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Integrated approaches to understanding and reducing
drought impact on food security across scales
Xiaogang He1,2, Lyndon Estes3, Megan Konar4, Di Tian5,
Daniela Anghileri6, Kathy Baylis7, Tom P Evans8 and
Justin Sheffield1,6

Understanding the cross-scale linkages between drought and

food security is vital to developing tools to reduce drought impacts

and support decision making. This study reviews how drought

hazards transfer to food insecurity through changes in physical

processes and socio-environmental systems across a wide range

of spatial and temporal scales. We propose a multi-scale,

integrated framework leveraging modeling advances (e.g. drought

and crop monitoring, water-food-energy nexus, decision making)

and increased data availability (e.g. satellite remote sensing, food

trade) through the lens of the coupled human–natural system to

support multidisciplinary approaches and avoid potential policy

spillover effects. We discuss current scale-dependent challenges

in tackling drought-induced food security whilst minimizing water

use conflicts and environmental impacts.
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Introduction
Recent decades have witnessed substantial strides in

increasing global food production. Yet we still face chal-

lenges to feed 9.8 billion people by 2050, especially over

drought-prone and dry areas of the developing world. For

example, in sub-Saharan Africa, food crises are periodi-

cally triggered by droughts, and could be further exacer-

bated by other compounding factors (e.g. heat waves,

floods, conflict). Over the last five decades, food produc-

tion shocks (i.e. sudden losses) have become more fre-

quent across all regions and all food sectors [2�]. Half of

these shocks are caused by extreme weather [2�] with

disproportionate effects on countries with low coping

capacity, such as the ability of farmers to diversify food

production or the ability of governments to import food or

provide insurance. For instance, the 2017 Kenya drought

led to a national emergency and left 2.5 million people

facing food insecurity [3]. With more effective adaptation

strategies and actions, the impact of elevated drought risk

due to climate change [4,5] can be reduced and help

facilitate progress towards hitting the second United

Nations Sustainable Development Goal (SDG) (i.e. zero

hunger). Synchronous challenges are emerging if multiple

inter-related SDG goals are to be achieved simulta-

neously (e.g. SDG2 to ensure food security, SDG6 to

ensure water security, SDG13 to foster resilience), as they

interact across a range of spatial and temporal scales,

leading to diverse trade-offs, synergies and even compet-

ing policy responses with impacts that are also scale-

dependent [6��]. Understanding such cross-scale

interactions is key for policymakers and stakeholders to

develop adaptation policies that can effectively reduce

the impacts of drought on agricultural production, and to

increase societal resilience to future drought-induced

emergencies, while still meeting competing demands

and enhancing environmental sustainability.

Figure 1 conceptualizes a range of potential food security

outcomes, for the example of Zambia, driven by cross-

scale interactions of a range of plausible physical and

socio-economic scenarios. The effect of drought (or other

hazards) on individuals and communities depends on

both the direct impact of the drought on local food

production and the response of trade networks and insti-

tutions to drought occurrences (e.g. aid/relief organiza-

tions), which are reliant upon domestic infrastructure to

move food resources. The impacts of droughts are also
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shaped by existing policies and institutional factors, such

as agricultural subsidy programmes. For example, the

food security impact of a small but severe drought can

be mitigated if the affected region is well connected to

regional transport and food distribution networks, pro-

vided food transfer policies are flexible and adaptive

enough, or regional trade flows are sufficient so that

enough food can be transferred to the affected region

to make up for local farmers’ production losses (Figure 1,

top row). On the other hand, a drought of the same extent

but of less severity could lead to much larger food

insecurity in a region that is relatively isolated (making

it less likely that market forces can meet food shortfalls,

even given substantial regional trade), particularly if food

security policy is relatively inflexible and unable to con-

centrate and prioritize resources at a subnational scale

(Figure 1, 2nd row). Other scenarios can play out based on

other combinations of drivers and responses (Figure 1,

rows 3 and 4).

