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Abstract
Agriculture has substantial socioeconomic and environmental impacts that vary between crops.
However, information on how the spatial distribution of specific crops has changed over time across
the globe is relatively sparse.We introduce the Probabilistic CroplandAllocationModel (PCAM), a
novel algorithm to estimatewhere specific crops have likely been grown over time. Specifically, PCAM
downscales annual and national-scale data on the crop-specific area harvested of 17major crops to a
global 0.5-degree grid from1961 to 2014. To do this, pixels are assigned into probability clusters based
upon crop-specific pixel suitability (based onmean climate and soil characteristics) and gridded
historical agricultural areas. PCAMmaps compare relatively well with an existing gridded dataset of
crop-specific areas circa 2000 (simplematching coefficient value>0.8 for all crops). PCAMestimates
compare less well with time series county-level agricultural census data for theUnited States.
Importantly, deviations between census data and PCAMbenchmark estimates (driven by soil and
climate suitability) can be used to infer the importance of other factors of agricultural production (e.g.
labor, agricultural policy, extreme climate) in futurework.Our results provide new insights into the
likely changes in the spatial distribution ofmajor crops over the past half-century.

1. Introduction

Agriculture is responsible for feeding the growing
global population and is also one of the dominant ways
in which humans impact the Earth system [1, 2].
Covering approximately 12% of the land surface as of
2000 [3], croplands now comprise one of the largest
terrestrial biomes and continue to grow [4]. Among
other impacts, croplands alter biogeochemical cycling
[5], lead to forest clearing [6, 7], consume vast
quantities of water that far exceed use by any other
human activity [8], alter local, regional, and global
climate [9–11], and degrade soil quality [12]. Specific
crops impact natural resources and Earth surface
processes in unique ways. For example, fertilized corn
production in the US Midwest is responsible for
increased nitrogen loads to the Gulf of Mexico [13],
while wheat production in Northern India is rapidly
depleting groundwater aquifers [14]. Similarly,
rice production throughout Asia is a significant

contributor to global atmosphericmethane [15], while
expanding soybean cultivation has converted large
areas of South America’s savannas and dry forests to
cropland, and appears set to do the same in Southern
Africa [16]. Estimating how the distribution of specific
crops has likely evolved over time will enable better
assessments of environmental systemdynamics.

Agricultural management practices have changed
substantially over the past several decades [17].
Although total global cropped area increased by about
18% since the mid-1900s, yields increased by 28%
during the same time period [4]. This intensification
of production was enabled by the increased use of fer-
tilizers, pesticides, mechanization, irrigation, and cul-
tivar improvements that are associatedwith the ‘Green
Revolution’ [18, 19]. These productivity gains are sub-
stantial and have enabled production to outpace
population growth. However, yields of the ‘Big 4’ (i.e.
maize, rice, wheat, and soy) are increasing slower than
the 2.4% per year rate required to double global
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production by 2050 [20]. Additionally, extreme
weather events have negatively impacted cereal pro-
duction over the last several decades [21, 22]. Extreme
events are projected to increasingly impact agriculture
in the future, with different impacts depending on the
crop and climate hazard. To determine historical and
future exposure of crops to extreme events, it is impor-
tant to identify where specific crops have been grown.

Despite their large consequences, understanding
of these changes and their impacts is primarily con-
fined to the national scale, as the only globally compre-
hensive, annual crop area dataset is the country-level
statistics provided by the United Nations Food and
Agriculture Organization (FAO) [4]. FAO provides an
open-access source of global agricultural statistics
which is widely utilized and provides a standard for
national level agricultural statistics. FAO provides data
on the area harvested [hectares] for each crop-coun-
try-year. Areas harvested multiple times in a single
year are counted more than once in the national total.
This means that the harvested area may exceed the
physical area of the cropland that they are grown on.
FAO also provides information on the production
[tonnes] for each crop-country-year.

Previous studies have created sub-national, crop-
specific distributions and productionmaps.Monfreda
et al [23] developed a statistical disaggregation techni-
que to downscale the FAO crop-specific areas to a
5 min resolution, using a gridded cropland area map
as the disaggregation target [3]. Portmann et al [24]
built on that effort by using crop calendars to tempo-
rally disaggregate the dataset to a monthly time step.
However, both datasets represent the year 2000 crop
distributions, and the disaggregation procedure does
not account for distributional variations between
crops below the scale of the administrative unit pro-
viding the crop area statistics [23]. You et al [25] devel-
oped the Spatial Production Allocation Model
(SPAM), which is a crop allocation model that incor-
porates comparative advantage and potential eco-
nomic value to spatially distribute crop production.
SPAM uses a host of input data and a cross-entropy
approach tomake plausible estimates of the distribu-
tion of 42 crops under two production systems
[25, 26]. As with the model presented by Monfreda
et al [23], the SPAM dataset is also circa 2000
and does not vary in time, although model output
for the years 2005 and 2010 has recently been
generated [27, 28].

A number of datasets provide gridded agricultural
land use histories, but not for specific crops. These
include a modeled reconstruction of various land use
distributions, including agriculture, for the past 300
[29, 30] and 12 000 years [31, 32]. These historical
reconstructions were developed under Land Use Har-
monization projects to create merged historical and
future projected land use time series, which provided
the forcings for ClimateModel Inter-comparison Pro-
jects [33]. Additionally, Ramankutty and Foley [34]

presented a historical reconstruction of total cropland
for the period 1700–1992. Pongrantz et al [35] mod-
eled cropland and pasture from800 to 1992.

Despite this substantial progress in understanding
agricultural geography, there is relatively sparse infor-
mation on the spatial distribution of individual crops
over time. The goal of this study is therefore to esti-
mate crop-specific agricultural geography in time.
Half degree spatial resolution maps of the annual dis-
tributions of 17 major crops for the period 1961–2014
are created. To generate these maps, a new cropland
allocation algorithmwas developed—the Probabilistic
Cropland Allocation Model (PCAM). PCAM dis-
aggregates the FAO’s national census information [4]
onto the global agricultural land use grids provided by
the History Database of the Global Environment
(HYDE) [32, 36]. The presented approach differs from
previous disaggregation methods by using crop-spe-
cific land suitability surfaces provided by the Global
Agro-Ecological Zones (GAEZ) database [37] to prob-
abilistically allocate crop areas into grids. GAEZ pro-
vides gridded crop-specific suitabilities based upon
mean climate and soil characteristics. Additionally,
information on crop-specific calendars—including
multi-cropping—is used to allocate crops in space.

The potential utility of these probabilistic maps is
demonstrated by using them to answer two key ques-
tions: (1) how has the spatial distribution of key crops
changed globally over the study period? (2) Which
countries, crops, and time periods have experienced
significant area changes? This dataset is expected to
provide deeper insights into how environmental
dynamics have changed when used as an input in
Earth system models, which currently rely on tempo-
rally static or generic crop types in their land
inputs(e.g., [38–40]).

2.Methods

The PCAM was developed to estimate gridded and
annual crop-specific harvested area. Figure 1 outlines
the framework. The approach relies on several key
input data that are at different spatial resolutions (refer
to table 1). In general, national census data is down-
scaled to geographic grids. To do this, gridded data on
the crop-specific suitability of each pixel (based upon
climate and soil characteristics) is incorporated with
the fraction of each pixel that has historically been
cropland. Then, national level information was prob-
abilistically allocated to each pixel. The approach
incorporates a Monte Carlo algorithm, with random
selection across multiple trials to obtain a likelihood
estimate. This novel algorithm enables researchers to
estimate a global crop-specific, gridded product in
time. The data sources, algorithm, and key assump-
tions are described inmore detail below.
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Figure 1. Schematic of the Probabilistic CroplandAllocationModel (PCAM)methodology.

Table 1. Summary of data used in this study.

Source Spatial scale Time period Variable collected

FAO [4] National 1961–2014 National census information

on crop-specific production [tonnes]
and harvested area [hectares]

GAEZ [37] 5 arcminute 1961–1990 (baseline) Crop-specific suitability of each pixel

(based on soil and climate)
HYDE [31] 5 arcminute 10 000 BC—2014 Fraction of each cell that is cropland,

rice, rainfed or irrigated

Sacks et al [44] 5 arcminute 2000 Secondary crop calendars
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2.1.Data sources and integration
Information from several key sources for this study
was collected. Table 1 lists all of the (open source) data
that were utilized. First, information on crop-specific
production [tonnes] and area harvested [hectares] at
the national level was collected from the FAO [4]. This
information is available for 173 crops annually for the
period 1961–2014 [4]. The FAO census data was used
as the national allocation constraint in the PCAM
algorithm (see next section).

