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Background: The recent development of metagenomic sequencing makes it possible to massively sequence microbial

genomes including viral genomes without the need for laboratory culture. Existing reference-based and gene

homology-based methods are not efficient in identifying unknown viruses or short viral sequences from metagenomic

data.

Methods: Here we developed a reference-free and alignment-free machine learning method, DeepVirFinder, for

identifying viral sequences in metagenomic data using deep learning.

Results: Trained based on sequences from viral RefSeq discovered before May 2015, and evaluated on those

discovered after that date, DeepVirFinder outperformed the state-of-the-art method VirFinder at all contig lengths,

achieving AUROC 0.93, 0.95, 0.97, and 0.98 for 300, 500, 1000, and 3000 bp sequences respectively. Enlarging the

training data with additional millions of purified viral sequences from metavirome samples further improved the

accuracy for identifying virus groups that are under-represented. Applying DeepVirFinder to real human gut

metagenomic samples, we identified 51,138 viral sequences belonging to 175 bins in patients with colorectal

carcinoma (CRC). Ten bins were found associated with the cancer status, suggesting viruses may play important roles

in CRC.

Conclusions: Powered by deep learning and high throughput sequencing metagenomic data, DeepVirFinder

significantly improved the accuracy of viral identification and will assist the study of viruses in the era of

metagenomics.

Keywords: metagenome; deep learning; virus identification; machine learning

Author summary: We developed a reference-free and alignment-free machine learning method, DeepVirFinder, for

identifying viral sequences in metagenomics using deep learning. Sequences from viral and prokaryotic genomes are used for

training the model. The neural network is composed by a convolutional layer, a max pooling layer, two dense layers to

generate the prediction score between 0 and 1. DeepVirFinder outperformed the state-of-the-art method VirFinder at all

contig lengths, achieving AUROC 0.93, 0.95, and 0.97 for 300, 500, and 1000 bp sequences respectively, and it will greatly

assist the study of viruses in the era of metagenomics.

† These authors contributed equally to this work.
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INTRODUCTION

Viruses infecting microbes have great impact on both

human health and ecosystems, but studies of the effect of

those types of viruses on their host communities as well as

on public health are in their earliest stages. It has only

recently become possible to identify viruses in large

metagenomic datasets using next-generation sequencing

(NGS) technologies coupled with computational

advances. Unlike traditional methods of isolating viruses

through laboratory cultures, metagenomic sequencing

technology effectively sequences all types of genetic

materials in a microbial community regardless of their

cultivability, making it possible to exhibit the true viral

diversity of a sample. Studies using metagenomic

sequencing to study viruses in the human gut have

revealed important associations between viruses and

human diseases, such as inflammatory bowel disease

(IBD) [1], severe acute malnutrition (SAM) [2], and type

II diabetes [3].

Identifying viral sequences frommetagenomic samples is

the first crucial step for all downstream analyses for viruses.

A few methods have been developed to tackle the virus

identification problem in metagenomic samples [4–6].
Besides those methods, tools for metaviromic or metage-

nomic composition analysis that characterizes the taxon-

omy of sequences in a sample [7–13] can also be used for
identifying viral sequences, although they are not

designed for this purpose. Before the metagenomic era,

several tools for identifying proviruses from within

prokaryotic genomes were developed [14–17]. While

identifying proviruses in prokaryotic genomes is a

different problem than identifying viral sequences in

metagenomics, provirus finding tools laid the groundwork

for virus identification approaches in metagenomic era.

In general, all the above methods characterize viruses

using features from the following three major aspects:

(1) sequence alignment-based metrics for comparing

query sequences with virus refernece genomes, (2) gene

homology-based metrics for comparing genes in query

sequences and viral gene database, and (3) alignmnet-free

k-mer based metrics that use genomic signatures for virus

prediction.

For sequence alignment-based methods, the tools,

Metavir [7] and ViromeScan [8], classify viral metage-

nomics reads based on sequence alignment and homology

searches against known viral reference genomes. Kraken

[10], Centrifuge [11], and MetaPhlAn [12], which were

designed mainly for bacteria composition analysis

though, can rapidly map reads to known viral reference

genomes. However, the current virus genome database are

markedly biased towards certain types whose hosts are

cultivable in the lab. The current virus references are far

from being a complete representation of the whole viral

diversity. It is estimated that only about 15% of viruses in

human gut have similarity to known viruses in the

database [18].

Gene homology-based methods, VIROME [9], DIA-

MOND [13], VirSorter [4], JGI Earth Virome Pipeline

[19], MARVEL [6], and most provirus finding tools,

Prophinder [15], Phage-Finder [14], PhiSpy [16], and

PHASTER [17], determine viral sequences mainly by

comparing genes in the query sequence against viral gene

databases, and see if there is enough evidence showing

the query sequences carries viral proteins. Since some

mutations in nucleotide sequences are not appearing in the

amino acide sequences, comparing sequences at the

amino acid level instead of at the nucleotide level

improves prediction stability given the high mutation

rate in viral genomes. In addition, VIROME, VirSorter,

and JGI Earth Virome Pipeline enlarged the viral gene

database by adding viral genes from metavirome datasets

to detect unknown viruses. Metavirome is viruslike

particle (VLP)-derived metagenomes where cellular

organisms like bacteria are filtered out physcially before

sequencing and mostly viruses are sequenced. The gene-

based methods normally require query sequences to

contain complete genes, so they are not able to predict

sequences from non-coding regions. VirSorter in parti-

cular requires query sequences to have at least three genes

to make predictions. Since metagenomics reads and the

majority of metagenomically assembled sequences (also

called contigs) are only hundred base pairs long, the

method however fails to recall the majority of metage-

nomic viral sequences.