Given scale-dependent drought-food security linkages in

both the environmental and socio-economic realms, dis-

ciplinary approaches are unlikely to solve such ‘wicked’

problems. Instead, interdisciplinary approaches across

scales are needed to fully understand drought-linked food

security outcomes, and the corresponding interventions

that can minimize impacts. To this end, we review recent

progress in drought risk and food security analysis, and

modeling approaches from both the biophysical and

socio-economic perspectives. We also discuss how to

leverage emerging opportunities in modeling advances

and rich datasets to develop scalable and integrated

decision support frameworks that incorporate local

knowledge and stakeholder involvement. These frame-

works can be used to reduce drought impacts on food

security and help address SDG targets.

How does drought impact food security?
In this review, we focus on three categories of food

security: availability (i.e. crop production, stock, and

trade), access (related to physical and economic factors

such as food trade, income, market, price), and stability

(adequate access to food), all of which are directly or

indirectly affected by drought risk, either through bio-

physical processes (related to the hazard component) or

socio-economic processes (related to vulnerability and

exposure components). We do not address the utilization

aspect (i.e. the appropriate use of the nutritional content

44 System dynamics & sustainability

Figure 1

X

X

X

X

X

X

X

X

X

X

X

X

=

=

=

=

Drought
extent, severit y

Transport 
road, rail 

Food security
policy 

Regional trade
flows 

Dietary mi x
local vs imported  

Food security
impact 

isolated

connected
Adaptive

Fixed

Adaptive

Fixed

isolated

connected

connected

isolated

X X

X X

Current Opinion in Environmental Sustainability

Examples of food security scenarios, illustrating the interactions between droughts of different scale and impact (localized or national coverage; mild or

severe), transportation access (isolated or connected), food security policies (fixed or adaptive subnationally), and regional trade (free trade, preferential

trade or trade barriers), and their impacts on average household dietary mix (ratio of local to imported food) and overall food security.
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by the human body) of food security as this is generally

less affected by drought, and we focus on crops rather

than livestock.

Drought impacts on agricultural production

Drought is an extreme state of the hydrological cycle and

reflects a situation with below average water availability

conditions. Drought usually starts with precipitation defi-

cit (called meteorological drought) and sometimes can be

exacerbated by increased evapotranspiration due to high

temperature, which can further propagate to the land

surface and lead to reduced soil moisture (called agricul-

tural drought) and streamflow (called hydrological

drought). Water stress during drought slows down crop

root growth, delays maturation and reduces agricultural

productivity. Physically, this directly leads to reduced

food availability especially for regions where livelihoods

are highly dependent on rain-fed agriculture that are

susceptible to droughts (e.g. sub-Saharan Africa). Glob-

ally, droughts caused 1820 million Mg loss of cereal

(maize, rice, and wheat) production over the past four

decades [7]. The extent to which various types of drought

affect food security is highly linked to their spatio-tem-

poral footprint. For instance, the timing and duration of

droughts largely determine their impact on agriculture.

Individual drought events with short-duration (several

weeks) exert less pressure on agricultural and water

management compared to multi-year prolonged droughts,

whose effects can ripple across other sectors [2�]. The

timing of drought occurrence is important, as the sensi-

tivity of crop yield to water stress differs with growth

stage, which is related to the fundamental biophysical

mechanisms of crop growth [8]. Given this, there is a need

to assess drought impacts on agricultural productivity

separately for specific growth stages, which is more

meaningful for agricultural water management [9]. Sta-

tistical and process-based models are important tools for

estimating drought impacts on crop yields [10�], but these

are inherently scale dependent, ranging from the farm

level to global scale [7,11]. This highlights the need for

multivariate probabilistic approaches [12,13] to simulta-

neously consider the joint distribution of the spatial and

temporal footprint of drought. Such approaches can be

combined with model-based large ensembles [14] for

more robust quantification of agricultural risk, but should

consider whether risk assessments are transferable across

scales.

