008). Achieving food security means 

understanding, among other things, the ways in which these farmers make agricultural 

decisions and adapt to environmental shocks (Burnham and Ma 2016, Harmer and Rahman 

2014). However, researchers’ and other stakeholders’ ability to meet these objectives continues 

to be hampered by not only a lack of consistent, quality data about farming households (Carletto 

et al. 2013), but also by a disconnect between such socio-economic data and climatic data, and 

the fact that these data are generally collected at temporally coarse scales that are mismatched 

with the processes being investigated (Cumming et al. 2006). Many agricultural decisions such 

as when to plant, fertilize, and harvest are tightly linked to weather patterns. For example, for 

the majority of farmers in Sub-Saharan Africa, who are smallholders lacking access to irrigation 

(Burney et al. 2013, Debats et al. 2016), optimal planting dates tend to fall at the start of the 

rainy season. If the start of the rainy season is delayed or is rendered unclear by intermittent 

rains or storms, the risk of losing a crop to early-season floods, or planting too early, increases 

significantly. Farmers must cope with both sudden weather events that have immediate impacts 

on crops, as well as learn to adapt to changing weather over many agricultural seasons.  

Typically, annual, national-level agricultural censuses take the form of crop forecast and 

post-harvest surveys. Such surveys have been used to assess food security of smallholder 

farmers and to collect data about farmer management practices, such as planting dates, area 

planted, and total harvest quantities. However, these surveys may suffer from recall bias 

(Beegle et al. 2012, Tourangeau et al. 2000), are expensive to administer, and typically do not 

integrate climate or spatial data. As Carletto et al. (2013) note (specifically for Africa), 

agricultural data quality can also be impacted by questionable data collection standards, 
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reliance on improperly drawn or incomplete samples, and inconsistency within measured 

variables over time or between measures collected in different locations. 

An additional problem posed by relying on traditional survey-based methods is that such 

infrequent, cross-sectional data do not capture many intra-annual activities and decisions. 

Traditional survey data are collected at a single point in time from a cross-section of 

respondents who are chosen to be representative of a larger population. Sequential cross-

sectional surveys can be combined to form a panel, which can be used to understand changes 

in practices or behavior over time. Time intervals range from relatively brief periods in the case 

of, for example, a treatment or experiment, to years apart, for example, in longitudinal health 

studies. When the topics of interest are farming and food security, where individuals make 

multiple choices each week or each month about how to manage their crops and provide 

adequate nutrition for their households, these traditional methods do not provide enough context 

and information. 

Social-environmental data collection via mobile phones looks to be one of the more 

promising avenues for reaching many people with high-frequency data collection where 

remoteness poses obstacles to frequent in-person interviews. We organize the opportunity for 

mobile-phone data collection (MPDC) into the following key domains: 1) MPDC enables 

collection of high-frequency social data to better understand intra-annual dynamics and 

decision-making, 2) MPDC allows data to be collected in near-real time which can enable faster 

response to environmental shocks and disturbances, 3) MPDC reduces the cost of collecting 

data over large spatial extents and for large populations by removing dependence upon 

personnel and hardware resources, 4) MPDC imposes less of a burden on respondents 

because it is administered via a tool used in daily life. 

Rates of mobile phone ownership in SSA are growing rapidly. As of 2016, there were 

nearly 75 mobile cellular subscriptions per 100 people in SSA (The World Bank 2016). Pew 

Research Center found that, for countries they surveyed in Africa, 75% of adults owned a cell 

phone, which they used most commonly for sending text messages (Short Message Service, or 

SMS) (Pew Research Center 2015). A report by Ericsson in 2014 predicted a doubling of voice 

call traffic and 30 million mobile subscriptions across sub-Saharan Africa by 2019 (Ericsson 

2014). Alongside the increasing penetration of cell phones, research has shown a correlation 

between cell phone usage and livelihood gains: for example, cell phone access has helped 

improve farmers’ agricultural outcomes (Aker and Ksoll 2016). 

Several recent studies have shown the feasibility of MPDC for high-frequency data 

collection, in SSA and elsewhere (e.g., Bell et al. 2016, Hoogeveen et al. 2014, Garlick et al. 

2016, Leo et al. 2015). Rather than focusing on SMS explicitly, these studies compare various 



4 

 

phone-based survey modes, including interactions with a human or a computerized agent (e.g., 

via interactive voice response (IVR) or unstructured supplementary survey data (USSD) 

protocols). One well-known exception is the World Food Programme’s (WFP) mobile 

Vulnerability Analysis Mapping (mVAM) program, which tracks food security and vulnerability in 

the developing world (Bauer et al. 2013; Mock et al. 2016; Morrow et al. 2016). mVAM utilizes 

multiple modes for data collection, including SMS, and integrates some spatial data variables, 

including country and administrative units such as camps and villages within each country. More 

often, SMS technology has been used in SSA for health-related monitoring and information 

sharing. These efforts include disease surveillance and morbidity estimation (Cinnamon et al. 

2016; Mwingira et al. 2017), health quizzes (de Lepper et al. 2013), information-based 

interventions (de Tolly et al. 2012), or pushing health-related reminders to individuals (Pop-

Eleches et al. 2011).  

More recently, researchers have used other technology to help gather high-frequency 

social or behavior data related to the environment. These efforts include using smart meters to 

measure water use and quantity (Horsburgh et al. 2017) and energy use (Raimi and Carrico 

2016). Researchers have also harnessed the power of crowdsourcing data to ameliorate coarse 

or missing datasets, for example, to create gap-free, daily snow cover maps (Kadlec and Ames 

2017) and improve land cover information (Fritz et al. 2012; Estes et al. 2016). Yu et al. (2017) 

developed a smartphone application to collect geotagged agricultural land system information 

from citizens, thereby allowing for improved understanding of changes in agricultural land 

systems. 