Crop-specific suitability index (SI) rasters were
obtained from GAEZ [37]. GAEZ is developed by the
FAO and the International Institute for Applied Sys-
tems Analysis and provides information on the suit-
ability of each pixel for specific crops based on mean
climate and soil characteristics. Soil characteristics are
principally based on the Harmonized World Soil
Database with supplemental sub-national and regio-
nal information [41]. Mean climate information is
derived from four general circulation models [42].
GAEZ has information for up to 280 crops/land utili-
zation types under alternative input and management
levels for historical, current and future climate condi-
tions [37]. The SI values were selected based on inter-
mediate agricultural inputs for both rainfed and
irrigatedwater supply systems. The intermediate input
level takes into account both subsistence and commer-
cial production [42]. This GAEZ data provides an int-
egral, gridded product for the PCAM allocation
routine.

The History Database of the Global Environment
(HYDE) provides 12 000 years (10 000 BC to 2017) of
land use data at 5 arc minute spatial resolution
[31, 32, 43]. HYDE provides gridded estimates of total
cropland based on historical patterns of human popu-
lations. It does not specify the particular crops grown,
with the exception of rice. From HYDE, time series
information on the fraction of each grid cell that is
cropland (rainfed and irrigated) as well as the fraction
that contains rice was retrieved. This information is
available decadally from 1960 to 2000 and annually
from 2000 to 2014. Information on the total cropland
of each pixel is used to constrain area accounting in the
PCAMalgorithm.

The FAO counts multi-cropped areas multiple
times in the national statistic. This means that if the
same land parcel is used twice in the same year, the
area of this parcel will be counted twice [4]. For this
reason, those pixels with multi-cropping were deter-
mined for better accounting in the algorithm. To
incorporate pixel-scale information on multi-crop-
ping, the secondary crop calendars provided by Sacks
et al [44] were used for barley, maize, oats, rice, sor-
ghum, and wheat. For example, if a pixel multi-crops
rice in the data provided by Sacks et al [44], then the
algorithmwill count the pixel area twice if it is selected
in the PCAMmodel.

The spatial scale, temporal domain, and crops
considered were based upon the available input data.

The study period was restricted to 1961–2014, since
this is the time period for which FAO national agri-
cultural statistics were available. The 0.5-degree spatial
resolution was chosen for comparison with several
existing global, gridded agricultural datasets (e.g.
[23]). Finally, 17 crops were selected for consideration
in this study (see SI for list). These 17 crops are selected
because all of the required input data is available for
them. These 17 crops represent 48%–62% of global
agricultural production [tonnes] and 68%–75% of
global harvested area for the years 1961–2014 (see
figure S1 for details available online at stacks.iop.org/
ERL/14/094023/mmedia).

The gridded data (i.e. GAEZ, HYDE, and crop
calendars) are interpolated from a 5 arc minute grid to
a 0.5-degree grid using a nearest neighbor approx-
imation. A panel dataset was constructed from these
three gridded data layers. To do this, information at
the pixel level was combined by using each pixel’s
unique latitude-longitude pair. This enables research-
ers to construct a panel that has crop-specific informa-
tion and varies in time. Each pixel with multi-
cropping activities is assigned an indicator variable for
the specific crops that are multi-cropped in that
location.

In accordance with the UN, national boundaries
from 1961 to 1990 were fixed to the 1990 boundaries.
Dynamic country boundaries were obtained from the
Cshapes v.0.6 package in R [45, 46]. These bound-
aries allow researchers to capture key events such as
the dissolution of the Soviet Union. Pixels are paired
with countries by using the boundaries active on 31
December for each year during the study time domain.
For countries not found in Cshapes, the Database of
Global Administrative Areas [47] was used. The pixel
is labeled using the International Organization for
Standardization (ISO) 3166-1 alpha-3, which provides
each country with a unique 3-character code. These
codes are used to match national statistics to pixels
during the allocation process.

2.2. Algorithmdevelopment
ThePCAMdownscales national census data to a global
grid. To do this, PCAM follows 5major steps.

• Step 1: Assign pixels to probability clusters so that
national information can be assigned to the most
likely and suitable pixels.

• Step 2: Sort national crop-specific production (and
corresponding harvested area) information for
each year.

• Step 3: Assign the harvested area of crops to pixels in
descending order of national crop production until
the national harvested area statistic is met. This step
is repeated for each produced crop.
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• Step 4: Perform probabilistic downscaling many
times using a Monte Carlo framework to obtain
likely outcomes.

• Step 5: Repeat Steps 2–4 for all country-years in the
study domain.

Additional details on these steps are provided here.
Step 1: Construct probability clusters. The goal of

PCAM is to assign national information on the total
area of cultivation for specific crops to pixels. Thus, it
is essential to determine how to distribute national
(lumped) information in space. Amajor novelty of the
approach is the classification of pixels into probability
clusters. These underlying probabilities are then used
to probabilistically allocate national values. Gridded
probabilities are based on a combination of GAEZ and
HYDE data. First, pixels with HYDE agricultural areas
>0 are available to allocate to. Then, pixels are
assigned to probability clusters according to their
underlying climate and soil SI derived from GAEZ
data. SI values as provided by GAEZ are shown in
table 2. Note that these values are pixel-crop specific.
The SI categories were then clustered into six prob-
ability clusters in which the greatest probability (i.e.
‘1’) is assigned to ‘very high’ quality pixels and the low-
est probability (i.e. ‘6’) is assigned to pixels that are ‘not
suitable’. Since FAO does not differentiate between
varieties of rice (dryland versus wetland) and millet
(foxtail versus pearl), generic rice and millet values
were derived.

GAEZ information on the crop-specific SI of each
pixel for rainfed and irrigated water supply systems is
used to further refine probability clusters. Many loca-
tions that are not well-suited for a specific crop under
rainfed conditions may be well-suited for that crop if
irrigation is available. Unfortunately, time-varying
irrigation infrastructure information is not available.
Time-varying irrigation maps would enable research-
ers to determine where and when irrigation

infrastructure was available to meet crop water
demands. In the absence of such information, high
quality rainfed pixels were assigned a more likely
probability cluster than its irrigated counterpart, since
it was not known if access to irrigation is available. In
this scheme, moderate-very high suitability rainfed
pixels were prioritized over comparable irrigation pix-
els. ‘Marginal’, ‘verymarginal’, and ‘not suitable’ lands
were treated as being equal regardless of water supply.

Figure 2 displays how probability clusters vary
across crops within a country. In general, irrigation
improves suitability as shown by an expansion of areas
containing lower SI values. For example, the map of SI
values for rainfed maize (see figure 2(A)) fairly closely
resembles the cornbelt in the United States. Now, if
irrigation was provided to maize, then many more
locations throughout the US would be highly suitable
for maize (figure 2(B)). The probability cluster assign-
ment assumes that crops will be preferentially grown
using rainfall (rather than irrigation)when the soil and
climate characteristics are conducive to it. The right
column in figure 2 presents an example of the resulting
probability clusters for the four major crops in the
United States. As figure 2(C) illustrates, the probability
clusters for maize in the US will preferentially allocate
maize to pixels that are most suitable under rainfed
conditions (i.e. pixels with value of ‘1’), with less like-
lihood of allocation to pixels that are suitable only
when irrigation is available (i.e. pixels with value
of ‘3’).

HYDE provides space and time-varying pixel-level
information on rice harvest areas. However, the total
harvest area as reported by HYDE is an order of mag-
nitude less than what is reported by FAO during the
study period (see SI). Thus, the HYDE rice informa-
tion was used as a baseline to identify ‘active’ rice pix-
els. Then a nearest neighbor approximation is applied
to identify the three nearest neighbors to these known
active rice pixels. These pixels are also labeled as active
rice pixels to accommodate the excess rice area in the

Table 2.Global Agro-Ecological Zones (GAEZ) suitability index (SI) values and resulting probability
clusters for use in the Probabilistic CroplandAllocationModel (PCAM). Clustering applies to pixels
in countries where theHYDE cropland fraction is greater than zero for both rainfed and irrigated
water supply systems across all crops. Final clustering is based on prioritizing rainfed over irrigation
water types.