Drought is a risk multiplier to the interlinked food,

energy and water (FEW) sectors, making agricultural

sectors more vulnerable as the FEW sectors become more

interconnected [15]. Globally, there is increasing compe-

tition between urban water provision and agriculture

water demand [16��]. Water allocated to domestic/

industrial uses necessarily decreases water available for

irrigation which can result in decreased yields in times of

inadequate rainfall. The situation could become more

challenging if water is diverted for more profitable non-

food sectors (e.g. irrigation for biofuel production or water

for mining) [17]. Such trade-offs in terms of water alloca-

tion not only exist across sectors, but are also manifested

through the spatial patterns of upstream-downstream

relationships along the river network, with competing

goals between, for example, upstream hydropower gen-

eration and downstream irrigation. Although hydropower

is a non-consumptive water use (except for seepage and

evaporation), hydropower reservoirs can alter the timing

when water would naturally flow into the river system.

This can sometimes interfere with downstream agricul-

ture, especially when the crop growing season and high

electricity demand periods do not coincide [18�]. How-

ever, the extent to which there are trade-offs depends on

the duration and spatial footprint of droughts, as well as

whether there are cross-basin and large-scale water-

transfer infrastructures.

Drought interactions with markets and trade

Besides the direct physical influence of drought on agri-

culture, drought also indirectly jeopardizes food security

through its impact on socio-economic systems. The

impact is scale-dependent, not only because the hazard

component of drought risk varies across different spatio-

temporal scales [19], but also because vulnerability and

exposure vary across scales, and are influenced by infra-

structure (e.g. reservoirs, roads) and policies (e.g. subsi-

dies, trade policy). At the local scale, farmers whose

production is affected by drought face the double-shock

of both a loss of income along with potentially increasing

food prices. Even urban consumers who are not directly

linked to farming systems are affected by increased prices

for food in urban markets. At the regional scale, spatially

extensive droughts could destabilize regional food sys-

tems, and further increase the volatility of crop prices.

Such regional impacts can ripple into the globally inter-

connected markets, exacerbating the vulnerability of

countries whose economies strongly rely on international

food trade [20].

Water is embodied in traded goods across spatial and

temporal scales. Extensive research has focused on the

global virtual water trade, or the water embodied in

internationally traded commodities [21], with increasing

interest in determining the source of the water (e.g.

rainfall, surface supplies, or groundwater) [22��,23�].
Recent research has examined virtual water transfers at

smaller spatial scales, including domestic virtual water

flows [24] and transfers to urban areas [25�]. Food trade

appears to exhibit the same structural properties across

spatial scales [26�], indicating that it likely also improves

water use and food security at smaller scales of analysis,

though research is still needed to better understand this.

Most water footprint studies are at the annual temporal

scale [27�]. For example, research has examined unsus-

tainable groundwater resources that are embodied in the
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global trade system [22��]. However, to evaluate the

buffering capacity of groundwater to supply chains during

drought events, we require estimates at the subannual

time scale [23�]. Future research should resolve virtual

water trade flows in space and time to better understand

the exposure of supply chains to both long-term water

stress and shorter-term hazards (e.g. drought, flood). It is

important to note that virtual water does not necessarily

indicate if trade is leading to more or less water use. The

critical question is how much water (sustainable and

unsustainable) would be used in the absence of trade.

To address this critical question, tools of causal inference

are needed. Recent work has shown that trade decreases

water use (on average) in agriculture [28�] and does not

increase nutrient applications [29�]. At the subnational

scale, causal inference methods have been used to show

that the ability to transfer food leads to less famine in

India [30�].

Drought and food policy

From the policy perspective, local, national and interna-

tional policies could either alleviate or intensify the

drought impact, and in some cases can lead to unintended

consequences across scales. For example, recent work

using causal inference finds that crop insurance policy has

spillovers to water use [31��] because farmers tend to use

more water than they would have in the absence of crop

insurance. At the national level, decisions to prevent

exports to mitigate drought impacts can harm domestic

food security and agricultural markets, by increasing price

volatility rather than the intended goal of price stabiliza-

tion and reduction [32]. Internationally, global food trade

can help mitigate the effect of local production shocks, by

facilitating movement of food from other regions whose

production was unaffected, but can also spread the effect

of drought-related shocks across time and space [33].