The objectives of this study are to (1) describe a software and data infrastructure for 

MPDC of social and environmental dynamics in smallholder agroecosystems; (2) organize and 

evaluate a classification of data types that can be effectively collected via SMS; (3) outline 

challenges and limitations of MPDC for social-environmental systems analysis, in terms of both 

our data collection process and the data themselves, including data quality assessment; and to 

(4) illustrate the power and value of SMS-based social-environmental monitoring. We present 

this work within the context of ongoing surveys of smallholder farmers in Zambia and Kenya, 

with a focus on data from Zambia. Our findings contribute to the development of a set of best 

practices for implementing large-scale surveys using mass, mobile communication 

technologies, and can be used by other research groups to work toward building their own 

projects in places such as SSA. 

2. Data collection methods and infrastructure for high-frequency social data 
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2.1 Study context 

Zambia has a humid, subtropical climate, with annual rainfall ranging from 500-1400 

mm. The entire country, however, is vulnerable to drought and dry spells (Estes et al. 2014). 

The country experiences one major rainy season, with the onset of rains and maize planting 

typically occurring in October or November. However, farmers’ perceptions are that rainy 

season onset is occurring increasingly later in the year (see Figure 1) (Waldman et al., 

forthcoming). Maize harvesting takes place in May and June, depending on factors such as the 

planting date, maize variety, moisture of the crop, and presence of pests.  

 

Figure 1. Density plots showing percent of farmers answering which week they estimated the 

rainy season began for each of a number of seasons. During in-person household interviews (not via 

SMS), we asked farmers (N=1021-1177) across six provinces in Zambia (Central, Copperbelt, Eastern, 

Northern, Northwestern, Southern; results presented here are pooled across provinces): To the best of 

your memory, when did the rains begin in the 2015-2016 season? 2014-2015? 2013-2014? 2012-2013? 

About ten years ago?  

Our research team has been conducting surveys via SMS with farmers in Zambia since 

late 2013, and as of March 2018, just under 800 farmer households were enrolled in the SMS 

survey program in Zambia. SMS program households in Zambia are located across eight 

provinces, with a denser concentration around the city of Choma. Figure 2 shows the location of 

households enrolled in the SMS survey program in Zambia.  
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Figure 2. Location of enrolled households.  

Farmers were recruited into our SMS survey system through two methods. Our initial 

recruitment enrolled farmers who were interviewed as part of a large-scale extensive in-person 

survey conducted in 2015, 2016 and 2017. The sampling design of this survey involved 40 

market nodes around which a spatially stratified random sample of 30 households were 

surveyed. Market nodes were selected based on identification of major market locations within a 

set of districts representing different agroecological zones in the country. Districts constitute 

level 2 in the United Nations administrative boundary system (Provinces are Level 1). Four 

markets were identified in each of 10 districts and in most cases, this constituted all the daily 

markets within a district. Households were selected by sampling along a series of roads (or 

transects) emanating from the market node. In cases where the household settlement pattern 

around the market node was not uniform, oversampling in populated areas was used. The result 

was a spatial cloud of households concentrated around each market node location where the 

size of the cloud varied as a function of population density, but a majority of households were 

located within 10km of the market node location. The total sample population was approximately 

1,200 households in 2015. A larger number of market nodes were selected as focal sample 

points in the Southern Province so that analyses requiring high sample density (i.e. 

heterogeneity of perceptions of rainfall within 5 km x 5 km grid cells) was possible. At the end of 
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this in-person household survey documenting the demographic structure of the household, labor 

and farming practices, and perceptions of climate change, we asked farmers if they owned a 

mobile phone and were willing to participate in weekly SMS data collection. In 2015, we enrolled 

about 760 farmers in the SMS survey program, 310 farmers in 2016, and 230 farmers in 2017.  

Our second recruitment method was through village focus groups composed of one-third 

farmers with < 0.5 ha in land holdings, one-third female-headed households, and one-third 

farmers from the village selected by village leaders and agricultural extension agents. The first 

two groups we intentionally recruited because of the potential for samples drawn with input from 

village leaders tend to undersample those two important groups. We then trained all of these 

respondents to use the phones to participate in the program and we chose a subset of them to 

participate in an annual household survey. In addition, farmers who were not responding to 

surveys were periodically purged from the sample, as were any farmers who requested to be 

removed from the program. 

We use TextIt (https://textit.in/), a low-cost messaging platform that allows users to 

create SMS or voice applications for data collection. Survey question sets consist of 4-8 

questions in English, designed to take no longer than three minutes to answer. These question 

sets are referred to as “flows,” and are built in TextIt and disseminated to farmers each week. 

Farmers receive a series of questions related to what time of year it is: planting, growing, 

harvesting, or interseason. Flows can be constructed to include skip logic or branching 

depending on an answer to a prior question, and can also shift from one flow to another. For 

example, if a farmer responds that he or she has finished harvesting all of his or her maize, he 

or she will automatically be switched to the interseason flow. An Android smartphone 

maintained in Zambia runs the TextIt application that is used to remotely send and receive the 

questions and answers. Over time, some questions have been adjusted slightly for clarity, or 

alternated with others as the research program has progressed. Farmers receive a small 

payment to compensate them for participating in the survey each week in the form of talk time 

(value approximately $0.20 USD), which is provided directly to their phones. 

Each week a portion of the sample responds, with some farmers responding regularly 

and other farmers responding sporadically. The overall response rate therefore varies, as does 

the weekly overlap between respondents as farmers drop in and out of the response pool. Thus, 

unlike traditional survey data, panel data, or even data coming from meteorological stations, 

which are structured and lend themselves well to organization and retrieval with relational 

databases, data from SMS-based surveys are characterized by a highly variable structure and 

frequent missing values. 
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2.2 Broader data infrastructure 
While the TextIt platform provides tools for low-cost and relatively easy data collection, 

its functionality does not adequately support analysis, replication, and preservation of data that 

are crucial for scientific research (National Science Foundation, 2007). With rapid, frequent data 

collection, manual methods and limited automation provided by data collection platforms is slow, 

cumbersome, and prone to errors, duplications, and fragmentation. To realize opportunities that 

are emerging from collecting new forms of data such as those discussed in this paper, we 

established and implemented the following principles in our approach to data infrastructure: 

 Unified storage. A unified database allows us to store large amounts of data in one 

place, easily manage updates, additions, and cleaning, increase accuracy and security, 

and establish links to other datasets for more complicated analyses. 