Final cluster by

water type

GAEZ Suitability index

Class threshold Classification Initial cluster Rainfed Irrigation

1 SI>85 Very high 1 1 3

2 SI>70 High 1 1 3

3 SI>55 Good 1 1 3

4 SI>40 Medium 2 2 4

5 SI>25 Moderate 2 2 4

6 SI>10 Marginal 3 5 5

7 SI>0 VeryMarginal 3 5 5

8 SI=0 Not suitable 4 6 6
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FAO database. For rice, the pixels that have been iden-
tified as active either fromHYDE or the nearest neigh-
bor identification are automatically placed in the first
cluster (value of ‘1’).

Step 2: National statistics analysis. The production
[tonnes] and harvested area [hectares] for each coun-
try-year in the study domainwere retrieved fromFAO.
First, the number of crops produced by each country
for each year was obtained. The allocation algorithm
begins by ranking the production information for all
crops in a country-year in descending order. If a coun-
try has rice production, their rankings were adjusted to
have rice be the first allocated crop. The remainder of
the crops are then allocated in order of their produc-
tion ranking. In other words, the algorithm is initi-
alized with the known rice spatial locations and then
sequentially moves through the rest of the crops in
decreasing order of production. For example, maize is
the most produced crop in the United States (in ton-
nage). However, the United States also produces rice;
it is the seventh most produced crop in the year 2000.
Rice would be allocated first, and then maize. This
approach ensures that known gridded information is
incorporatedwhile still ensuring that the crops that are
produced in the greatest quantity are prioritized for
allocation.

The rice harvest area was adjusted if HYDE infor-
mation is available. Rice cropland is aggregated for
each country and compared to the data provided by
FAO. If FAO indicates more rice harvest areas then
HYDE at the country-level, the HYDE-based rice area
was deducted from FAO. This net area becomes the
rice harvest area constraint as outlined in Step 3.

Step 3: Harvest area assignment. National har-
vested area data is used as an adding-up constraint in
the algorithm. Pixels are assigned harvested area until
the total harvested area allocated reaches the national
value reported by FAO or the HYDE adjusted value in
the case of rice. The pixel-level cropland fractions pro-
vided by HYDE form a spatial distribution of generic
crop-related activities across both space and time. This
distribution was used as the random pixel selection
probabilities during harvest area assignment. Thus,
pixels are probabilistically selected until the following
harvested area constraint ismet:

å »
=

( )Area Harvested Area , 1
p

P

p c y c y i
1

, , , ,

where p is pixel, c is crop, y is year, and i is country.
Thus, the harvest area assigned to all pixels in a
country-year should approximately sum to the FAO
national harvested area statistic. An approximation is

Figure 2.Example of the clustering approach employed in the Probabilistic CroplandAllocationModel (PCAM) for theUnited States.
The left columnpresents suitability indices for rainfed crops fromGAEZ. Themiddle column presents suitability indices for irrigated
crops fromGAEZ. The right columnpresents the probability clusters used in PCAM.The top rowdisplaysmaize, the second row
displays soy, the third row displays rice, and the bottom rowdisplays wheat.
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used because the random accumulation of pixel areas
will not necessarily be perfectly equal to the national
harvested area.

The PCAM algorithm was constructed such that it
can be consistently run for all countries in the entire
time domain. There are countries in which the num-
ber of crops produced exceeds the number of pixels
available to be allocated to. In these instances, each
pixel was divided into equivalent area slices. These sli-
ces are determined by a time series of maximum crops
produced by countries where the number of crops
exceeds the number of country-labeled pixels. Each
annual value is used to determine the number of slices
a pixel is divided into for PCAM (see figure S2(a)). For
example, in the year 2000, the maximum number of
crops (from the PCAM crop list) produced across all
countries is 11. Therefore, and regardless of country,
each pixel will be divided into 11 slices, which provides
a pixel 11 opportunities to be randomly selected. The
slices available are adjusted if a pixel is identified by
HYDE for rice. The area attributed to rice is converted
into slices. These slices are then deducted from the
total slices available. For example, a known rice pixel
in the year 2000 may have a rice area that is equivalent
to two slices. Therefore, it has a net of 9 slices available
for random selection across all crops.

Two steps are taken when a pixel is randomly
selected. First, the area of the pixel’s slice is added to
the accumulated harvest area (as in equation (1)). Sec-
ond, the pixel’s selection counter is reduced by one
across all crops. However, the probability of selection
was not altered as the selection counter is adjusted.
When the pixel’s selection counter equals zero, it is
removed from the potential pool of pixels across all
crops. Note that the slice area is doubled if the selected
pixel has been designated as multi-cropped for a spe-
cific crop. With this approach, it was assumed that
each pixel with multi-cropping capabilities will multi-
crop in a given year. For this reason, the area in those
pixels was double counted (since this is what
FAOdoes).

In the event that the national adding-up constraint
has not been satisfied and all clustered pixels have been
allocated, pixels with a HYDE cropland fraction equal
to zero are then considered. These pixels are clustered
based on their original cluster assignment. For exam-
ple, a pixel with zero cropland but an original cluster
assignment of ‘1’ would be placed in cluster 7. Since
the selection probability is equal to the cropland frac-
tion, these extra pixels are assigned a probability
equivalent to the ratio of pixels in the cluster eligible
for allocation to the total number of outstanding pix-
els. Thus, the probability for these zero cropland pixels
is dynamically calculated each time a pixel is selected.

Step 4: Monte Carlo downscaling. Step 3 was run
many times in a Monte Carlo framework. Since crops
were probabilistically assigned to pixels, it is important
to perform this operation multiple times in order to
determine the most likely outcome across many trials.

For this reason, the model was run 500 times and keep
track of the allocation in each model run. A counter is
used to track the number of times a pixel is selected for
a given crop across all cycles. The number of crop-spe-
cific probabilistic selections was converted into an
estimate of the crop-specific harvested area with the
following equation:

= · ( )f
N

N N
Area , 2p c i y

p c i y

total slice y
p c y, , ,

, , ,

,
, ,

where f is fraction, p is pixel, c is crop, i is country, and
y is year. Np c i y, , , is the number of crop-specific
selections for a pixel in a country for a given year across
all cycles.Ntotal is the number of total cycles run. Nslice y,

is the number of slices the pixel is divided into for a
given year. Areap c y, , is the pixel area.

Step 5: Apply the framework to all countries. The
core of the algorithm (Steps 2–4) is repeated for all
country-years in the study domain. Upon completion,
individual country results are bound together for each
year to construct annual global PCAM results. The
annual area is checked to determine if it is balanced
with FAOSTAT data for each country in a given year.
In the event that the areas do not balance, then the
results were scaled so that each crop’s total harvest area
matches with the FAO (see SI for scaling factors used).

2.3.Model assumptions
The statistical downscaling algorithm makes several
key assumptions. First, the algorithm relies on the
national census data of FAO. Errors in this database
would significantly alter the results. This is especially
problematic for countries which may have political
incentives to under or over-report their agricultural
areas. For example, Seto et al [48] discuss China’s
propensity to over-report agricultural areas for poli-
tical motives. Similarly, national standards of agricul-
tural data collection remain poor in many regions,
such as in sub-Saharan Africa [49]. Second, errors in
the gridded data layers would carry over to the dataset.
Third, a probabilistic downscaling approach was
employed. The approach assumes that mean climate
and soil characteristics are the most important factors
in determining where specific crops are grown. This
neglects several other important factors (e.g. extreme
climate, agricultural labor, policies and regulations,
etc). The probabilistic approach means that estimates
of likely crop-specific areas for each year in the study
period were produced. However, PCAMmaps should
not be misinterpreted as providing actual information
onwhere each cropwas grown in each year.

The GAEZ data on the suitability of each pixel was
used for specific crops. This is a key gridded data layer
that, unfortunately, does not vary in time. Ideally, the
SI classes provided byGAEZwould vary in time. How-
ever, these SI values estimate the crop-specific suit-
ability of each pixel based on average climate and soil
conditions, with 1961–1990 as the baseline. It is likely
that these underlying mean climate and soil
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characteristics remain relatively stable over the study
period. However, the suitability of some locations for
specific crops has changed in this time domain; north-
ern China has become increasingly suitable for maize
cultivation since the 1980s [50]. This would mean that
the approachwhich is based on these time-invariant SI
classes is appropriate for characterizing mean suit-
ability and allocation. However, these SI classes will
become increasingly problematic to use as the climate
diverges from the 1961–1990 base period for which
the SI classes were developed.