These effects can be exacerbated by the imposition of

export barriers, particularly by traditionally major expor-

ters, such as were imposed by India, Thailand, Russia,

Argentina and many others in the face of the 2008 food

price increase. For example, Zambia enacts explicit

export bans (prohibition of maize exports) as well as

implicit bans (limits on export licenses) depending on

national level maize production [34]. While successful at

lowering price variability within the country, by restrict-

ing global supply, these policies exacerbated the global

price increase for rice and wheat in particular [35,36].

Many developing countries also have stock-holding poli-

cies meant to mitigate production shocks. In Africa,

stockholding has become increasingly popular among

governments over the past two decades, and government

marketing boards have become major players in African

food markets [37]. Subsidized grain purchases are com-

bined with often subsidized consumer sales to raise prices

to farmers and lower them to consumers, with the goal of

reducing price volatility. These programs are often large

and expensive. India’s combined stock-holding and food

subsidy program is the largest social safety net in the

world, costing 6% of the government budget. Despite

their popularity, it is unclear how well these policies work

to stabilize price across space, within or across years [38].

Policies that impact crop prices or production supports

(e.g. biofuel mandates, input supports) can promote

expanded crop production, which may lead to greater

investment into a single crop at the expense of crop

diversity, or increased cultivation in agriculturally mar-

ginal lands [39,40]. Either result may increase the risk of

failure due to drought.

Recent advances in integrated drought impact
mitigation approaches
The multifaceted impact of drought and its cross-scale

interactions between physical and socio-economic sys-

tems requires a portfolio of integrated approaches to

mitigate its impacts on food security. In this section,

we review recent advances in hydrological and crop

modeling, satellite remote sensing, and machine learning

that can be used to detect and anticipate drought impacts,

as well as how to translate the scientific advances to

support real-world decision making through nexus

approaches within the coupled human-natural system.

Drought early warning and forecasting

Progress in the development of drought early warning and

forecasting has been made in recent years due to advances

in understanding predictability, land surface modeling,

satellite-based measurement of key hydrological vari-

ables (e.g. precipitation, soil moisture), as well as

advances in machine learning algorithms facilitated by

the surge of big data of the Earth system. Techniques to

monitor and forecast drought can be distinguished as

process-based approaches, data-driven approaches and

hybrid approaches. Processed-based approaches are phys-

ically oriented, relying on large-scale meteorological fore-

casts from climate and weather models to drive hydrolog-

ical models to obtain critical hydrological variables, which

are used to calculate agricultural and hydrological drought

indices [41–43]. This has been routinely adopted to

develop regional and global scale drought monitoring

system across different temporal scales, from short-term

to seasonal [41,44��]. However, there remain challenges

in translating the skill of large-scale, short-term hydro-

logical forecasts to the local scale at long lead time (e.g.

subseasonal, seasonal), which is more relevant for agri-

cultural management and planning. This requires bias-

correction and downscaling techniques [45] to pre-pro-

cess large-scale meteorological input so that they have

commensurate resolution with hyper-resolution hydro-

logical models [46,47] and therefore drought impact

assessment is locally relevant. More importantly, the

predictability of the forecasts themselves need to be

substantially improved through enhanced understanding

of the underlying drought mechanisms [48]. This also

applies to data driven approaches, which aim to develop
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Current Opinion in Environmental Sustainability 2019, 40:43–54 www.sciencedirect.com



statistical relationships between drought characteristics

(e.g. severity, spatial extent, duration) and environmental

covariates (e.g. hydrological, meteorological, climatic

variables). The wealth of environmental datasets from

different sources (e.g. in situ observations, remote sensing,

retrospective simulations, reanalysis products, climate

projections, and even citizen-science observations) com-

bined with advanced machine learning models (e.g. deep

learning, [49��]) and increased computational power (e.g.