 Preservation and replication. Downloading and storing data on the servers managed 

by the project team provide additional backup and security. If the cloud platform 

becomes corrupt or unavailable, the risk of losing data is minimized as data can be 

easily restored from the database, which also has a backup copy. 

 Improved querying and retrieval capabilities. A database allows data to be organized 

according to research needs, i.e., in anticipation of the most common queries. It also 

allows the addition of more metadata to enable filtering and subsetting of data for 

various types of analysis. 

2.3 Data pipeline 

The data infrastructure we developed will also facilitate long-term curation and 

management of these data. While data analysis techniques are at the core of many discussions 

on climate variability and food security, reliable data use depends equally, if not more, on what 

happens before and after the analysis. In our research, we incorporate the concepts of data 

lifecycle and data pipeline to take better care of data and to work with big and heterogeneous 

data (Plale and Kouper 2017). A fully developed infrastructure supports data throughout its 

lifecycle, from collection to sharing and re-use. Viewing data through the lens of the lifecycle 

framework helps to maximize the benefit of data, minimize its cost, and improve data quality. 

The data pipeline is an abstraction that describes software tools and services that are applied to 

data objects as they go through the lifecycle.  

Our data preservation and analysis pipeline combines our own innovative methods of 

ingesting, processing, and visualizing the data with the existing solutions for storage. This 

pipeline allows us to automatically direct data from its cloud collection to locations of storage 

and processing (Figure 3). 
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Figure 3. Data preservation and analysis pipeline. 

The pipeline consists of Java and shell scripts developed by our team (TextIt Ingestor, 

n.d.) and is organized into modules within the data layer and a noSQL store that comprises the 

storage layer. We use TextIt’s RESTful JSON API that has endpoints to perform bulk operations 

on contacts, runs, flows, and events (see https://textit.in/api/v2/). The data layer includes the 

ingestor, pre-processing, backend API, and user interface modules. The module “TextIt Data 

Ingestor” runs in intervals that can be defined in a configuration file. As flows are sent out at 

different times for Zambia and Kenya, we schedule retrievals accordingly – on Mondays at 7 AM 

local time (11 AM GMT) to collect Zambia data and on Saturdays at 2 AM local time (6 AM 

GMT) to collect Kenya data. The module retrieves available data for the last week from TextIt 

and saves it on disk (File System) as multiple JSON files. The pre-processing module performs 

several checks: it makes sure each file was retrieved correctly, removes duplicates, and merges 

multiple files that belong to one flow. 

The pre-processing module also contains scripts for metadata management. As the 

TextIt platform provides a limited number of metadata fields that can be added to describe flows 

and contacts, we developed tools to add additional metadata to flows and contacts. The tools 

allow us to pull information from the database, add additional values through automatic 

population of the fields or manual edits via a website, and write to the database again. The 

following metadata variables are added to flows: flow type (test / regular), season (planting, 

growing, harvest, interseason), country (Zambia or Kenya), creator, run start date, run end date. 

Contact information is enhanced with “Date last responded” information to provide summaries of 

non-responsive contacts over time. 
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2.4 Database solutions 
The data from the disk are then inserted into a noSQL database. We use the open-

source solution MongoDB as a noSQL Store. This part of the storage layer is designed as three 

databases per country that store raw, processed (split), and integrated documents (Figure 4). 

 

Figure 4. Database design. 

In addition to being open-source, MongoDB offers benefits as a noSQL solution: 

 Conformity to the native data collection format. Many current data collection 

platforms, including TextIt, store data in a document-oriented format using JSON (or 

other) encoding. Documents are not required to adhere to a standardized structure, i.e., 

they may have different sections or fields. Preserving data in a raw JSON format allows 

us to maintain a link between our storage and TextIt. For example, in the case of data 

corruption, selected documents can be uploaded back to the TextIt platform. 

 Flexibility in structure. As described above, flows change from season to season and 

sometimes questions are modified. Therefore, we cannot expect the survey data to have 

a fixed schema and design a relational database. While the data could have been 

transformed from JSON to a relational database, having flexibility in structure allows us 

to accommodate changes in questions and survey structures over time without 

compromising previous data or requiring change in the database design. Data storage is 

being separated from the application (research design and implementation) logic. 

 Big data management. As the amount of data collected will grow tremendously over 

time, we need a solution that allows us to manage data efficiently. NoSQL databases are 

known to be highly scalable for managing “big data” in a distributed environment, without 

compromising performance (Nayak et al. 2013). 
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A raw database saves data as they come from TextIt in JSON format. This is storage for 

preservation. The split database allows us to save data in a more logical and structured manner 

and avoid arbitrary partitions of data done by TextIt, such as 250 responses per file for each 

week that are embedded within a flow with its metadata. We extract runs (responses) from each 

file and organize the database into three logically consistent collections: (1) contacts, which 

contains information about respondents, (2) flows, which contains information about each 

survey, and (3) runs, which contains information about each response within the survey. Such 

structure also helps with efficiency in queries. See Figure 5 for the schema of the split database. 

 

Figure 5. Split database schema. 

In addition to the contact, flow, and run data, this database also contains information 

about the status of data retrieval from the TextIt API, which is subsequently used in monitoring 

both the data and the server’s health and completeness.  

The integrated database consists of data that was converted into a form suitable for 

further analysis; that is, all responses per contact are gathered together and reformatted into a 

flat row-column representation rather than a hierarchical key-value pair representation. Such 

preprocessing minimizes repeated calculation overhead when the database is queried multiple 

times with different requests. Essentially, this third database is designed to accommodate the 

most frequent queries that researchers use on the database. 