Recently we developed a program, VirFinder, to

identify viral sequences using a machine learning method

based on k-mer frequency features [5]. VirFinder auto-

matically learned k-mer patterns that are enriched or

depleted in viruses, and built a powerful classifier to

predict viral sequences. Since VirFinder characterizes

sequences using k-mer frequencies, it can predict contigs

from both coding and non-coding regions. Moreover,

VirFinder does not depend on gene finding and

homology-based searches so that it can predict short

viral contigs that contain few or even only partial genes.

VirFinder recalls 78-, 2.4-, 1.8-, and 1.2-times more viral

contigs of 1, 3, 5, and 10 kb, respectively, than the gene-

based method VirSorter, at the same false positive rates.

The success of VirFinder demonstrates that the k-mer

based machine learning method is more powerful than

traditional gene-based methods for short contigs (£10k).

Deep learning is one type of advanced machine

learning algorithms that uses deep artificial neural

networks to learn features from the input and predict the

output. Deep learning techniques have been successfully

used to solve various problems in computational biology,

such as predicting protein binding specificity using deep
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learning [20–23], predicting the effect of non-coding

variants [24,25], predicting chromatin accessibility [26],

calling genetic variants from millions of short reads in

NGS samples [27], predicting methylation quantitative

trait loci [28], identifying evolutionary conserved

sequences [29], and identifying enhancers and promoters

[30] and their interactions [31]. Yue et al. [32] gave a

detailed review of deep learning applications in genomics.

Significant improvements have been achieved for the

above problems by deep learning methods over traditional

methods, especially when training was driven by

sufficient data. Given the importance of virus recognition

problem and the urgency of utilizing the existing massive

amount of metagenomic data, it is crucial to develop a

powerful deep learning method for accurately identifying

viruses in metagenomics.

In this study we developed a novel method, DeepVir-

Finder, to identify viral sequences from metagenomic data

using deep learning techniques. DeepVirFinder designed

convolutional neural networks (ConvNets) to automati-

cally learn viral genomic signatures, and simultaneously

built a predictive model based on those genomic

signatures to predict if a sequence is from a viral genome.

Trained with a large number of sequences, DeepVirFinder

outperformed the previous state-of-the-art method Vir-

Finder at all contig lengths. DeepVirFinder achieved

AUROCs of 0.95, 0.97, and 0.98 for 500, 1000 and 3000

bp viral sequences respectively. For short sequences,

decent prediction accuracy was obtained (AUROC 0.93

for 300 bp), suggesting DeepVirFinder can be directly

applied to raw sequencing reads. To further elevate the

prediction accuracy for sequences from under-represented

viral groups, we enlarged the training data tremendously

by adding millions of unknown viral sequences in

metavirome datasets. As a case study, we applied

DeepVirFinder to identify viruses in gut microbial

communities for patients with CRC. Ten virus bins

associated with the cancer status were discovered,

suggesting potential roles that viruses play in human

disease.

RESULTS

DeepVirFinder: viral sequences prediction using
convolutional neural networks

We developed a powerful deep learning model for

predicting viral sequences using convolutinoal neural

networks. Our model takes DNA sequences as input,

without using any pre-defined features such as k-mers as

before [5], and simultaneously learns features that are

useful for virus prediction. The model consists of a

convolutional layer, a max pooling layer, a fully

connected layer, and several dropout layers, and outputs

a prediction score between 0 to 1 for a binary

classification between virus and prokaryote (Fig. 1). See

Section of “Predicting viral sequences using convolu-

tional neural networks” for the details of the model.

Considering DNA sequences are double stranded, and the

prediction should be identical for either the forward strand

or the backward strand, we apply the same network to

both the original sequence and its reverse complement,

and define the final prediction score as the average of the

predictions from both sequences.

The model was trained and evaluated using a curated

large dataset containing hundred thousands viral

sequences and prokaryotic sequences. We downloaded

2,314 reference genomes (also known as RefSeq) of

viruses infecting prokaryotes (bacteria and archaea) from

National Center for Biotechnology Information (NCBI).

The dataset was partitioned into three parts based on the

dates when the genomes were discovered. We used the

genomes discovered before January 2014 for training,

those between January 2014 andMay 2015 for validation,

and those after May 2015 for test. The partitioning of the

dataset not only avoids the overlaps between the training,

Figure 1. The deep learning framework of DeepVirFinder. Sequences from viral genomes and prokaryotic genomes are used

for training the model. The neural network is composed by a convolutional layer, a max pooling layer, a dense layer with ReLU

activation function, and a final dense layer with sigmoid function to generate the prediction score between 0 and 1. The higher score

indicates the more likely a sequence is from viral genomes. For each sequence, both forward and its reverse complementary are fed

into the same neural networks, and the final prediction score is the average of the two corresponding prediction scores.