cloud computing, [50]) makes data-driven approaches

increasingly attractive for drought monitoring and fore-

casting [51–53,54��]. However, as drought is a dynamic

process and its evolution (i.e. onset, persistence, and

recovery) is space and time dependent [55], challenges

exist in terms of how to select the most informative and

scale-dependent predictors from the wealth of data. This

can be guided through advances in physical understand-

ing of drought mechanisms [48]. At the same time, data-

driven approaches can provide insights for diagnosing the

underlying mechanisms and therefore could identify new

pathways for physical model improvement. Hybrid mod-

els [49��] which harness advantages from both physically

based and data-driven approaches show promise for

future development and enhancement of regional

[41,56] and smaller scale systems. For instance, the flexi-

bility of machine learning in adapting to multi-resolution

datasets can be used to replicate physical model parame-

terization schemes across different scales. It is also possi-

ble to use machine learning based emulators to fully or

partially replace the computationally expensive physical

model to accelerate the simulation process of drought

monitoring and forecasting systems, especially when they

are running operationally and at high resolution.

Crop monitoring and yield forecasting

To understand how drought impacts agriculture, it is

essential to estimate and forecast crop yields at the

scale of individual fields or agricultural landscapes over

large extents (countries to regions), in order to under-

stand how productivity impacts propagate across scales.

There are three critical pieces of information that must

be accurately measured, in sequence, to provide reli-

able, fine-scale information on crop productivity:

Firstly, the location and extent of crop fields; secondly,

the crop types growing within them; and finally, the

yield response [57,58,59�]. Obtaining accurate esti-

mates of each of these three elements remains a major

challenge, particularly in regions dominated by small-

holder farming systems, where agricultural census is

often lacking or inaccurate, and the ability to accurately

measure these properties with remote sensing is par-

ticularly challenging. Accurately mapping croplands at

the characteristic scales of individual fields (1-2 ha) is

arguably an unsolved problem, one that can propagate

significant error into crop type and crop yield estimates

[60,61,59�].

Despite such challenges, recent technological and meth-

odological developments are helping to rapidly improve

agricultural datasets. The emergence of small satellite

fleets is providing imagery at the high spatial and temporal

resolutions required to accurately map smallholder-domi-

nated croplands [62��,61], while recent work using Sentinel

and Landsat imagery have led to 20-30 m resolution, global

to continental scale cropland maps [63,64]. Such efforts are

facilitated by the increasing availability of cloud-based

image processing, such as Google Earth Engine [65��],
which provides a free platform combining open image

archives, large-scale computing, and advanced proces-

sing and classification algorithms. Advances in computer

vision and machine learning are helping to improve

agricultural mapping [64,61]. Alongside these algo-

rithms, which typically require large training datasets,

new crowdsourcing platforms allow large, distributed

networks of human mappers to digitize labels by visually

interpreting high resolution satellite imagery [66–68]. In

addition, the Sen2Agri system provides an operationaliz-

able method for creating annual maps of both cropland

and crop types that has been demonstrated at national

scales [69�]. However, this approach must be trained

with large volumes of in situ crop type observations,

which are often challenging to obtain, thus recent work

demonstrating a training data-free crop type mapping

approach appears promising, at least over more homoge-

nous cropping systems [70�].

Progress has also been made in field-scale yield estima-

tion. Prominent among these is the Scalable Yield Map-

per approach [71], which uses a mechanistic crop simula-

tor to develop an empirical model of yields that uses

remotely sensed predictors (e.g. vegetation indices,

gridded weather variables), thereby foregoing the need

for field data. This approach has been used to map

between-field differences in yield and crop management

practices (e.g. planting date) in smallholder-dominated

systems, with errors comparable to those in field-collected

yield data [72,73��]. Most recently, it has been combined

with automated crop type mapping [70�] to map maize

yields over Kenya and Tanzania [74�]. The rise of new in
situ sensing systems, novel SMS-based farmer survey

methods [75] and autonomous aerial vehicles [76��] will

make it easier to calibrate and constrain crop simulations

used by this method, by substantially increasing the

amount of field data that can be collected on crop phe-

nology and management.