The backend API module exposes data from MongoDB to the front-end services so that 

data can be displayed and explored on a website or downloaded for further cleaning and 

analysis. The backend API is an additional layer that provides standardized access to data and 
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at the same time prevents direct manipulation within the database. This module can be further 

expanded with services that facilitate computational analysis, modeling, and visualizations. 

Metadata management, data monitoring, and data exploration can also be done through 

our user interface. A website has been developed that can serve data out of the databases and 

present various data products to stakeholders. Currently, the user interface provides access to 

flow and run completion rates as well as to summary statistics of respondents (Figure 6). 

  

Figure 6. Web-based dashboard for data monitoring and exploration. 

2.5 Automated cleaning 
Data cleaning and analysis are currently done outside of the automated pipeline, using 

such tools as Open Refine for cleaning and R, SPSS, ArcGIS, and Tableau for analysis and 

visualizations. Open Refine (http://openrefine.org/) is a visual open-source tool for cleaning and 

transforming messy data. It allows for data exploration, identifying outliers and potential errors, 

normalizing spelling, and correcting typos and mistakes. In Figure 7, for example, we show how 

Open Refine helps to identify similar answers with different spellings (e.g., FIVE / Five) and 

bring them to the same standard form or to change them from text to numerical form. 
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Figure 7. Open Refine for data cleaning. 

Once the similar values are clustered and their correctness is verified, a standardized 

new value can replace all other values. However, because respondents are allowed to answer 

any question with open text (rather than selecting from closed-ended response options), we 

must take further steps to clean the data and attempt to salvage as many valid responses as 

possible. Our team is currently in the process of systematically implementing more intelligent 

methods of cleaning using syntactic similarities in values. In the absence of these more 

intelligent methods, our research team has a choice to either forgo data that cannot be cleaned 

using the methods we already employ, or clean the unique answers manually. 

3. Data types 
As described earlier, we survey farmers throughout the year, asking questions about 

planting, growing, and harvesting maize, in addition to questions outside of the maize season. 

We organize our questions into three categories: spatio-environmental survey questions, 

temporally linked questions, and event-based questions. Thinking about questions in different 

ways matters; a question that has less to do with the farmer’s personal characteristics or 

farming practices and is instead related to the physical environment around the farmer (e.g., Did 

it rain on your fields in the last 7 days?) presents different data challenges and analysis 

opportunities than an event-based question related to the timing of certain crop management 

practices. A sample of questions we have asked farmers regularly is provided in Appendix A. In 

this section we use four questions from the project to describe this typology. The question texts 

and administration timeframes are provided in Table 1. In section 4 of the paper (Data quality 
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and usability), we reference a sample of the list of questions in Appendix A to illustrate data 

quality issues. Finally, in section 5 (Multi-temporal analysis and visualization of high-frequency 

data), we also discuss the questions presented in Table 1.  

Question 
label 

Question text Question 
type 

Administration time frame 

Rain Did it rain on your fields in 
the last 7 days? 

spatio- 
environmental 

nearly every week during the 
period under consideration 

Storage How many 50 kg bags of 
maize do you have in 
storage now? 

temporally 
linked 

every week during the period 
under consideration 

Maize 
buying 

Did you buy any maize for 
your household usage 
this week? 

event-based harvest portion of the season and 
the period before the next growing 
season 

Maize 
selling 

Did you sell any maize 
this week? 

event-based harvest portion of the season and 
the period before the next growing 
season 

Table 1. Questions used as examples throughout the text 

3.1 Spatio-environmental questions 
We consider spatio-environmental questions to be those that ask farmers about their 

immediate environment and are not dependent on responses either to other questions we ask 

or to having answered the same question in prior weeks. The Rain question is of particular 

interest because of its potential to serve as an alternative to meteorological data in remote 

areas, or to be combined with satellite-based precipitation data to capture finer scale dynamics. 

The data from this question, coupled with mobile meteorological stations that we continue to 

install in the study areas, provide a more accurate representation of microclimatic variation in 

rainfall than the few meteorological stations that are spread across the country. The Rain 

question is less sensitive to the issue of different respondents dropping in and out each week 

than questions that ask directly about farmer behavior, because the quantity we seek to 

calculate from the answers is not affected by values given in prior weeks (unlike planting or 

harvest questions). To ascertain whether it rained in a particular week in a given location, we 

can aggregate farmers’ responses into grids and calculate the proportion of farmers responding 

that week who answered “yes” to the Rain question. The size of the grid cell chosen for this 

analysis is based on the desired minimum average number of farmers responding per week per 

cell, which is a function of enrolled farmer density and weekly response rate. Although 
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aggregation loses spatial precision, it removes dependence on the response rate of individual 

farmers, while minimizing the noise caused by incorrect responses or between-farmer 

differences in interpreting how much rain is enough to justify answering yes to the rainfall 

question. 

3.2 Temporally linked questions 

Storage is an example of a question whose answer displays direct temporal 

dependency. With Storage, we know when households are harvesting their maize, and we know 

that maize storage declines over time, thus we should expect to see such a pattern of decline 

over the course of weeks. It could be fair to estimate that maize storage declines linearly from 

the point of harvest, and therefore even if there are data gaps for some weeks for some 

farmers, one could impute those missing values. However, the rate of change week to week and 

month to month in number of bags of maize in storage will differ from household to household, 

depending on what time of the year it is, how many people live in the household, how well off 

the household is in general, and their maize availability, among other things. For example, 

households may wish to sell some of their maize, which is one source of loss of maize in 

storage. Some households must sell maize as soon as or even before it is harvested, at lower 

prices to so-called “briefcase buyers” (local, small-scale, private buyers who enter the market 

early and tend to buy at lower prices), whereas those who are able to wait until later in the 

season to sell will find larger private buyers or the Food Reserve Agency (FRA), who generally 

offer higher prices. Thus, this type of question is more sensitive to missing data from individual 

farmers.  