66 © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
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validation, and test datasets, but also helps to evaluate the

methods ability for predicting future new viruses based on

the previously discovered viruses. The viral genomes are

fragmented into nonoverlapping short sequences to mimic

the real metagenomic contigs. The virus dataset is paired

with the same number of prokaryotic sequences,

fragmented from 38,234 RefSeq and partitioned by the

exact same dates. See Section of “Viruses and prokaryotic

genomes used for training, validation and testing” for

details. To further enlarge the dataset for training, we

collected a large number of metavirome samples which

contain mostly viral sequences including many unculti-

vated viruses. After carefully filtering out of the possible

contamination of prokaryotic DNA in the samples, we

added up to 1.3 million sequences to training. See Section

of “Collection of metavirome datasets” for details.

The model was trained using training dataset, and

optimal hyperparameters were selected based on the

performance of the model on validation dataset. The area

under the receiver operating characteristic curve

(AUROC) was used as the metric for performance

evaluation. AUROC provides a quantitative measure for

predictive performance, with higher values indicating

higher prediction power. Once the optimal hyperpara-

meters were detemined, the final model was trained using

all sequences in both training and validation dataset, and

evaluated on the final test dataset which was never

touched during training. Our model was compared with

the other method using the same trainig, validation, and

test datasets, to ensure a fair comparison.

Determining the optimal model for DeepVirFinder

We implemented a series of training and validation

experiments to search for the optimal paramter setting for

the model of DeepVirFinder. In convolutional neural

networks, two critical hyperparameters, the length of

motifs (or filters) and the number of motifs, determine the

complexity of the model. To find the best parameter

settings, we trained the model with different combinations

of the two parameters using the training data, and

evaluated the model performance using AUROC on the

validation dataset. We studied the motif length ranging

from 4 to 18 and the number of motifs from 100, 500,

1000, and 1500. We observed that as motif length

increased from 4 to 8, the validation AUROC increased

rapidly. The highest AUROC achieved when the motif

length was around 10, and the value kept in the same level

as the motif length further increased (Supplementary Fig.

S1A, red curves). For example, for the model trained with

500 bp sequences, when fixing the model having 1000

motifs, the validation AUROC increased from 0.7747 to

0.9464 as motif length increased from 4 to 8, and

achieved the highest value of 0.9496 when motif length is

10. This trend was similar for all other sequence sizes and

numbers of motifs. Thus, we set the motif length as 10 in

the final model. Note that the optimal k-mer length is 8 in

VirFinder, a similar value as the motif length chosen here.

We next studied the effect of the number of motifs on

the model performance by fixing the motif length as 10

and increasing the number of motifs from 100 to 1,500.

The validation AUROC gradually increased with the

number of motifs (Supplementary Fig. S1B). For

example, for the 500 bp model, the validation AUROC

was 0.8990, 0.9402, 0.9497, and 0.9500 for models using

100, 500, 1000, and 1,500 motifs, respectively. The

number of neurons in the dense layer had a similar effect

on the model performance. Considering the model

simplicity and the computational intensity, we chose to

use 1,000 motifs in the convolutional layer and 1,000

neurons in the dense layer in the final model.

The model was trained based on stochastic gradient

descent and back-propagation. Training for more epochs

produced a higher training accuracy but it could also

cause overfitting. We observed the validation AUROC

increased quickly in the first 20 epochs and was stabilized

after 30 epochs (Supplementary Fig. S1C). Thus we train

the final model for 30 epochs.

Comparing models across different sequence lengths,

we observed that longer sequences had higher prediction

accuracies. For example, the models with 1000 motifs of

10 bp and trained using 30 epochs had the validation

AUROCs of 0.8635, 0.9210, 0.9496, 0.9668, and 0.9784

for 150, 300, 500, 1000, and 3000 bp sequences,

respectively. Longer sequences contain more information

and thus are easier to make predictions. The low AUROC

for the model of 150 bp sequences was due to the inherent

difficulty of predicting very short sequences.

Once the parameters were determined, we trained the

model using all sequences before May 2015 (training plus

validation datasets). We evaluated model performance on

sequences after May 2015, independent from all the

training, validaton and parameter tuning process, to

obtain an unbiased evaluation of model performance.

DeepVirFinder outperforms VirFinder at all
sequence lengths

We compared the newly developed model DeepVirFinder

with the previous state-of-the-art method VirFinder [5].

To make a fair comparison, both methods were trained

using the sequences before May 2015 and assessed on

data after May 2015. DeepVirFinder outperformed

VirFinder at all sequence lengths, where the ROC curves

for DeepVirFinder were always above those for VirFinder

(Fig. 2A and Supplementary Table S1). The improvement

in AUROC was more remarkable for short sequences of

length < 1000 bp. For example, DeepVirFinder had

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 67
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AUROC of 0.8766, 0.9272, and 0.9494 for 150, 300, and

500 bp sequences, respectively, while the corresponding

scores for VirFinder were 0.8101, 0.8771, and 0.9163,

reflecting 8.2%, 5.7%, and 3.6% increase, respectively.