Certain crops are more likely to be grown in
rainfed and irrigated conditions. Unfortunately, the
available data does not enable a determination of
which crops are grown in rainfed versus irrigated con-
ditions over time. Modeled crop-specific irrigated
areas circa 2000 are available [51], but not at the
annual temporal domain necessary for this study.
Additionally, crop-specific pixels from Monfreda et al
[23] were used to force the irrigation model of Port-
mann et al [51]. The agricultural maps that underpin
the irrigation spatial model are fixed in time and thus
inconsistent with the PCAM approach. For this rea-
son, the circa 2000 irrigation maps were not used, but
instead assume that crops are preferentially assigned to
high-quality rainfed locations. However, it is likely
that certain crops, such as high-value crops, will be
preferentially grown where more certain irrigation
water supplies are available. It was anticipated that this
is particularly likely to be the case for high-value crops
(e.g. produce, tree and vine crops, etc), and should not
be as problematic for the major staples considered in
this study, with the exception of rice [51].

2.4.Model assessment
Quantitative methods were used to assess PCAM
performance against existing agricultural maps. The
four types of metrics used are: (1) R2; (2) mean
absolute error (MAE); (3) the Jaccard coefficient (J);
and (4) the simple matching coefficient (SMC). The
first two metrics consider the ‘intensity’ of the pixels.
These two metrics were considered to be the most
strict in assessing model performance. The R2 value is
from a Type II linear regression of the estimated crop-
specific pixel values of harvest area fractions on
existing maps. The R2 regression also includes pixels
where the harvest fraction is zero. J and SMC are
focused on estimating spatial similarity in terms of the
presence and absence pixel-level harvest areas.

The Jaccard (J) [52] and SMC [53] are defined
according to equations (3)–(4), respectively. J gives an
approximation of how similar PCAM results are for
identifying crop-specific areas. Similarly, SMC allows
consideration of both the presence and absence of har-
vest areas. In other words, it is possible to quantify if
PCAM is allocating crops to known harvest areas as
well as not allocating to knownnon-harvest areas.

=
+ +

( )J
M

M M M
3crop

11

01 10 11

=
+

+ + +
( )M M

M M M M
SMC . 4crop

00 11

00 01 10 11

The results from PCAM and the values from the
comparison datasets were converted to a binary
indicator where ‘1’ is assigned if a pixel is non-zero,
and ‘0’ elsewhere. For J and SMC, the parameters are
identically defined as follows:M11 is the total number
of pixels where both PCAM and the comparison
datasets have values of 1; M01 is the total number of
pixels where PCAM has a value of 0 but comparison
datasets have a value of 1; M10 is the total number of
pixels where PCAM has a value of 1 but comparison
datasets have a value of 0; and the total number of
pixels where both PCAM and comparison datasets
have values of 0. J and SMC values closer to ‘1’ indicate
high spatial pattern matching between PCAM and
these other datasets in terms of both the presence and
absence of harvest areas.

The comparisons were performed by using iden-
tical spatial resolutions across datasets. For the global
comparison, the results fromMonfreda et al [23]were
interpolated from its native 5 arc minute spatial reso-
lution to the 0.5-degree resolution of PCAM. On the
sub-national scale, PCAM was compared to the Uni-
ted States Department of Agriculture’s (USDA) census
for the years 1997 and 2012 [54]. County-level bound-
aries were obtained from the Newberry Library [55]
for 1997 and the United States Census Bureau [56] for
2012. These boundaries and their associated Federal
Information Processing Standard codes are used to
match data from the USDA to its spatial corollary.
Then, PCAM results were aggregated from the 0.5-
degree resolution to the county-level tomatch the spa-
tial resolution of the USDA census data. Cassava,
groundnut, rapeseed, rye, and yam were excluded
from sub-national assessment in the United States due
to poor data availability for the assessment years.

2.5. Sensitivity analysis
PCAM heavily relies on the HYDE and GAEZ gridded
datasets. In particular, the hierarchical clustering that
boosts allocation towards the most suitable pixels is
largely dependent on GAEZ. A combination of each
crop’s rainfed and irrigation values were used with
both set for intermediate input levels. However,
rainfed suitability is also available from GAEZ for low
and high agricultural inputs, while irrigation data is
also available for high agricultural inputs. GAEZ
defines low agricultural inputs to be management
practices aligned with subsistence farming, whereas
high agricultural inputs use advanced management
practices for complete commercial production [42].
To determine the sensitivity of PCAM estimates to
GAEZ inputs, various combinations of probability
clusters were run based on different GAEZ input
scenarios. Specifically, the impact of changing rainfed
input levels on PCAM results at the global scale for the
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year 2000 was considered. The rainfed inputs’ varia-
bility was the focus since rainfed cropland historically
dominates our time domain (see figure S2(b)). The
metrics defined in section 2.4 were used to understand
howPCAMmaps change relative to theMonfreda et al
[23] dataset.

3. Results and discussion

The PCAMmodel results are presented here. First, the
model results are compared with other crop-specific
products at both the global and sub-national scale.
Then, global crop-specific agricultural geography over

time are assessed. Finally, the variability and uncer-
tainty in crop-specific agricultural areas in time is
evaluated.

3.1. Comparisonwith other datasets
3.1.1. Global scale
The comparisons between Monfreda et al [23] and
PCAM for maize, soy, rice, and wheat are mapped in
figure 3. The remaining crops are presented in figures
S5–S7. From figure 3 and table 3 it is clear that PCAM
captures similar global spatial trends for specific crops
as Monfreda et al [23]. Additionally, PCAM approx-
imates well the areas with and without crops as shown
by the high SMC values across crops. So, PCAM

Figure 3.Comparison between PCAMandMonfreda et al [23]maps formajor crops for the year 2000. PCAMmaps (first column)
compare reasonably well withMonfreda et al [23]maps (second column). The top rowdisplaysmaize, second rowdisplays rice, third
row displays soybean, and bottom row showswheat.
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provides additional validation of the GAEZ-based
approach to allocation, since PCAMdoes a good job at
replicating sub-national patterns that are not incorpo-
rated in it. There aremoderate differences in the global
area of each crop between PCAM and Monfreda et al
[23], driven by the underlying FAO data which serves
as a constraint in PCAM (see table 3). For example,
PCAM has 12.4% more millet harvested area globally
than doesMonfreda et al [23].

Differences between FAO and Monfreda et al [23]
harvested area mean that PCAM results should not be
expected to perfectlymatchMonfreda et al [23]. This is
because PCAM total agricultural area is equivalent to
FAO harvested area, by design. This is confirmed in
tables 3 and 4, where the FAO and PCAM values are
the same. Figure S2(c) shows a time series of Goldewijk
[31], FAO [4], and PCAM area. Note that Goldewijk
[31] reports much less cropland area than does FAO
[4]. PCAM areas have been calibrated to match FAO
[4] which is why PCAM and FAO values align in
tables 3 and 4. Surprisingly, Monfreda et al [23] and
FAO [4] do not contain the same quantity of har-
vested area.

Table 4 provides country-level analysis for the top
10 countries by harvest area for the four major crops.
The starting national area from FAO deviates from the
total area in Monfreda et al [23], as at the global scale.
In some countries, the performance of PCAM is not as
good as at the global scale. For example, the global
SMC for maize is 0.87 (see table 3), but 9 of the top 10
countries do not approach a value this high at the
national scale (see table 4). The United States has the
highest SMC for maize with a value of 0.85. However,

PCAM demonstrates higher R2 values at the country
scale than it does globally. For example, the global R2

value for maize is 0.18 versus 0.62 and 0.46 for the
United States andArgentina, respectively.

Harvest area discrepancies between FAO and
Monfreda et al [23] exist across a supermajority of
country-crop pairs in a non-uniform manner. Thir-
teen of the 17 crops analyzed showed more reported
area by FAO than by Monfreda et al [23] at the global
scale. However, when country-level harvest areas are
considered, larger area discrepancies were observed.
For example, FAO/PCAMhas 33.3%moremaize har-
vested area in South Africa than does Monfreda et al
[23]. These differences in national harvested area con-
tribute to the differences between PCAM and Mon-
freda et al [23] (seefigure 3).

3.1.2. National scale
The United States has agricultural census data avail-
able at the sub-national scale for several points in time
from the USDA. The harvest fraction estimates
provided by equation (2) are compared to county-level
information provided by the USDA. Cassava and yams
were not compared as they are not grown in theUnited
States. Census information was obtained for 1997 and
2012 for 12 of our 17 assessed crops [54]. These years
were chosen as 1997 is the first readily available
electronic census with county-level information and
2012 is the most recent census available in the time
domain.