3.3 Event-based questions 

Event-based questions attempt to collect data on discrete events that are not spatially 

linked nor tied to prior responses to the question over time. In our example, the events in 

question are buying and selling maize, which we have structured into discrete events by asking 

about these activities each week. Maize buying and Maize selling therefore represent the 

question type with the greatest potential for problematic data gaps. If a household does not 

respond to a question like this for a given week, we completely miss the reporting for that event, 

have little recourse for recovering that information, and do not have a strong rationale for 

imputation. To fill in some of these data we may be able to rely on recall data from the annual, 

in-person household surveys we conduct, which include questions about buying and selling 

maize in the three months prior to the survey. This covers a portion of the same time period as 

that covered by the SMS questions, but not the entire period, and the household survey data 

are less precise and more subject to recall error. However, the household survey data are 
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useful for characterizing the relationship between other household-level variables and the act of 

buying or selling maize.  

4. Data quality and usability  

4.1 Sample size and bias 
One of the primary considerations for our research was to grow the SMS survey 

program large enough to have a sufficient sample size for understanding trends over time. 

Addressing this issue is to some degree simple: the more respondents, the better. However, 

because the issue of overall sample size is compounded by respondents’ inconsistent 

participation, we find it instructive to examine what the data look like over a range of sample 

sizes. To illustrate, we take the Rain question and plot the trend over time for rainfall (i.e., the 

proportion of respondents saying that it rained last week over the number of respondents 

replying that week) at sample sizes of 10, 50, 100, 250, and 500 farmers to visually show the 

range of observations that could have been observed with a smaller number of farmers versus a 

larger number (Figure 8). We choose Rain as the example, but we could choose any question 

we ask farmers to serve as the illustration for sample trends. A Monte Carlo simulation was 

performed with the bootstrap method to first select n farmers from the data, with replacement, 

and then calculate the proportion that reported rainfall each week (noting that not all farmers 

responded each week). The farmers were then resampled 10,000 times, with the proportion 

reporting rainfall recalculated each time. The variability of responses that could have been 

received is described by calculating the 2.5th and 97.5th percentile of the estimated proportions 

of rainfall each week (95% bootstrap confidence interval) and is represented by the shaded grey 

region in Figure 8. The five black trendlines for each plot in Figure 8 represent five individual 

draws out of the 10,000 simulations to show examples of the data that might have been 

observed if we only sampled n farmers. Overall then, we get a good sense of how smooth the 

dataset becomes as we approach a sample size of 500 or larger. Recall that our farmers are 

located across eight provinces in Zambia, and we did not take geography into account in 

producing these graphs, as they are meant to illustrate the methodological issue of sample size. 

More substantive analyses would take geographic location of households into account. 
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Figure 8. The five black lines in each plot represent five random simulations of the percentages 

that might have been observed with sample sizes of n=10, 50, 100, 250, or 500 farmers. The shaded grey 

region represents the range of possible observations, based on 10,000 replicates of a Monte Carlo 

simulation (95% bootstrap confidence interval). Data represent the proportion of farmers stating that it 

rained on their fields that week. 

We recognize that our sampling design may be affected by some degree of bias. Most 

obviously, we are missing farmers or farming households who do not have cell phones, and we 

may miss some farmers who are illiterate or who do not speak English. However, we try to 

overcome the latter two limitations by ensuring that the farmers we recruit have household 

members who are able to read English and are willing to help the farmer respond to the survey.  

We also performed a regression analysis to check for potential nonresponse bias with 

the current sample in Zambia (results not shown). We tested whether any of the following 

variables significantly predicted the number of weeks responding to the SMS surveys for the 

period from October 3, 2016 through July 10, 2017: age of household head; sex of household 

head; number of people living in the household; highest education level of anyone in the 

household; total area of farming for the last growing season; maize plot size for the last growing 

season; off-farm income; and a count of the number of food security measures employed in the 

week prior (Coates et al. 2007). No variables were significant in the model and R2 = 0.022. 

4.2 Nonresponse 
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There is a potential tradeoff between data quality and the amount of information that can 

be collected. Although it seems intuitive that the longer a survey lasts, rates of survey attrition 

and satisficing would increase, and the likelihood of participating in future surveys would 

decrease, the little research that has been done on these issues has mixed results (e.g., Bogen 

1996, Lynn 2014). In our project, respondents tend to drop in and out of the answer pool week 

to week. That is, while we have a stable response rate that tends to range from approximately 

40-65%, virtually none of our farmers respond every single week. This could be due to any 

number of factors, from technology infrastructure and hardware issues, to respondents simply 

forgetting. It is difficult to estimate to what degree the fact that we make a weekly survey request 

accounts for respondents’ spottiness, and we do not have follow-up, qualitative nonresponse 

data for Zambian farmers. However, we do have such data for Kenyan farmers, which we 

collected through follow-up phone calls with nonresponding farmers from October 2015 through 

April 2016. This survey provided enough data for us to understand the main reasons for 

nonresponse, which we believe are also likely to apply to Zambian farmers. Table 2 lists the 

fifteen reasons we have coded based on the qualitative data. The top five reasons for 

nonresponse over this period include the respondent forgetting; being too busy; not receiving 

the SMS; the questions no longer coming through mid-survey; the lack of cellular network. 