For 1000 bp sequences, DeepVirFinder improved the

AUROC from 0.9471 to 0.9735 (2.8% increase), and for

sequence of size 3000 bp, the increase from 0.977 to

0.9847 was minimal but still significant (p-value for one-

sided t-test, 5.896e–16). DeepVirFinder can predict

sequences as short as 300 bp with a decent accuracy

(AUROC 0.9272). With this increased prediction power,

DeepVirFinder can be used to predict viral sequences

directly at the read level in metagenomic samples without

assembly.

Predicting sequences of various lengths

We trained the deep learning models using fixed length

sequences of 150 bp, 300 bp, 500 bp, 1000 bp and 3000

bp independently, while real metagenomic samples may

contain sequences of varible lengths, especially for

samples whose reads are assembled into contigs. Given

a query sequence, a natural question is which model we

should use for prediction. We evaluated the performance

of different trained models for predicting sequences of

variable lengths. In particular, we predicted 150 bp

sequences after May 2015 using models trained by 150

bp, 300 bp, 500 bp, 1000 bp, and 3000 bp sequences

before May 2015, respectively. The highest AUROC was

achieved when using the model trained by 150 bp

sequences (Fig. 2B). Similarly, using the model trained by

300 bp sequences had the best performance for predicting

300 bp sequences, and the same conclusion holds for 500

and 1000 bp sequences. For sequences of length >1000,

there was no obvious difference between models. There-

fore, we decided to use the model trained by 150 bp

sequences for predicting any sequences < 300 bp.

Similarily, we used the model trained by 300 bp

sequences for predicting sequences of the length 300–
500 bp, the model trained by 500 bp sequences for

predicting 500–1000 bp sequences, and the 1000 bp

model to predict sequences >1000 bp.

Model robustness to mutations

Considering viruses have a higher mutation rate than

bacteria, we tested the model’s robustness to genetic

mutations. This also served as a test of the sensitivity of

the models to sequencing errors. For the sequences in the

test set, we randomly introduced mutations by replacing

the original letter at each position by another different

letter with equal probability at the rate of 0.001, 0.01, and

0.1. We compared the AUROC for predicting the mutated

sequences with that for the original sequences with no

mutations. We observed that the AUROC scores dropped

less than 0.06% at 0.001 mutation rate, 0.66% at 0.01

mutation rate, and 7.96% at 0.1 mutation rate (Fig. 2C).

Thus, our models are not sensitive to either the typical

viral mutation rate of £0.001 as suggested in the

previous study [33] or the sequencing error rate of

0.001 by Illumina Platform [34].

Enlarging the training dataset by adding millions of
metavirome contigs

Though a large number of training sequences were

obtained from viral RefSeq, the existing RefSeq database

represents mostly cultivated viruses. To represent a more

Figure 2. Comparison of DeepVirFinder with VirFinder and the effect of contig length and mutation rates on the

performance of DeepVirFinder. (A) AUROCs for VirFinder and DeepVirFinder when trained on sequences before May 2015, and

tested on sequences after May 2015. See Supplementary Fig. S1 for the exact numbers and the standard errors. (B) AUROCs for

different combinaions of sequence lengths used for training and testing. (C) AUROCs for prediction when adding mutations at

different rates.
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diverse viral population and to couple the deep learning

algorithm with even larger dataset, viral sequences from

metavirome datasets were added to the training. We

collected a large set of metavirome samples from several

large-scaled metagenomic sequencing projects, and we

carefully selected the samples that had high quality to

reduce the possibility of contamination of prokaryotic

DNA. Reads from those samples were assembled and the

resulting millions of viral contigs were used to generate

more viral sequences for training. See Section of

“Collection of metavirome datasets” for details. The

model trained using the enlarged dataset was evaluated

using the test sequences from RefSeq after May 2015, and

compared with the original model trained based only on

RefSeq.

We investigated the AUROC for predicting viruses

from different host phyla. The new model trained using

the enlarged dataset had significantly higher AUROC

scores for the viral groups that are under-represented in

the RefSeq database, compared with the original model

with all p-values for one-sided t-test< 2.2e–16 (Fig. 3A).
For example, only 2.08% viruses in RefSeq infect

Bacteroidetes, and because of the low representation,

the original model trained using only RefSeq had a

relatively low AUROC of 0.8287 for predicting viruses

infecting Bacteroidetes, even though Bacteroidetes is of

the two dominant phyla in human gut. After adding the

metavirome contigs, the AUROC was improved to

0.9591. Similarly, the new model improved the

AUROC from 0.8272 to 0.8952 for viruses infecting

Crenarchaeota, and from 0.9714 to 0.9847 for viruses

infecting Cyanobacteria, which only represent 2.23% and

4.39% of the viruses in RefSeq database, respectively.