Table 5 compares PCAM with USDA data. PCAM
provides the best pixel-level intensity matching for
maize and rice as demonstrated by their high R2

Table 3.Global comparison between PCAMandMonfreda et al [23] for the year 2000.Note that PCAMestimated areas
match FAOdata by design.R2,MAE, J and SMCmetrics are presented to quantify the similarity between PCAMand
Monfreda et al [23]. Area (%) displays the percent difference in area between PCAMandMonfreda et al [23]. For example,
PCAMhas 12.7%moremillet harvested area globally than doesMonfreda et al [23], due to the underlying FAOdata.
Differences between FAO andMonfreda et al [23] harvested area suggest that PCAM results will never perfectlymatch
Monfreda et al [23].

Harvest area (106 hectares)

Monfreda

Crop FAO PCAM et al [23] Area (%) R2 MAE (%) J SMC

Barley 54.4 54.4 54 0.7 0.13 0.504 0.344 0.907

Cassava 16.9 16.9 15 12.7 0.044 0.131 0.16 0.95

Groundnut 23.2 23.2 22 5.5 0.043 0.19 0.15 0.94

Maize 136.8 136.8 136 0.6 0.177 1.138 0.274 0.869

Millet 37.1 37.1 33 12.4 0.144 0.285 0.153 0.936

Oats 12.6 12.6 13 −3.1 0.14 0.11 0.275 0.931

Potato 20.1 20.1 19 5.8 0.083 0.193 0.174 0.909

Rapeseed 25.8 25.8 24 7.5 0.092 0.263 0.139 0.919

Rice 128 128 154 −16.9 0.632 0.64 0.445 0.93

Rye 9.8 9.8 9 8.9 0.177 0.1 0.174 0.939

sorghum 41.2 41.2 39 5.6 0.091 0.336 0.159 0.91

Soybean 74.4 74.4 75 −0.8 0.191 0.583 0.212 0.913

Sugarbeet 6 6 6 0 0.038 0.065 0.13 0.956

Sunflower 21.2 21.2 21 1 0.152 0.184 0.182 0.923

Sweet potato 9.7 9.7 9 7.8 0.105 0.086 0.033 0.956

Wheat 215.1 215.1 209 2.9 0.094 2.049 0.373 0.869

Yam 3.9 3.9 4 −2.5 0.018 0.031 0.148 0.987
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values. These results are unsurprising. PCAM’s alloca-
tion of rice is bolstered by pre-identification of active
areas from HYDE. The rice allocation in the US for
both years exceed the global rice performance in the
year 2000 (SMC=0.97 in 1997 and 2012 versus 0.93
globally in the year 2000). Maize, which is the second
crop to be allocated in the United States, is often
grown in areas where rice is not. Therefore, there is

minimal competition to allocate maize. The SMC
values between PCAM and USDA indicate that the
model is capturing the geography of specific crops rea-
sonably well. Again, SMC values are not as good as
they are at the global scale, but all crops across both
years have SMC values above 0.5. Additional high per-
forming crops across both years are millet, soybeans,
sugarbeets, and sweet potatoes. These spatial statistics

Table 4.Comparison of national harvest areas fromFAO, PCAM, andMonfreda et al [23] for the year 2000 for the top 10 countries by
harvest area. R2,MAE, J, and SMCmetrics are presented to quantify the similarity between PCAMandMonfreda et al [23]. Area (%)displays
the percent difference in area between PCAMandMonfreda et al [23]. For example, PCAMhas 19.8% less rice harvested area in India than
doesMonfreda et al [23].

Harvest area (106hectares)

Global Monfreda

Country fraction FAO PCAM et al [23] Area (%) R2 MAE J SMC

A.Maize

USA 0.214 29.3 29.3 30 −2.3 0.617 1.979 0.441 8 0.8541

China 0.168 23.1 23.1 25 −7.6 0.115 3.542 0.390 4 0.78

Brazil 0.085 11.6 11.6 11 5.5 0.001 2.551 0.087 2 0.7588

Mexico 0.052 7.1 7.1 8 −11.3 0.024 5.769 0.352 2 0.6074

India 0.048 6.6 6.6 6 10 0.006 3.053 0.287 3 0.5466

SouthAfrica 0.029 4 4 3 33.3 0.028 5.163 0.258 7 0.7618

Indonesia 0.026 3.5 3.5 3 16.7 0.017 2.698 0.254 1 0.7754

Argentina 0.023 3.1 3.1 3 3.3 0.462 0.831 0.469 5 0.8516

Nigeria 0.023 3.2 3.2 4 −20 0.015 5.593 0.270 1 0.3399

Romania 0.022 3 3 3 0 0.273 12.499 0.436 2 0.5268

B. Rice

India 0.288 36.9 36.9 46 −19.8 0.463 8.801 0.753 4 0.819

China 0.197 25.3 25.3 31 −18.4 0.489 2.214 0.720 1 0.9143

Indonesia 0.078 10 10 11 −9.1 0.491 4.52 0.666 7 0.8003

Bangladesh 0.073 9.4 9.4 10 −6 0.401 24.196 0.936 2 0.9362

Thailand 0.065 8.4 8.4 10 −16 0.632 9.785 0.786 6 0.7941

VietNam 0.051 6.5 6.5 7 −7.1 0.644 13.674 0.909 9 0.9099

Myanmar 0.042 5.4 5.4 6 −10 0.635 6.246 0.560 6 0.6234

Philippines 0.027 3.5 3.5 4 −12.5 0.413 9.98 0.914 6 0.9157

Brazil 0.022 2.8 2.8 3 −6.7 0.188 0.4 0.181 1 0.7322

Nigeria 0.013 1.7 1.7 2 −15 0.029 2.687 0.370 2 0.5677

C. Soybean

USA 0.394 29.3 29.3 30 −2.3 0.556 2.005 0.466 6 0.8612

Brazil 0.183 13.6 13.6 14 −2.9 0 3.214 0.057 9 0.8038

China 0.125 9.3 9.3 9 3.3 0.086 1.422 0.263 2 0.7534

Argentina 0.116 8.6 8.6 9 −4.4 0.352 2.65 0.569 0.8651

India 0.086 6.4 6.4 6 6.7 0 3.307 0.164 0.5842

Paraguay 0.016 1.2 1.2 1 20 0.004 5.879 0 0.6338

Canada 0.014 1.1 1.1 1 10 0.237 0.085 0.488 9 0.993

Indonesia 0.011 0.8 0.8 1 −20 0 0.738 0.075 0.8153

Bolivia 0.008 0.6 0.6 1 −40 0.026 0.92 0.219 0.776

Nigeria 0.007 0.5 0.5 1 −50 0 0.835 0.136 8 0.7294

D.Wheat

India 0.128 27.5 27.5 26 5.8 0.029 11.938 0.34 0.5878

China 0.124 26.7 26.7 27 −1.1 0.001 5.115 0.281 1 0.7207

USA 0.1 21.5 21.5 22 −2.3 0.109 2.889 0.289 8 0.7338

Russian Federation 0.099 21.3 21.3 20 6.5 0.397 0.886 0.483 9 0.9195

Australia 0.056 12.1 12.1 12 0.8 0.003 3.274 0.041 7 0.8416

Canada 0.05 10.9 10.9 11 −0.9 0.599 0.608 0.560 6 0.969

Kazakhstan 0.047 10.1 10.1 9 12.2 0.129 6.272 0.536 5 0.8497

Turkey 0.044 9.4 9.4 9 4.4 0.137 16.404 0.233 6 0.2719

Pakistan 0.039 8.5 8.5 9 −5.6 0.191 12.721 0.375 0.6451

Argentina 0.029 6.2 6.2 6 3.3 0.358 1.902 0.5 0.8462
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indicate a reasonable performance, particularly given
that FAO and USDA national data do not match one
another (see table 5), which means the PCAM algo-
rithm is being runwith a different national constraint.