Respondent forgot 

Battery/phone charging problems 

Respondent too busy 

Respondent didn’t get SMS 

Respondent didn't get talktime 

Respondent sent texts from second SIM 

Next question didn't come 

Accidentally deleted SMS 

No network 

Phone spoiled/can't type 

Respondent was sick 

Respondent did not have anyone to assist 

Received 2 sets of questions 
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Respondent had traveled 

Respondent had used talktime 

Table 2. All reasons coded for SMS nonresponse 

4.3 Usability 

SMS-administered surveys pose unique challenges that must be factored into the survey 

design and data analysis pipeline. Screen space presents a particular consideration in terms of 

question wording, and the fact that most farmers in SSA do not use smartphones (as opposed 

to feature phones, or so-called “dumb” phones; Pew Research Center 2018) limits choices for 

presenting questions (Callegaro et al. 2015). Our questions require either yes/no (binary), 

numeric, or text responses. We provide no predetermined response options for selection. We 

ask very few questions that require a text answer, and we have found that answers to this type 

of question to be of lower quality for analysis. For example, we have attempted to ask farmers 

what seed varieties they have planted. Some farmers simply reply with the manufacturer name 

such as “SeedCo,” others will only provide the variety number “513,” while others will specify the 

manufacturer and the variety name, “SeedCo 513.”  Numeric answers fare better. These include 

questions such as “How many 50kg bags of maize do you have in storage now?” Binary 

questions, such as “Did it rain on your fields in the last 7 days?” provide the cleanest data. We 

analyzed the proportion of usable answers versus any answers provided for a subset of 12 

questions. By “usable,” we mean responses that are not outside the bounds of possible answers 

and are fully comprehensible. For example, in response to a question such as “How many 50kg 

bags of maize do you have in storage now?” unusable answers include “depends,” “yes,” 

“100,000,” and the like. We compared a set of seven yes/no questions with five text or numeric 

type questions, over a period from November 2015 to February 2016, and found less data loss 

in terms of usability for binary questions than for text or numeric (Figure 9). 
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Figure 9. Data loss by question, expressed as the difference response rates between the rate 

adjusted for unusable data and the total rate. 

5. Multi-temporal analysis and visualization of high-frequency data 

In addition to challenges, the type of question asked presents diverse opportunities for 

recognizing patterns in the data and characterizing trends over time. We focus again on four of 

our survey questions, Rain, Storage, and Maize buying/Maize selling to illustrate the possibilities 

for visualizing and analyzing such high-frequency data. We examine these questions over parts 

of the period from the weeks beginning October 3, 2016 through October 30, 2017, which 

covers just over one year, or one entire growing season, for Zambia.  

5.1 Spatio-temporal data 

As an example of data visualization for the Rain questions, we chose five weeks of the 

study period to illustrate this data signal in the area around the city of Choma. The upper left 

panel of Figure 10 shows the location within the country, and the other panels, taken together, 

provide a snapshot of weekly rainfall events in this area between October 2016 and May 2017. 

Compared to precipitation data coming from the nearest meteorological station in Mochipapa, 

which represents a huge physical area in terms of meteorological data for the country, the data 

from the Rain question show how much local variation there is in the region (Figure 11; 
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Southern province only, the portion of the study area associated with Mochipapa station). That 

is, at first glance it may appear that farmers are reporting rain for the same periods as rainfall 

recorded at the Mochipapa station, however, during the rainy season (roughly November - 

March or April), heterogeneity in farmers’ responses allows us to identify drier or wetter spots. 

For example, for the week of March 27, 2017, no rain was recorded at Mochipapa, but around 

60% of farmers reported that it rained that week, with drier areas to the north and west of 

Choma.  

As with the rainfall question, spatial aggregation also allows us to extract useful 

information from the binary responses to the questions related to weekly planting or harvesting 

events. These three variables--spatially aggregated rainfall, planting, and harvest proportions, 

can provide valuable information regarding crop management and how it varies in response to 

regional variations in rainfall onset. This in turn can be estimated by applying change point 

detection techniques (e.g. a Pettit test; Pettit 1979) to the gridded rainfall proportions, thereby 

incorporating the fine spatial heterogeneity in rainfall that would be masked if one were to rely 

on weather station data alone.  

 

Figure 10. Visualization of data from the Rain question over time.  
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Figure 11. Percent of households in Southern province reporting rainfall plotted against rainfall 

amounts from Mochipapa station data. 

5.2 Temporally linked data 
Maize storage in Zambia is crucial, ensuring some degree of food security for 

smallholder households. With the Storage question, even a single visualization of the average 

number of bags in storage for households over time, broken into terciles (Figure 12), is a 

powerful and useful measure of general food security among households in the study area. We 

first removed outlier responses for each week, calculated as those falling outside the 1.5 

interquartile range. The percent of outlier responses each week ranged from zero, during a 

week with few responses, to 16.4, which was a week during the height of harvest season. In 

Figure 12, which shows the number of bags of maize households have in storage on average 

each month over the period of decline during the growing season, it is immediately apparent 

that some households are far less secure than others, and because of the temporal nature of 

the data, we can identify the period when storage reserves become critically low. Annual per 

capita maize consumption has been estimated at anywhere between 105 kg and 175 kg (Hotz 

et al. 2011, Kumar 1994, Prasanna 2016, Shiferaw et al. 2016). 
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Figure 12. Average number of bags in storage for households over time, broken into terciles, with 

indicators for the stages of the maize season and rainy season. Households responded to the question, 

How many 50 kg bags of maize do you have in storage now? 

If we want to know more about the characteristics of households that are more likely to 

be food insecure, we can look at the underlying attributes of households at each food storage 

level, which are gathered via an annual survey from a subset of households in the study area. 