Accurate crop yield forecasting plays an important role in

risk management, trading, policy making, and decision

making for improving food accessibility. A number of

approaches have been developed for crop yield forecast-

ing at regional, national, and international levels. Empiri-

cal approaches are based on deriving statistical relation-

ships between crop yields and satellite vegetation indices

[77], climate data and forecasts [10�,78–80], or both

Integrated approaches to understanding and reducing drought impact He et al. 47
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satellite and climate information [81]. Combining climate

data and remote sensing based vegetation indices is a

relatively new and promising approach. Process-based

approaches with dynamic crop simulation models com-

bined with climate forecasts are used as well [82]. These

advances have been incorporated into land data assimila-

tion systems, which take advantage of the improved skill

of climate forecasts at subseasonal and seasonal lead

times, and have been employed for crop growth monitor-

ing and crop yield forecasting at global and regional scales

[83]. Compared with empirical approaches, process-based

approaches have large data requirements which could

prevent their spatial generalization and application. In

contrast, empirical approaches using statistical models

provide a simple alternative for spatially explicit crop

yield forecasts, but are generally limited to the range of

variability they were developed for. Both empirical and

process-based methods are transferable across different

scales contingent upon the scale of the input data. Studies

have also been conducted to investigate the linkages

between large-scale climate variability and crop yields,

providing the basis to develop climate-informed seasonal

crop yield forecasting [84,85]. Benefitting from these

advances, a few systems have been developed and are

running operationally, such as the European Commission

MARS Crop Yield Forecasting System (MCYFS) (http://

agri4cast.jrc.ec.europa.eu/).

Decision support and risk reduction for water and

agricultural management

Progress in understanding drought mechanisms and crop

impacts combined with easy access to timely data and

improved physical models have enabled the recent devel-

opment of agricultural drought monitoring and forecast-

ing systems [41,56]. These systems run operationally and

disseminate data to a wider scientific community and

stakeholders, and therefore are valuable decision support

tools [86–89]. For instance, these systems can aid in the

strategic planning of water and agricultural resources

across scales (e.g. local, regional). With forecast informa-

tion available at seasonal or even longer time scales, these

systems can allow local government to establish coping

strategies to ward off famine and allow the humanitarian

community to develop more effective assistance. This has

been demonstrated during the 2016/2017 East African

drought, with the Famine Early Warning Systems Net-

work (FEWS NET) contributing to enhanced drought

resilience in Kenya and reduced mortality rate in Somalia

compared to the 2010/2011 drought [56]. Of key impor-

tance is to make similar progress towards integrating

cross-scale policies (e.g. national trade agreements, local

subsidies) and food transfers (e.g. international and

domestic food trade, food aid) into drought early warning

systems through hierarchical and scalable network

approaches. Recent implementation of risk-based frame-

works [90,91] has demonstrated their value in enhancing

resilience for both short-term (e.g. coping and recovery of

drought) and long-term horizons (e.g. anticipating trends

and variability for future long-term planning such as

infrastructure, water banking, etc.). It is extremely chal-

lenging for policy-makers to identify and implement

strategies which address the complexities and deep

uncertainty associated with climate and non-climate fac-

tors (e.g. society, land use, economy, etc.) that lead to

drought impacts [92]. Generally speaking, there are two

main approaches to deal with deep uncertainty from the

decision making perspective [93]: Firstly, robust decision

making approaches which look for strategies or interven-

tions which guarantee a minimum performance against a

wide range of possible future scenarios [94,95��]; and

finally, adaptive decision making approaches which peri-

odically revise strategies and interventions to adapt to

changes in the decision making context as future uncer-

tainties unfold [96,97]. Recently developed end-to-end

probabilistic risk assessment frameworks account for the

full spectrum of risk (i.e. risk mitigation, risk forecast, and

risk transfer instruments) [98]. This framework not only

considers physical-loss risk due to lowered crop produc-

tion caused by droughts, but also addresses how it trans-

lates to direct and indirect economic loss, which is more

directly related to decision making. If applied in real

contexts, such scientific advances have the potential to

enable the exploration of constraints and tipping points of

food security as well as the identification of probabilistic

solutions that can be used for domestic food transfers to

optimize food security across scales. However, research

on the integration of such environmental and economic

decision making into current drought monitoring and

early forecasting systems is still in its infancy.