Maps of changes in harvest area for maize, soy-
beans, rice, andwheat from1997 to 2012 are presented
in figure 4 for the United States. PCAM spatial trends
are disappointing and typically estimate gains in har-
vest area that the USDA data does not support. This
disparity highlights a potential shortcoming of the
approach, which is that PCAM allocated to suitable
pixels based on mean climate and soil characteristics.
This means that PCAMmay be capturing crop planted
area spatial trends better than harvested area. This is
because the planted area decision will largely be driven
by mean suitability, but extreme weather may impact
the eventual locations of crop harvest. This is what
would have happened in the year 2012 in the US,
which was an extreme drought year in the US corn and
soy belt [57]. This extreme event will be captured by
the USDA 2012 census data on harvested area. How-
ever, the drought would not show up in the stationary
pixel-scale suitability driving PCAM spatial allocation.
The national harvested area statistic should capture
this information, yet FAO and USDA data diverge for
theUS for this year.

Note that PCAM tends to underestimate declining
areas compared to USDA data when considering

whole country pixel trends. For example, PCAM pro-
jects that 2.1% of maize-related pixels will decline in
intensity versus 14.6% based on USDA. Similarly,
PCAM estimates that 5.4% soy-related pixels will
decline in intensity versus 10.5% for USDA. There is
also an underperformance of wheat in estimating the
decline of wheat-related pixel (19.4% for PCAM ver-
sus 33.6% from USDA). However, PCAM is compar-
able to USDA when examining areas where pixels
increase in intensity. For rice, PCAM and USDA are
extremely close approximations (0.34% versus
0.67%). Thus, PCAM is able to closely capture the loss
of rice harvest area in the Mississippi Embayment
region. For soybeans, 13.8% of pixels are projected to
increase according to PCAM compared to the 17.0%
based onUSDA.

Figure 4 highlights that area harvested in theUnited
States are driven by factors other thanmean climate and
soil. Many factors are likely important when determin-
ing where to grow crops, particularly in countries with
advanced agricultural systems, such as the United
States. However, only gridded information on crop-
specific suitability driven by mean climate and soil was
used. Other factors—such as labor, access to machin-
ery, agricultural policies [58]—influence where specific
crops are grown asmuch, or evenmore than, the physi-
cal variables that were used to guide the downscaling.
Thus, divergences betweenPCAMestimates and census

Table 5.Comparison between PCAMandUSDA county harvest area for the years 1997 and 2012.

Harvest area (104 hectares)

Crop FAO PCAM USDA Area (%) R2 MAE (%) J SMC

A. 1997

Barley 250.8 250.8 244.7 2.5 0 0.898 0.2594 0.5673

Maize 2940.9 2940.9 2872.2 2.4 0.536 7.248 0.3839 0.5479

Millet 16.3 16.3 13.7 19.1 0 0.063 0.0202 0.7591

Oats 113.8 113.8 108.3 5.1 0.081 0.312 0.4604 0.6244

Potato 54.4 54.4 50.2 8.4 0.002 0.234 0.1196 0.6453

Rice 125.6 125.6 127 −1.1 0.545 0.243 0.3796 0.9667

Sorghum 370.6 370.6 345.7 7.2 0.014 1.178 0.3036 0.6319

Soybean 2796.7 2796.7 2739.2 2.1 0.492 6.427 0.5216 0.7134

Sugarbeet 57.8 57.8 55.3 4.5 0 0.257 0.0233 0.7705

Sunflower 113 113 101.3 11.5 0.002 0.418 0.1012 0.5941

Sweet potato 3.3 3.3 2.9 13.8 0.004 0.0121 0.0435 0.9344

Wheat 2541.4 2541.4 2508.5 1.3 0.048 7.667 0.473 0.5787

B. 2012

Barley 131.3 131.3 130.6 0.5 0 0.483 0.2102 0.5688

Maize 3535.9 3535.9 3533.2 0.1 0.54 8.840 0.3767 0.5315

Millet 8.3 8.3 8.1 2.6 0.001 0.0323 0.0026 0.8107

Oats 42.3 42.3 41.8 1.2 0.03 0.132 0.4234 0.6672

Potato 45.8 45.8 34.7 31.9 0.001 0.194 0.2424 0.5559

Rice 108.4 108.4 107.8 0.6 0.624 0.179 0.3462 0.9662

Sorghum 200.5 200.5 205.3 −2.3 0.002 0.697 0.2595 0.6145

Soybean 3081.5 3081.5 3076.8 0.2 0.458 7.511 0.51 0.6965

Sugarbeet 48.7 48.7 48.8 0 0 0.218 0.0286 0.7804

Sunflower 74.5 74.5 73.8 0.9 0.006 0.282 0.0819 0.5822

Sweet potato 5.1 5.1 3.9 32.4 0 0.0195 0.0345 0.9165

Wheat 1979.8 1979.8 1981 −0.1 0.022 6.174 0.4592 0.5688
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information, such as those provide infigure 4may actu-
ally prove useful in future research that aims to identify
other important factors guiding agricultural geography.
Determining these factors is unfortunately beyond the
scope of this project, but future work may aim to ana-
lyze these deviations and compare them with maps of
other potentially important factors of agricultural
production.

3.2. Crop-specific changes in time and space
First, changes in total cropland over time are exam-
ined. Figure 5 presents PCAM estimates of total
cropland for the beginning, middle, and end of our
study period for the 17 crops considered. The com-
mon scale across sub-figures makes it clear that both

extensification and intensification of crop area have
occurred over time. The intensities in total crop area
increase significantly in 2010, driven by reported gains
in crop area from FAO (see figure S2(c)). In 1970,
28.2% of the global land area was estimated to be
cultivating at least one of the 17 crops with a mean
harvest fraction of 0.09. By 2010, PCAM estimates a
slight expansions of the global area that is harvested to
30.2%, but the mean cropland fraction has increased
to 0.11. The observed trends in both modest intensifi-
cation and extensification is driven largely by differ-
ences in crop area reported by FAO and HYDE (as
shown infigure S2(c)).

Table 6 summarizes the PCAM area estimates at
the beginning and end of the study period by crop (see

Figure 4.Comparison between PCAMandUSDA changes in harvest area fraction in the continental United States. Changes from
1997 to 2012 aremapped. Thefirst column shows PCAMmaps and the second column showsUSDANASS [55]maps. The top row
displaysmaize, second row rice, third row soybeans, and the last row iswheat.White areas showwhere PCAMorUSDA indicate that
no crop is grown.
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figure S11 for the broader time series). To further
understand these changes, two specific sub-domains
are considered to understand how crops have changed
in both time and space: 1970 versus 2000, and 2000
versus 2010. The year 2000 was used as the ‘bench-
mark’ year, since global comparison data was available
for this year (i.e. Monfreda et al [23] as discussed
above). PCAM’s output of pixel-level harvest fractions
was treated as proxies for the likelihood of a crop being
present in a given pixel. By extension, PCAM enables
estimates of projected changes of a crop’s likelihood
over time to be determined as the relative change in
these harvest fractions. As a result, it is possible to fur-
ther identify two extremes of crop-specific pixel beha-
vior. The first extreme is if a pixel converts from
having a non-zero to a zero likelihood. These pixels are
then considered inactive. The other extreme is where a

pixel is estimated to increase its likelihood by several
orders of magnitude. This latter case is a surrogate of
pixel-level crop intensification. These extreme pixels
are referred to as ‘super pixels’.

Figure 6 shows changes in time for each of the four
major crops across both domains (see figures S12–S14
for the rest of the crops). Table 7 quantifies these spa-
tial changes by presenting the fraction of pixels that
have demonstrated crop-related increases and decrea-
ses over each sub-domain. A majority of pixels show
no change over either period. In other words, these
pixels have likely remained identically zero over time.
Between 1970 and 2000, a majority of the crops stu-
died (nine of 17) have more pixels that increased their
likelihood than decreased. The remaining crops show
a greater percentage of pixels that declined. Similarly,
for the second period, 10 crops were estimated to have

Figure 5.Maps of total cropland area over time. The global distribution of the 17 crops considered in this study is shown for (A) 1970,
(B) 2000, and (C) 2010.Note that thesemaps highlight the occurrence of both intensification and extensification over time.
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a net gain in active pixels while the remaining seven
will have a net decline. Sweet potatoes is the additional
crop demonstrating these gains in pixel activation.

The number of pixels activated for maize is esti-
mated to increase by 6.95% by the year 2000. This
increase is being driven by the 35% of pixels who sig-
nificantly increase their likelihood. China (21%),
Mozambique (8.4%), India (8.1%) are drivers of this
increase. In particular, China and Mozambique see
their maize likelihoods increase by 54% and 169%,
respectively. For the 2000–2010 period, maize is pro-
jected to have 53%more pixels that increase their like-
lihood, rather than decrease. China is the estimated
leading driver of this change. Its maize pixels increase
their likelihood by 30.5% and it is home to 25% of the
super gaining pixels.