We have survey data for 340 households who answered the Storage question and after removal 

of outliers still had responses for at least one week over the period under consideration. One 

descriptive analytical method to explore these data is a recursive partitioning technique known 

as a classification or regression tree (CART). This method helps us explore the structure of the 

data and provides a visualization of the decision rules used to predict, in this case, the 

categorical outcome of food storage tercile. One may also, of course, use regression modeling 

for these data, but our intent here is to show an additional example of how to analyze and 

visualize these data. We use this method (R package rpart: R Development Core Team 2011; 

Therneau et al. 2012) to understand which variables might be most useful for predicting food 

storage from among a set of possible pertinent variables from the household survey: whether 
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the household’s primary language is Tonga (the dominant ethnic group in this region); age of 

household head; sex of household head; highest education level achieved by anyone living in 

the household; number of people living in the household; the household’s total maize plot area 

(ha); household’s total off-farm income; number of food security measures employed in the 

week prior (from the Household Food Insecurity Access Scale, or HFIAS (Coates et al. 2007)); 

did the household give away any maize from their harvest. (Figure 13). To interpret Figure 13, 

for example, the node that is in the lowest left of the figure can be understood first to mean that 

36% of all farmers (n=122) have total maize plot area of less than 1.2 hectares. Then, of those 

122, 52% did in fact fall in the lowest tercile of food storage, 30% were in the middle tercile, and 

18% were in the highest. Thus, based on maize plot size alone (<1.2 hectares), about half of the 

farmers (52% of 122) would be correctly predicted to be in the lowest tercile group. 

 

Figure 13. Classification tree for data from the Storage question. This tree was selected by 

pruning to a minimum bucket size of 15 farmers per node. 

5.3 Event-based data 
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One limitation with our SMS-administered data collection is the impact that nonresponse 

has on event-based data. A typical household may buy or sell maize 3 or 4 times/year. For a 

question like “Did you sell any maize this week?” a missing response for a week when a 

household sold maize may mean that the SMS-based data reporting misses a major selling 

event. However, aggregation of data across a population of households can still be used to 

portray the seasonality of maize buying or selling through the year in a similar way as that 

described with the precipitation reporting: missing data from some respondents does not greatly 

impact the overall trend in the data provided there is a sufficient number of respondents in a 

particular week. But if the objective is to use SMS based data collection to document what 

proportion of harvest a household buys or sells through the year, a missed observation can lead 

to significant misrepresentation.  

Households’ behavior in terms of maize selling and buying can be affected by many 

factors. Households have more maize available to sell after harvest, but they may retain a 

portion of harvest in hopes that prices increase as available maize stocks become scarcer over 

time. A household may also sell a large portion of harvest at one time in order to acquire cash 

for unexpected life events like health-related expenses, school fees, or purchases of farm 

equipment. However, this one-time cash infusion may come at the expense of having to buy 

maize later in the year to satisfy household food demand. We cannot infer these household-

level dynamics from the broad scale SMS data we gather on maize selling and buying, but any 

buying or selling event with this kind of temporal distribution (i.e., tied to maize farming cycles) 

will demonstrate some patterns. We can better contextualize such patterns given other macro-

level data. 

For example, our SMS data (Figure 14) show the temporal frequency of maize selling 

over the course of 24 weeks during and after harvest, from the week of May 22, 2017 (maize 

marketing season begins in May) through October 30, 2017. Looking at the trends, we might 

have expected to see a larger or more defined bump in selling around July, when farmers have 

finished harvesting maize. Instead, we see that the percentage of households selling maize 

ranges between about 12% and 26% across these months, with no very clear jump or fall in 

selling activity. When we consider other data to help understand this pattern, we see that prices 

for maize began to fall sharply and dramatically after May 2017, back to the five-year average 

for 2011-2016 (FAO 2018; FEWS NET 2017). A confluence of events across the 2015-2016 and 

2016-2017 growing seasons led to this price drop (Chapoto et al. 2017). In the 2015-2016 

season, there was both an export ban on maize and a favorable growing season that led to an 

excess of maize in storage in the country for that year. Then, in the 2016-2017 growing season, 

farmers experienced another good growing season and produced a bumper harvest. Prices did 
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not pick back up through at least October for most of country (FEWS NET 2017). Given this 

context, it is less surprising to see the percent of households selling maize varying within this 

range, with few distinct peaks or valleys in the trendline, because the sudden price drop may 

have induced more farmers to hold on to their maize to wait and see if prices improve. If we 

were to examine other years of SMS data and compare patterns (data not shown), we could 

extend our understanding of the patterns of temporality of maize selling for farmers in Zambia. 

  

Figure 14. Percent of households reporting that they sold maize each week. 

The potential for missing event-based data also limits our ability to compare households, 

but can be partly remedied by turning to other data gathered via SMS in combination with our 

survey data. For example, we asked about Maize buying because it is a coping mechanism 

households might employ when their levels of maize in storage are depleted or low. Because 

we also have data from the Storage question, we can identify the period during which certain 

households find themselves on the margins of food security and thus might be engaging in 

buying maize to get through their leanest period. We can also identify which households fall into 

the lowest tercile of food security, and could link them with their responses to the Maize buying 

question to see whether these households are employing this strategy. Further, because we 

have survey data for a subset of the SMS participating households, we are able to understand, 

albeit with less temporal precision, what other food-related coping mechanisms households 

used during the year. The data from Maize buying give us an overall sense of the periodicity 
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and distribution of this event, while the survey data can help us understand why a particular 

household might be buying maize. 

Such frequent, event-based data are some of the most often missed data in traditional 

household surveys, but as is evident, they remain some of the most difficult to capture well. As 

our SMS survey program continues, cellular infrastructure becomes more reliable, and we 

improve our understanding of activities like maize buying and selling, this high-frequency, event-

based data collection work will become more and more valuable. 

6. Summary and conclusions 
Noël and Cai (2017) noted that for models of coupled human and natural systems, 

environmental models have become increasingly complex as data improves and methods 

advance, while accurately modeling human behavior within environmental systems remains 

elusive. Bell et al. (2016) have recognized the need for intra-annual or intra-seasonal social data 

to capture the complexity of change over time and improve assessment and modeling. When 

attempting to track and measure human activity and needs related to issues such as farming 

practices and food security, more traditional methods of data collection such as household 

surveys fail to capture short-term variability in environmental conditions and behavior (Bell et al. 

2016). Further, the temporal mismatch between annually collected household survey data and 

higher frequency environmental data (e.g. weather) limit the potential of both types of data. 