The above results were for 500 bp contigs, and the

conclusion holds for other sequence lengths (data not

shown). The results also confirmed the distribution of

viruses in RefSeq database is different from that in the real

environment, possibly due to the fact that most viruses in

RefSeq were obtained by the procedure of cultivation and

isolation in the lab so that the viruses in RefSeq database

are greatly biased towards the limited cultivable viruses

against those uncultivable majority. Thus, adding viral

sequences from metavirome dataset effectively corrected

the sampling bias, and improved the prediction accuracy

for the viruses under-represented in the RefSeq.

We also noticed that the viruses infecting Proteobac-

teria and Actinobacteria, the two most abundant virus

types taking up to 63% in RefSeq, had decreased

AUROCs when predicting using the model trained with

the enlarged dataset. Due to the decrease in AUROC for

the two major viral groups, the overall AUROC was also

slightly decreased for the new model (Fig. 3B). Note that

we tested the model based on sequences from RefSeq

after May 2015. This may disfavor the evaluation of the

model trained using the enlarged dataset, because the

model was trained using RefSeq plus metavirome dataset

while the distribution of the test data was shifted towards

only RefSeq. Though metavirome samples represent

Figure 3. Comparison of AUROCs between the model trained using only viral RefSeq, and the model trained using the

enlarged dataset including millons of sequences from metavirome. (A) The AUROCs for predicting 500 bp viral sequences

from different host phyla. The under-represented viruses groups, viruses infecting Crenarcheota, Bacteroidetes (B) the overall

AUROCs between the two models at different sequence lengths.
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viruses closer to the real virus distribution, considering

that the test data needs to be clean and those metavirome-

derived viral sequences may contain unavoidable con-

tamination, we did not use metavirome-derived viral

sequences to test the model. We expect the model trained

with the enlarged dataset will have better performance if

the testing data was from the true viral distribution.

Overall, we suggest to use the model trained with the

enlarged data to predict viruses from under-represented

groups, and use the original model if the viruses are

mainly from the common groups in RefSeq.

Evaluation of DeepVirFinder on simulated
metagenomic contigs of variable lengths

To test the performance of DeepVirFinder on predicting

viral contigs in metagenomics data, we simulated several

metagenomics samples based on the abundance profile of

a real human gut metagenomic sample, and evaluated

performance of DeepVirFinder on identifying viral

contigs in the simulated metagenomic samples. Consider-

ing the viral fraction differs based on the experimental

exampling strategy, we simulted three metagenomic

samples with the viral fractions of 10%, 50% and 90%,

while keeping the relative abundance within virus and

host groups the same. The simulated contig was of

variable length between hundreds of base pairs to

thousands of base pairs, with the majority ranging

between 300–000 bp. We used the model trained with

RefSeq to predict contigs of different lengths.

In general, AUROC scores increased as the contig

length increases, having the same trend as in Fig. 2. For

example, the AUROC scores for contigs of length < 300

bp, 300–500 bp, 500–1000 bp, and >1000 bp were about

0.8317, 0.8767, 0.8966, and 0.9451 on average. When

predicting contigs of length across multiple intervals,

AUROCs were 0.8829 for all contigs, 0.8952 for contigs

>300 bp, and 0.9129 for contigs >500 bp (Fig. 4B).

Thus, in the real data application, we are able to predict

contigs >300 bp in order to achieve the overall AUROC

around 0.90.

Different viral fraction does not markedly affect

AUROC, since the true positive rate and the false positive

rate are defined based on the relative proportions within

the viral group and the host group independently. As a

complementary method to AUROC, we considered the

metric of the area under the precision-recall curves

(AUPRC) which is more sensitive when assessing the

effect of viral fraction on the prediction accuracy. For

example, the AUPRC for contigs of length >500 bp is

0.9296 for the sample with 90% viral fraction, and are

0.8638 and 0.6437 for samples with 50% and 10% viral

fractions, respectively (Fig. 4C). We also observed that

AUPRC had large variations for the sample with 10%

viral fraction, compared to that for the sample with 50%

and 90% viral fractions. This may be caused by the fact of

a small number of viruses in the 10% viral fraction

sample.

Case study: identifying viruses in the gut
microbiome associated with CRC

CRC is among the top second most frequently diagnosed

cancer in women and the third in men as of 2012 [35,36].

Several studies have shown the effect of human gut

bacteria on CRC [37–40], but the association between gut
viruses and CRC has not been investigated. As viruses

play important roles in controlling host population and

Figure 4. Evaluation of the performance of DeepVirFinder on viral contigs of variable lengths in simulated metagenomic

samples with various viral fractions. (A) The distribution of contig length used for simulating metagenomic samples, and the (B)

AUROC and (C) AUPRC for predicting viral sequences with various viral fractions (10%, 50% and 90%) for contigs of different

lengths.
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altering host metabolism, it is of significance to

investigate the gut viruses in patients with CRC. To

showcase the use of DeepVirFinder in real applications,

we used DeepVirFinder to identify viruses in the gut

microbiome, and assessed the association between virus

and the disease status.