Coupled modeling and assessment of human and

natural systems

Better understanding of drought risk and its translation to

crop impacts is one aspect of supporting decision making.

From the adaptation point of view, decision making can

be more cost-effective if adaptation capacities associated

with different levels of stakeholders (e.g. individual

farmer, environmental agency) are jointly considered

[99]. On one hand, this is important for more accurate

estimation of agricultural water demand, especially over

regions with irrigated agriculture, where farmers can

adapt to droughts by changing their irrigation behaviors

or through land use changes (e.g. changing crop types,

fallowing land). Their decisions on agricultural manage-

ment can be further aided if their perception on drought

risk is better informed through seasonal forecasting [100].

The importance of such behavioral dynamics has been

increasingly recognized by the physical modeling [101]

and risk assessment communities [102], especially under

the influence of climate change [103]. The recently

developed human-climate model [104] enables the bi-

directional coupling between human behaviors and the

climate system, and represents a useful approach to

understand the potential interaction of overlooked

48 System dynamics & sustainability

Current Opinion in Environmental Sustainability 2019, 40:43–54 www.sciencedirect.com

http://agri4cast.jrc.ec.europa.eu/
http://agri4cast.jrc.ec.europa.eu/


behavioral dimensions and environmental consequences.

Such large-scale conceptual models can be applied in the

context of drought to evaluate the usefulness of potential

policy interventions as well as to identify feasible adap-

tation pathways that can lead to sustainable agricultural

development. However, challenges still exist in terms of

how to downscale the spatial human dimensions from

larger (e.g. global scale) to more relevant scales (e.g. basin

scale), and how to better consider the dynamics of inter-

connectedness across scales [105]. The scaling issue

becomes even more vital as the increased pace of globali-

zation is strengthening the inter-connectedness and tele-

connectedness of coupled human–water systems [106].

More and more evidence has shown that even piecemeal

behaviors/actions can add up to a much larger scale and

trigger a cascade of effects [107,105]. This further high-

lights the necessity to extend current coupled frameworks

[108,109] to larger scales from the bottom-up point of

view, but using hierarchical model structures to reconcile

the top-down approach with layers of different spatial and

temporal resolutions, and appropriate complexities

thereof. Agent-based modeling (ABM) has advantages

to characterize such complexities (e.g. farmer–farmer,

farmer–government, farmer–environment interactions),

but is usually limited to small spatial scales and is highly

reliant on the availability of empirical data (e.g. survey

data) to characterize various agents’ behaviors and their

associated heterogeneity, as well as to validate model

assumptions. Despite these challenges, coupled hydro-

logical and ABM systems are useful to understand the

relative importance of social and behavioral dimensions in

agricultural decision making, compared to other factors

(e.g. climate change). They also have the potential to

promote behavioral changes and inform adaptation strat-

egies to increase society’s resilience to drought [110].

Representing water-food-energy connections through

multi-scale nexus approaches

Progress towards reducing drought impacts on food secu-

rity, and in general, towards achieving SDGs related to

water, also needs consideration of the manifold interlin-

kages among water, food and energy [111,112��,113].
These interlinkages can be directly altered by climate

shocks such as droughts [114], which themselves vary

across different spatial and temporal scales. Of particular

importance is the spatial dimension, recently highlighted

by Liu et al. [115��], who proposed a new integrated and

metacoupling framework for investigation of nexuses in

three different types: intracoupling (within a specific

place), pericoupling (between adjacent places) and tele-

coupling (between distance places). This framework can

be used to understand the linkages between drought and

food security, and help identify potential intra-regional

policy instruments [114] to facilitate decision making for

different levels of stakeholders. Take the food trade in

sub-Saharan Africa as an example. Although local food

production is vulnerable to prolonged droughts (e.g.