Harmonizing those temporal scales allows us to answer questions that we otherwise are not 

able to address. For example, if we were to only use an annual survey to ask about current 

maize in storage, depending on when that survey is administered, there could be little variability 

between households, which might lead us to believe that households in the study area are 

similar in terms of food security. However, when we examine food storage over the course of 

the season as we have done here, we see much greater differences in food security for 

households, which in turn is more meaningful if one were to factor in other survey data, such as 

HFIAS scores. 

We locate our research among work done by Bell et al. (2016), who provided 

smartphones to rural Bangladeshis to collect real-time survey data via a custom interface, and 

efforts by applied researchers, such as those being undertaken by the WFP in their mVAM 

program, which utilizes multiple mobile data collection modes to monitor individuals’ current 

food security status in many places in the world. Like these, we are collecting social data in real-

time when we ask farmers about activities like buying and selling maize. Unlike Bell et al. 

(2016), we utilize existing data infrastructure in that farmers we survey are using their own 

phones. We also integrate high-frequency environmental data by asking farmers about rainfall 
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and via mobile meteorological stations we have set up in the study areas. The environmental 

data we collect addresses gaps found in existing social-environmental data in the area: our 

weekly question about rainfall, linked to household location and then aggregated across 

provinces, is a level of detail missing from precipitation data that are currently available for SSA. 

As a result of all this, we see our work as integrative across scientific disciplines and pertinent to 

sectors outside of academia. 

There are two separate but related issues that our methods to collect, manage, 

visualize, and synthesize the high-frequency data address. The first is the need for improved 

agricultural statistics, especially about farmers living in areas where funding, personnel, and 

infrastructure present barriers to collecting and synthesizing agricultural data. Carletto et al. 

(2015) note that improvements to methods for collecting data about smallholders have been 

particularly slow. They also highlight the need to harness technological advances to collect such 

data more efficiently, and to better integrate agricultural data with other types of data. We are 

working toward all three of these goals. The second is the issue of scale mismatch. Scale 

mismatch occurs when the scale of management and scale of ecosystem processes do not 

match, leading to problems in the system in the institutions charged with managing the system, 

or in the ecological systems themselves (Cumming et al. 2006). Matched scales, however, are 

essential to characterizing the resilience of a system and to the ability of those within the system 

to successfully manage change. Both ecological and social change contribute to scale 

mismatch, and improving ways to measure and ameliorate scale mismatch is urgent, as poor 

socio-ecological data can lead to poor policies, institutions, and management. There is no clear 

path for fixing scale mismatches (Cumming et al. 2013), but more closely matching the data in 

terms of temporal resolution will help. Our methods are specifically designed to address the 

observational scale mismatch between annual surveys and farmer decision-making processes. 

The high frequency with which we are collecting these data can provide more detailed statistics, 

and temporal data can be put in the context of larger forces. Our example of examining the 

SMS-gathered maize selling data in light of movement in the market and growing conditions 

allows us to see how these outside forces are affecting households over time. 

Despite the potential of our approach to reduce scale mismatch in the characterization of 

coupled socio-ecological systems by collecting high-frequency data, bringing this data collection 

effort to scale is not without its own hurdles. While it is far less expensive to capture these data 

via SMS compared to in-person surveys, in terms of database infrastructure and cleaning steps, 

it is costly to prepare it for widespread use. In addition, understanding the types of data gaps 

that are inherent in high-frequency data and having ways to manage them are necessary to use 

the data to their fullest potential. We have noted some of these data gaps and presented ideas 
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for addressing or rectifying them. As cellular networks expand, more people acquire cell 

phones, and smartphone use becomes more widespread, the opportunities for collecting data 

with greater frequency will continue to improve, both in terms of lowering the rates of 

technology-related nonresponse by those living in less well-connected places, and in the ways 

we can utilize these tools to expand and improve data collection. Building tools and knowledge 

about the process of collecting high-frequency data now will be invaluable as technology 

presents these new opportunities. 
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Appendix A. 

These are questions asked of farmers in the SMS data collection program in Zambia. 

This is not an exhaustive list of all questions ever asked of these farmers, because questions 

have evolved or been dropped over time depending on their performance and the research foci 

of team members. 

Question Question nickname 
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Have you planted any maize in the last 7 days? maize planting 

How many seed varieties did you plant? variety number 

What is the first seed variety you planted? variety 1 of 2 

How many kg of [that variety] did you plant? kg 1 of 2 

What is the second seed variety you planted? variety 2 of 2 

How many kg of [that variety] did you plant? kg 2 of 2 

What seed variety did you plant? variety 1 

How many kg of [that variety] did you plant? kg 1 

How many 50kg bags of maize do you have in storage now? storage 

Are all of your maize fields planted now? planting complete 

Did it rain on your fields in the last 7 days? rain 

Did you weed your maize fields in the last two weeks? weeding 

Did you apply fertilizer to your maize fields in the last two weeks? fertilizer 

In the last two weeks, how many days did you work outside your 

farm for pay? piecework 

At this point, how many 50kg bags do you expect to harvest at the 

end of the season from all of your maize fields? expected harvest 

How many hours did your household spend collecting water in the 

last 7 days? water collection 

How many hours did your household spend collecting firewood in 

the last 7 days? firewood 

Did your household use charcoal for cooking in the last 7 days? charcoal 

Have you harvested any of your maize fields in the last 7 days? maize harvest 
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How many 50kg bags of maize have you harvested from your 

maize fields in the last 7 days? 50kg harvest 

Have you harvested all of your maize fields? harvest complete 

Did you buy any maize for your household usage this week? maize buying 

How much maize did you purchase? maize purchased 

Did you sell any maize this week? maize selling 

How much maize did you sell? maize sold 

In the past 14 days, did anyone give you maize so your household 

would have enough food? receive maize 

In the past 14 days did you give maize or mealie meal to any 

neighbors to they would have enough food? give maize 

In the past 14 days how many days did your household consume 

meat? meat 
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