We collected 114 metagenomic samples in a previous

study [40]. After spliting the dataset into training and test,

the metagenomic samples in the training set were cross-

assembled, resulting in 1,335,046 contigs of length

greater than 500 bp. DeepVirFinder identified 51,138

viral contigs and the false discovery rate was controlled at

the rate 0.01. Those contigs were then grouped into 175

contig bins based on their k-mer similarity and abundance

correlation using the software COCACOLA [41]. See

Section of “Viral analysis of human gut metagenomics

from patients with colorectal cancer” for details of the

analysis. Using the average reads per kilobase per million

mapped reads (RPKM) as the feature for each bin and the

disease status as the response variable, we built a logistic

Lasso regression classifier to predict cancer status based

on the viral abundance. The AUROC score was 0.7557,

and 10 viral bins selected by the Lasso classifier were

associated with the CRC status (Supplementary Table

S2). Six of the bins had positive coefficients (high

abundance in CRC) and four bins had negative coeffi-

cients (low abundance in CRC).

Comparing the sequences in the bins to RefSeq

database, six bins had similar sequences to known

viruses. Most of the viruses infect bacteria (called

phages), while we also noticed one endogenous virus

infecting human cells. Eukaryotic viruses can potentially

share similar motifs with prokaryotic viruses, since we

previously observed a decent predictive accuracy of

VirFinder for predicting eukaryotic viruses (data not

shown). In addition, Bin7, with a negative coefficient––
0.0193 in the regression model, contains sequences

similar to crAssphage. This is consistent with the fact

that crAssphage is a highly abundant virus in healthy guts

[42]. The remaining four bins with no similarity to RefSeq

viruses are possibly new viruses. We also searched the

proteins in contigs against Pfam database [43]. On

average 65.68% of contigs contained proteins, demon-

strating DeepVirFinder’s ability of identifying virus

sequences from non-coding regions over the other gene

homology-based method. Seven of the 10 bins contained

phage associated proteins, such as tail, capsid, integrase,

connector, holin, and portal, indicating those bins were

trully from viruses. In addition, all bins except Bin188

had proteins with domains of unknown function (DUF).

This also indicates those bins were most likely to be

viruses because viral proteins are less characterized than

bacteria in Pfam database [4], and this was in fact a

criterion used for viral prediction in Roux et al. [4].

DISCUSSION AND CONCLUSIONS

Prokaryotic viruses are the most abundant biological

entities on earth. They play crucial roles in regulating

microbial communities, but our knowledge of prokaryotic

viruses has been limited by available experiment

techniques and the computational methods for a long

time. Identification of viral sequences is not trivial due to

viruses’ high mutation rates and incomplete reference

database, and the existing methods could not achieve high

recall rates for short viral sequences.

We developed a novel method, DeepVirFinder, to

identify viral sequences in metagenomic data. To the best

of our knowledge, it is the first deep learning based

program for identifying viral sequences from metage-

nomic data. Powered by the deep learning techniques, and

trained with a large number of viral sequences, DeepVir-

Finder outperformed VirFinder at all contig lengths.

Enlarging the training data with millions of additional

viral sequences from environmental samples futher

improved the prediction accuracy for under-represented

viral groups. The improvements are remarkable for

healthcare researchers, since the false predictions may

cause serious consequence. We demonstrated the useful-

ness of the method by a case study where we applied

DeepVirFinder to the real human gut metagenomic

samples and discovered a group of key viruses associated

with CRC, which can motivate futher investigation of

viruses’ roles in human disease.

As more RefSeq and environmental metavirome

samples for training are generated, we expect DeepVir-

Finder will keep increasing its power to identify viruses in

metagenomic data. Though the usage of metavirome

dataset for training requires careful quality control for

bacterial sequences contaminations, fully utilizing meta-

virome datasets for training will help to further improve

the prediction accuracy especially for under-represented

and unknown viruses.

With the ability of accurately predicting viral sequences

as short as read length, our tool can potentially be used to

improve assembly pipelines for viral genomes. Individual

reads could be classified as virus and then do assembly on

those reads to help simplify the complexity in assembly

and reduce computing resources, and hopefully improve

assembly accuracy. Alternatively, viral contigs can be

predicted from millions of assembled contigs, and the

reads mapping to those viral contigs can be pulled out and

re-assemble. Evaluation and comparison of the two

approaches for assembling viral genomes is of our interest

in the future.

Deep learning models is designed for end-to-end

solutions with no need for feature engineering. It is

believed that features can be automatically learned

through large number of training examples. Because of
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the our limited understanding of viral genomes, deep

learning model can fit better and achieve higher accuracy

than other pre-defined feature-based machine learning

models, such as k-mer frequencies logistic regression [5],

and gene-based random forest model [6,44]. On the other

hand, it will be interesting to compare the motifs learned

from the deep learning model with the real biological

motifs, though it is not trivial to collect a database of viral

motifs.

The high prediction accuracies of VirFinder and

DeepVirFinder suggest the two groups, viruses and

prokaryotic hosts, possess distinguishing k-mer or more

general motif patterns. On the other hand, previous

studies showed that virus and their infecting hosts share k-

mer similarity and utilized this phenomenon to predict

hosts of viruses based on genomic sequences [18,45,46] .

This phenomenon is likely due to the evolutionary

pressure on viruses to adopt similar codons used by

their hosts since they are dependent on host machinery for

replication [47–50]. The two seemly contradictive

observations are not mutually exclusive, because viruses

can share higher similarity with each other than that with

their hosts so that k-mer or more general motif features

can be used for both viral sequence identification and

virus-host predictions effectively.