For soybeans, there are 53% more pixels that are
estimated to have increased than decreased the like-
lihood with a mean relative change of 283% for
1970–2000. This large increase in likelihood is being
driven by 35% of its pixels being super gaining. The
United States (22.3%), Brasil (12.5%), and Argentina
(9.1%) are where most of this extreme extensification
is occurring for 1970–2000. For Argentina, these pro-
jections highlight a case of both extensification and
intensification as their mean likelihood increased by
3000%. Paraguay also illustrates substantial extensifi-
cation of soy (i.e. gaining pixels), which indicates that
PCAM is able to capture areal expansion of crops. For

2000–2010, Brasil (27.6%), the United States (13.6%),
and Russia (7%) lead the global expansion of soybean
pixels.

Wheat is another crop that is anticipated to have a
continuous pixel-level expansion over both domains.
It has 7.65% and 8.6%more pixels that increase rather
than decrease in likelihood for 1970–2000 and
2000–2010, respectively. Nearly 50% of the pixels with
the largest increases in likelihood for 1970–2000 are
found inChina, theUnited States, andCanada. For the
2000–2010 period, Kazakhstan (26.9%), Brasil
(13.8%) and China (10.4%) are the leading countries
for extreme intensification.

Rice is crop of net expansion across the study per-
iod, with increases in expansion slowing during the
2000–2010 period. For this latter period, Tanzania,
Brazil and Guinea are projected to contain 24% of the
super gaining pixels. India is the leading global produ-
cer of rice by harvest area. Their rice pixels were
approximated to have a mean likelihood change of
−2.0% during 2000–2010, with 32.7% of its pixels
declining in likelihood while 20.7% increased their
likelihood.

Barley is estimated to have 28.4%more of its pixels
decline than increase in likelihood when comparing
1970–2000. Over this period, there is an average 8.11%
increase in pixel likelihood globally. Of those esti-
mated to decline, 17% of them are projected to
become completely inactive in 2000. TheUnited States
contains 20% of these lost pixels, which coincides with
United States shifting from the third to eighth largest
barley producer. Russia and China lose barley pixels
from 1970 to 2000. Russian barley losses continue in
2000–2010 as their average barley pixel has an esti-
matedmean likelihood reduction of−3.50%.

Cassava is projected to have 19.7% pixels increase
in likelihood than decrease, while the mean pixel
increases by 5.15% from 1970 to 2000. Nearly 25% of
cassava pixels are expected to become inactive. Brasil
(18.6%), Congo (15.1%), and Indonesia (10.4%) are
the leading countries for pixel loss. Brasil sees amodest
increase in pixel likelihood of 3.23%, which coincides
with a dip in global ranking from sixth to seventh. For
2000–2010, cassava experiences a nominal 2.4%
increase in mean likelihood change with 20.1% more
pixels estimated to increase their likelihood than
decrease. These latter changes are being driven by Bra-
zil (15.3%), Congo (10.1%), andNigeria (7.0%).

Groundnuts are considered to have 14.98% more
pixels gain likelihood than lose by 2000. The global
mean change in likelihood improves by 7.48%.
Approximately 33% and 31% of pixels experience
extreme gain and loss, respectively. India (21.3%),
Brasil (8.4%), and the United States (7.5%) are home
to most of these losses. Note that Brasil is not a top 10
country by area for groundnuts between 1970 and
2000. However, India contained the most harvest area
globally during this time. While India lost pixels, the
remaining active pixels are projected to have a mean

Table 6.Global cropland area changes in time. The global area is
provided by crop for the start (1961) and end (2014) of the study
time period as estimated by PCAM.The percent change in area over
this time period is also shown. The percent of total cropland is
shown for each crop for the start and end of the study time period.
Note that soybean increases from3.2% to 12%of all harvested area
during this period.

Area (106

hectares)

Crop

contribution

(%)

Crop 1961 2014

Area

change (%) 1961 2014

Barley 54.5 49.4 −9.3 7.3 5.1

Cassava 9.6 23.9 148.1 1.3 2.4

Groundnut 16.6 26.5 59.8 2.2 2.7

Maize 105.5 184.7 75.1 14.2 18.9

Millet 43.4 31.3 −27.7 5.8 3.2

Oats 38.3 9.6 −74.9 5.1 1

Potato 22.1 19.1 −13.8 3 2

Rapeseed 6.3 36.1 475.4 0.8 3.7

Rice 115.3 162.6 41 15.5 16.6

Rye 30.3 5.3 −82.5 4.1 0.5

Sorghum 46 44.9 −2.3 6.2 4.6

Soybean 23.8 117.5 393.5 3.2 12

Sugarbeet 6.9 4.5 −35.4 0.9 0.5

Sunflower 6.7 25.2 278 0.9 2.6

Sweet potato 13.4 8.3 −37.5 1.8 0.9

Wheat 204.2 220.4 7.9 27.4 22.6

Yam 1.1 7.7 579.7 0.2 0.8

Total 743 977
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likelihood increase of 59.4%. For the 2000–2010 per-
iod, the global likelihood is projected to increase by
3.91% with a difference of 23.7% between pixels that
increased versus decreased their likelihood. Ground-
nut’s expansion during this period is lead by India
(14.7), Nigeria (9.5%), and Argentina (6.3%). Nigeria
sees its groundnut likelihood increase by 34.8%. India
is a more complex case as 16.1% of its pixels are pro-
jected to become inactive while the 27.7% of its
remaining pixels become extreme intensifiers.

For rapeseed, there are 80% more pixels that are
estimated to have increased than decreased their like-
lihood in 1970–2000 with a global mean relative
change of 185%. This large increase is being driven by
31.6% of its pixels classified as super gaining in their
likelihood. China (28.3%), Canada (16.2%), and India

(11.8%) are wheremost of this extreme extensification
is occurring for 1970–2000. For example, the mean
percent increase likelihood is 92.4% in China. Russia
(21.2%), the United States (33.3%), and China
(32.3%) are the leading drivers of expansion and con-
traction of rapeseed pixels for 2000–2010, respectively.

Sunflowers demonstrate 72.1%more pixels with
increases than decreases in likelihood for 1970–2000
with a mean likelihood change of 64.9%. Nearly
38% of its pixels significantly increase their like-
lihood. The United States (19.2%), Argentina
(13.4%) and Ukraine (8.3%) are where most of this
extreme extensification is occurring for 1970–2000.
Argentina and Ukraine are also projected to have
extreme intensification as their likelihoods increase
by 51.9% and 91.4%, respectively. For 2000–2010,

Figure 6.Maps of crop-specific changes over time. Thefirst column shows changes between 1970 and 2000; the second column shows
changes between 2000 and 2010. The top rowdisplaysmaize, second row rice, third row soybeans, and the last row is wheat.
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Russia is the leading driver of heterogeneous change
in the global sunflower distribution as it is home to
23.9% of pixels that alter their sunflower activity
level. Conversely, the United States (27.6%) is the
leading driver of sunflower pixel loss.

Yams are estimated to have 38% and 32.5% more
of its pixels increase than decline in likelihood with
changes of mean likelihood increasing by 3.67% and
1.03% for 1970–2000 and 2000–2010, respectively.
These are considered to be negligible changes over the
course of the study domain. Nigeria is the leading
country over the entire domain.

It is important to note that PCAM spatial patterns
are likely most representative of planted area. This is
because PCAM uses SIs to probabilistically allocate
crops to pixels. This is most likely capturing the loca-
tions that a crop is suitable to be planted in. However,
the algorithm downscaled harvest area information.
This means that there is a potential mismatch in spa-
tial locations. These differences are likely to be small in
locations and time periods in which crops were both
planted and harvested in the most suitable locations.
However, in time periods and places that experienced
significant divergence—say, due to drought—these
spatial estimates may be problematic. Recent work has
shown that extreme weather events have reduced cer-
eal production in recent decades, with drought events
impacting both harvested area and yield, whereas
temperature extrema have only impacted grain yield
[22]. As such, this distinction between planted and
harvested area estimates is important to keep in mind
when using PCAM estimates, particularly in times of
drought. Future work could bring PCAM area esti-
mates together with information on climate extremes
to better estimate harvested area.