Kenya), food shortage could be buffered by international

food trade/aid. However, for the poorest of the popula-

tion, food security can be negatively affected by the

interaction of policies at different scales (e.g. local,

domestic, international) [116], yet the spatial expression

of these impacts is still unknown. Therefore, local to

international food trade should be jointly considered for

understanding and planning of the entire food system.

This should also account for embedded virtual water,

especially for countries (e.g. Pakistan) whose export of

agricultural production is at the expense of environmental

degradation (e.g. groundwater depletion) [22��]. Further-

more, droughts can exacerbate competition for water

resources between irrigation water supply and hydro-

power generation, usually through upstream-downstream

relationships [117,118]. The fact that 54% of hydropower

plants compete with irrigation water use at the global

scale [18�] indicates that we need to reconcile competing

water demands among different upstream-downstream

sectors, optimize water use to minimize conflicts and

maximize synergies among multiple goals [112��,95��].
The temporal scale of nexus approaches should also be

considered for future planning, through scenario analysis

based on explicit drought shocks [113] or through

dynamic life cycle assessment methods [119].

Challenges, opportunities and future
directions
Progress towards closing yield gaps in the face of drought

risk, and ensuring food security requires a range of

research and interventions, including improving the avail-

ability and use of methodological tools (either physically

based or data driven or both) and datasets (e.g. satellite

remote sensing, climate and hydrological model simula-

tions, citizen-science observations) for monitoring and

predicting food security. It is of critical importance to

deliver data (e.g. forecasts of drought and crop yield) at

the time scale that is relevant for decision making and can

be used to support management practices. These datasets

should also be long-term, consistent and continuous such

that risk quantification is robust and accurate enough. It is

also critical to develop policy instruments which could

balance the temporal trade-offs between conflicted short-

term (e.g. buffer droughts through groundwater pumping)

and long-term objectives (e.g. maintain sustainability of

depletable groundwater resources). A more challenging

issue is how to factor in climate change information for

long-term planning such that drought risk management is

adaptive and proactive [120,121]. This requires different

levels of adaptation strategies that are targeted for differ-

ent time horizons. For example, incremental adaptation

(e.g. farmers make moderate changes of existing irrigation

behaviors) may be adequate for the short-term response

to drought, but large-scale transformation options (e.g.

fundamental changes of agricultural systems through

innovation) may be needed for longer planning horizon

[122]. A specific challenge is to avoid maladaptation, in
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which short-term benefits may lead to worse situations in

the long-term. This was reflected in the 2007–2009 Cali-

fornia drought, where high agricultural and energy pro-

duction were maintained through adaptation strategies

that increase the vulnerability of other sectors in the

long-term [123]. For instance, the increased purchase

of natural gas to replace declining hydropower leads to

more greenhouse gas emissions. Although high agricul-

tural production was maintained during this drought,

increased groundwater pumping over the Central Valley

to cope with longer and more severe droughts for future

generations is unsustainable.

From the spatial perspective, we face challenges in terms

of how to vertically integrate data, models, and decision

making processes in a consistent way. The context and

location specific challenges in drought-induced food inse-

curity require tailoring models and the representation of

agricultural management (e.g. irrigation) to local, more

policy-relevant scales, with a view to delivering effective

climate/hydrologic services for food security. On one

hand, we are benefiting from the wealth of data-based

predictive information which can be used to understand

drought risk and to reduce its agricultural impact. But on

the other hand, this information is derived from different

sources and is usually spatially and temporally down-

scaled/upscaled based on different assumptions, and

therefore may lead to data inconsistencies. This high-

lights the need to merge information to reduce uncer-

tainty. Given the increased availability of geospatial data

emerging from various sources, a promising avenue is to

combine machine learning with these data, but guided by

physical modeling [49��], so that more interpretable infor-

mation can be extracted and integrated across disciplines

and scales. This will aid the development of nested

models, which have flexible resolutions and complexities

to consider multiple levels of spatial heterogeneity (e.g.

local details, cross-scale interactions).
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