3.3. PCAMsensitivity
The sensitivity of PCAM model output was analyzed
using different scenarios from GAEZ. Specifically, the
GAEZ inputs used were varied to evaluate the pixel-
scale suitability of specific crops. All PCAM results
presented thus far are based upon the ‘intermediate’
input scenario produced by GAEZ. Here, PCAM was
run with the ‘low’ and ‘high’ input scenarios for
rainfed agriculture. Again, PCAM model output was
compared with Monfreda et al [23]. Both the low and
high rainfed inputs produce PCAM outputs that are
similar (SMC>0.8 ) to the Monfreda et al [23] data
(see table 8). Note that the SMC of each crop was
weighted by its global harvest area fraction for the year
2000 to obtain an overall weighted SMC. The low
versus intermediate and high versus intermediate
scenarios differ by 0.12% and 1.24%, respectively.
Therefore, there is limited impact on spatial similarity
as a result of altering agricultural input scenarios.

Each crop’s statistical distribution was examined
to further elucidate the effect of changing GAEZ
inputs on PCAM estimates. Table S4 shows how these
properties and the number of contributed pixels fluc-
tuate. Figure S4 presents box plots of harvest fraction
for maize, rice, soybeans, and wheat as a function of
these GAEZ inputs (see figure S15 for the remainder
crops). A suppression in pixel intensity was observed
for the high rainfed results due to significant increases
in the number of pixels selected. Similarly, the low
inputs scenario produces the largest pixel intensities
and is generally based on having selected the fewest
number of pixels. This makes sense, as more pixels are
suitable for selection when many inputs are available
in agriculture; fewer pixels are suitable when fewer
inputs are used. There is a comparable number of out-
liers (i.e. excessively high harvest fractions) across the

Table 7.Estimated changes in pixel activation by crop over two time domains: 1970 versus 2000, and 2000 versus 2010.
Pixels without changewere identically equal to 0 across these time periods.

1970–2000 2000–2010

Crop % Increase %Decrease %No change % Increase %Decrease %No change

Barley 3.95 7.09 88.96 3.92 6.75 89.33

Cassava 2.81 1.88 95.31 2.74 1.82 95.44

Groundnut 3.46 2.56 93.97 3.63 2.24 94.13

Maize 6.95 4.1 88.96 9.06 2.77 88.17

Millet 3.18 4.09 92.74 3.14 3.62 93.24

Oats 2.11 7.97 89.92 2.76 6.18 91.06

Potato 4.81 4.88 90.31 4.19 5.33 90.48

Rapeseed 6.78 0.73 92.49 6.49 2.61 90.91

Rice 7.44 4.23 88.32 6.09 5.06 88.84

Rye 1.45 7.5 91.05 2.25 5.57 92.18

Sorghum 4.47 5.13 90.4 4.27 4.84 90.89

Soybean 6.18 1.89 91.93 7.63 2.68 89.69

Sugarbeet 1.91 3.12 94.97 2.11 2.67 95.22

Sunflower 7.13 1.15 91.72 4.8 3.92 91.27

Sweet potato 2.21 2.25 95.54 2.58 1.75 95.68

Wheat 7.11 6.1 86.79 7.25 6.1 86.65

Yam 1.12 0.5 98.38 1.19 0.61 98.2
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four dominant crops and inputs scenarios (see figure
S4). Overall, the intermediate scenario is nestled
between the two inputs extrema. Thus, the inter-
mediate rainfed PCAMoutputs was treated as baseline
values, whereas the low and high form the upper and
lower bounds, respectively.

Many additional sensitivity analyses can be per-
formed by future researchers. Future work can evalu-
ate the ‘truthfullness’ of national harvested area and
run PCAM with multiple national constraints and
weight the most truthful statistic. For example, FAO
was relied upon for the truth in agricultural statistics.
However, national values presented by [23] or USDA
may be better to use. Future research could determine
the best national statistic for each country-year and
then re-run PCAM to obtain better results. Addition-
ally, future work could vary the probability clusters
that underpin PCAM for each country-year. This
could be done using an optimization algorithm that
would determine the probability cluster assignment
that most closely represents a ‘target’ database (e.g.
[23] or USDA) and then use this cluster for the algo-
rithm. More sophisticated versions of this would
involved varying the probability clusters in time in a
way that reflects the underlying suitability of pixels.
Other factors that influence spatial allocation could be
added, such as infrastructure (e.g. irrigation and/or
road network) and proximity to urban centers. These
extensions would build upon and improve the results
presented here.

4. Conclusions

The PCAM model was introduced to downscale
national agricultural census information to a geographic

grid. This model enabled the creation of estimated
gridded areas of individual crops at the annual time
scale. Remarkably, this probabilistic approach per-
forms reasonably well against a global dataset
assembled with sub-national agricultural census
information. PCAM global gridded maps of specific
crops for each year from 1961 to 2014 are provided in
the supplementary information, available at https://
doi.org/10.13012/B2IDB-7439710_V1 in order to
ensure transparency and enable future research.

PCAM employs a probabilistic framework that
enables estimation of likely locations of specific crops
for each year for the last half century. There are many
potential applications of both the algorithm and the
maps that have been produced. In its current form,
PCAM provides a unique opportunity to determine
the other factors of production that are important in
the spatial distribution of agriculture. This can be done
by analyzing deviations between census data and
PCAM estimates, which are based on the underlying
suitability of the mean climate and soil of pixels. This
means that PCAM provides a useful benchmark of
where crops were likely grown taking only climate and
soil into consideration. PCAM has the additional
advantage of requiring relatively few data inputs. The
PCAM algorithm may also be useful in allocating
national variables to a global grid in other settings.

It is important to note that the methodology is
designed to provide a probabilistic assessment of crop
distributions. For this reason, PCAM’s maps should
not be considered to be actual data. Rather, they
should be used to determine likely locations of major
crops in time. For locations in which sub-national
census data exists, such as it does in the United States,
then the census data is the preferred source of

Table 8. Sensitivity results comparing PCAM toMonfreda et al [23] across ‘low’, ‘intermediate’, and
‘high’ agricultural input scenarios provided byGAEZ. ‘Weight’ is the global harvested area fraction for the
year 2000 as given by FAO [4].

Low Intermediate High

Crop Weight R2 SMC R2 SMC R2 SMC

Barley 0.06 0.139 0.91 0.13 0.9074 0.206 0.8895

Cassava 0.02 0.05 0.9571 0.044 0.956 0.128 0.9423

Groundnut 0.03 0.037 0.9432 0.043 0.9397 0.038 0.9308

Maize 0.16 0.197 0.8686 0.177 0.8688 0.22 0.8557

Millet 0.04 0.12 0.9363 0.144 0.936 0.167 0.9287

Oats 0.01 0.145 0.9286 0.14 0.931 0.178 0.9197

Potato 0.02 0.061 0.9084 0.083 0.9094 0.126 0.9069

Rapeseed 0.03 0.082 0.9169 0.092 0.9194 0.088 0.9146

Rice 0.18 0.636 0.9301 0.632 0.9304 0.631 0.9121

Rye 0.01 0.134 0.9365 0.177 0.9391 0.253 0.9382

Sorghum 0.05 0.047 0.9091 0.091 0.9103 0.263 0.8986

Soybean 0.09 0.224 0.9079 0.191 0.9134 0.4 0.9121

Sugarbeet 0.01 0.061 0.9475 0.038 0.9555 0.058 0.9476

Sunflower 0.02 0.205 0.9227 0.152 0.9229 0.163 0.9121

Sweet potato 0.01 0.119 0.9525 0.105 0.9557 0.065 0.9444

Wheat 0.25 0.162 0.8669 0.094 0.8688 0.108 0.8594

Yam 0 0.039 0.9862 0.018 0.9873 0.119 0.9855

Weighted value 0.89 0.89 0.88
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information. However, agricultural census informa-
tion is often not available for many locations and time
periods. This means that PCAM estimates may be sui-
table for certain uses in these instances.

Future work could improve upon the approach,
especially as new datasets and computational techni-
ques emerge. For example, machine learning shows
much promise to leverage satellite data for estimating
crop-specific areas [59, 60]. However, this approach
would be restricted to the time domain of necessary
satellite data. Future work could assemble available
sub-national census data and fuse it with PCAM esti-
mates for locations without data. Insights into addi-
tional determinants of crop-specific suitability could
be used to improve the suitability mesh. Additionally,
future work could integrate information on extreme
climate events to better determine locations of harvest
as opposed to planted areas.
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