DeepVirFinder is designed for identifying prokaryotic

viruses in metagenomics which is a mixture of genomes

from prokaryotic cells and prokaryotic viruses. We note

that some metagenomic samples may contain contamina-

tion of sequences from host eukaryotic genomes such as

human genome [51]. Users who have the concerns of

eukaryotic contaimination should first filter out eukar-

yotic host sequences by mapping the reads to host

reference genomes before applying Deep-VirFinder, as

DeepVirFinder may potentially misidentify those eukar-

yotic sequences as viral, since eukaryotic sequences were

not included in our training dataset. For more complicated

cases where host reference genomes are not available,

computational methods for detecting sequence contam-

ination is of our interest in the future. In fact this problem

is closely related to a general problem of out-of-

distribution detection for AI safety [52]. Various methods

based on discriminative models or generative models

have been developed for this purpose [53–60] and worth

our future investigation.

Overall, DeepVirFinder markedly improves the accu-

racy for identifying viruses in metagenomic data, and it

will assist the study of viruses in various environments.

MATERIALS AND METHODS

Viruses and prokaryotic genomes used for training,
validation and testing

We collected 2,314 RefSeq of viruses infecting prokar-

yotes (bacteria and archaea) from NCBI (https://www.

ncbi.nlm.nih.gov/genome/browse). The dataset was parti-

tioned into three parts based on the dates when the

genomes were discovered. We used the genomes

discovered before January 2014 for training, those

between January 2014 and May 2015 for validation,

and those after May 2015 for testing. The partitioning of

the dataset not only avoids the overlaps between the

training, validation, and test datasets, but also helps to

evaluate the methods ability for predicting future new

viruses based on the previously discovered viruses. We

previously used the data before May 2015 in Ren et al.

[5]. For this study, we updated the dataset to include new

viruses after May 2015 and it was natural to use them as

the test data.

Since sequences in real metagenomics data are of

various lengths ranging from hundreds to thousands of

base pairs, we fragmented the genomes into non-

overlapping sequences of different sizes, L = 150, 300,

500, 1000, and 3000 bp. We then built models for

sequences of each size, respectively. In particular, the

models for 150 and 300 bp were designed for the next

generation sequencing technology, which commonly

generates sequences of those fixed lengths. Table 1

shows the numbers of sequences in different sizes that

were used for training, validation, and test. The dataset is

paired with the same number of prokaryotic sequences,

fragmented from 38,234 RefSeq and partitioned by the

exact same dates.

Table 1 The number of viral sequences of various sizes from viral genomes discovered before January 2014, between

January 2014 and May 2015, and after May 2015

Length Training (Before 1/2014) Validation (1/2014‒5/2015) Test (After 5/2015) Total

150 bp 505,259 164,918 355,204 705,697

300 bp 252,630 82,458 177,416 512,504

500 bp 154,640 50,350 106,298 311,288

1000 bp 77,014 25,087 52,956 155,057

3000 bp 25,263 8,246 17,385 50,894

The three parts of the dataset partitioned by dates were used for training, validation, and testing, respectively.
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Predicting viral sequences using convolutional
neural networks

We used deep learning techniques and developed a

powerful framework for predicting viral sequences. Given

a query sequence, the framework outputs a score between

0 and 1, with a larger score indicating a higher possibility

of being a viral sequence. Previously k-mer frequencies

were used as features to a machine learning model that

distinguishes viral sequences from prokaryotes [55]. The

success of the method confirmed that viruses and their

prokaryotic hosts have different preferences in k-mer

usage. Those k-mers can be easily generalized as motifs,

which are commonly represented using position weight

matrices (PWM) of size 4 by k where each column

specifies the probabilities of having A/C/G/T at a position.

We expected that using motifs as the model features could

increase the model flexibility and would improve

prediction accuracy. Thus, we designed a deep learning

methods using ConvNets, where the filters in ConvNets

are able to capture sequence patterns. The filters are

represented in the form of weight matrices of size 4 by k,

where k is the filter length. This representation is similar

to PWM. The generalization from k-mers to ConvNets

provides a more general model and potentially gives

better prediction accuracy.

We call our method DeepVirFinder. The model consists

of a convolutional layer, a max pooling layer, a fully

connected layer, and several dropout layers (Fig. 1). A

DNA sequence of length L, X = X1... Xl... XL, Xl∈{A,C,G,

T}, is first encoded using the one-hot encoding method,

resulting in a 4�Lmatrix Zð1Þ=Z
ð1Þ
1 ::: Z

ð1Þ
l ::: Z

ð1Þ
L , Z

ð1Þ
l =

½1, 0, 0, 0�, if   X l=A

½0, 1, 0, 0�, if   X l=C

½0, 0, 1, 0�, if   X l=G

½0, 0, 0, 1�, if   X l=T

8

>

>

<

>

>

:

: Ambiguous nucleotide “N” is

encoded as a vector of
1

4
,
1

4
,
1

4
,
1

4

� �T

. The encoded

DNA sequences are fed into a convolutional layer with

the rectifier activation, where the convolutional layer

contains M motifs of length K. The m-th motif can be

represented using a matrix of size 4� K, Um, with tunable

coefficients Um, i, k, i=1, :::, 4, k=1, :::, K. Each motif

scans the sequence Z(1) from the beginning to the end,

obtaining a series of the motif intensities. Motif intensity

is computed as the cross-correlation between subse-

quences of length K in Z(1) and each motif. The resulting

motif intensities for allM motifs can be represneted using

a vector Z ( 2 ) of size M � ðL –K þ 1Þ, where

Z
ð2Þ
m, l=Σ4

i=1Σ
K
k=1Z

ð2Þ
i, lþk – 1Um, i, k . A rectified linear unit

(ReLU) is applied for each motif, resulting a

matrix Z (3) of the same size as Z(2), where

Z
ð3Þ
m, l=maxð0, Z

ð2Þ
m, l – dmÞ. A max pooling layer reduces

the dimension by keeping only the highest intensity for

each motif, resulting in an M�1 matrix Z(4), where

Z
ð4Þ
m =maxðZ

ð3Þ
m, 1, :::, Z

ð3Þ
m, ðL –Kþ1ÞÞ.

The output is then fed into a dense layer containing N

fully connected neurons with weight vector Wn and bias

bn for the n-th neuron. The resulting output matrix is of

dimension N � 1, Z(5), where Z
ð5Þ
n =bn þ ΣM

m=1W n,mZ
ð4Þ
m .

Another ReLu is applied for each neuron, resulting

Z
ð6Þ
n =maxð0, Zn – enÞ. The output is finally summarized

using a dense layer with sigmoid function to generate a

prediction score ranging from 0 to 1, i.e., Zð6Þ=�ðzÞ,

where z=qþ ΣN
n=1V nZ

ð5Þ
n , �ðzÞ=

1

1þ exp – z
is the sig-

moid function.

In summary, the input sequence X in fed into the neural

networks, and the resulting output score Y is

Y ðXÞ=�ðDenseðDenseðPoolðConvðEncodeðXÞÞÞÞÞÞ:

Since the DNA sequence is double stranded, and the

contigs in real data can come from both strands, the

prediction score should be identical for either the forward

strand or the backward strand. Thus, we apply the same

network to the reverse complement of the original

sequence, and the final prediction score is the average

of the predictions from the original and the reverse

complement sequences. That is, Yfinal=
Y ðXFÞ þ Y ðXRÞ

2
:

Similar techniques were used in Quang et al. and Wang

et al. [22,23].

The objective function is to minimize the binary cross-

entropy loss between the predicted score Yfinal and the true

labels (0 for prokaryotic sequences, and 1 for virus

sequences). The training dataset is iteratively fed into the

model in batches of size 150. One iteration of finishing

feding batches of the whole training dataset is called one

epoch. The parameters in the neural networks were

updated through back-propagation using Adam optimiza-

tion algorithm for stochastic gradient descent with

learning rate 0.001 [61]. Dropout regularization of rate

0.1 are applied after the max pooling layer, and after the

fully connected layer, to reduce overfitting in neural

networks by randomly dropping out a few dimensions.

This convolutional neural network has three critical

hyper parameters, the length of motifs (or filters), the

number of motifs, and the number of epochs for training.

The first two determine the complexity of the model, and

the third one controls the balance between overfitting and

underfitting. To find the best parameter settings, we

trained the model with different combinations of the three

parameters using the data before January 2014, and

evaluated the model performance using AUROC on the

validation dataset. We studied the motif length ranging

from 4 to 18, the number of motifs from 100, 500, 1000 to
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1500, and the number of epochs up to 60.

Collection of metavirome datasets

To achieve high prediction accuracy, a deep learning

algorithm needs a large amount of training data. Though a

large number of training sequences were obtained from

RefSeq, there is a potential to enlarge the training dataset

by including viral sequences from metavirome sequen-

cing data. Metavirome sequencing targets at sequencing

mainly viruses by removing prokaryotic cells in samples

using the physical 0.22 μm filters. Metavirome sequen-

cing does not rely on culturing viruses in the lab, so it is

able to capture both cultivated and uncultivated viruses,

representing the true viral diversity. A few studies have

used this technique to extract viruses and sequenced viral

genomes in human gut and ocean samples [1,2,62,63].

Normal et al. sequenced virome in the human gut sample

from IBD patients using Illumina sequencing technology

[1]. Reyes et al. studied viruses in fecal samples from

Malawian twins with Severe Acute Malnutrition (SAM)

using Roche 454 sequencing technology [2]. Minot et al.

and Kim et al. investigated virome in healthy human gut

using Roche 454 [11,62]. For marine virome, the Tara

Ocean Virome project collected the largest number of

virome samples from both surface- and deep-ocean sites

over the world [63].

We collected the metavirome samples from those

studies and aimed to add more viral diversity, especially

adding viruses not- or under-represented in RefSeq, to the

training data. We were careful in quality control of the

samples because it is likely that the sample can be

contaminated by prokaryotic DNA, since the physical

filters may not exclude small sized prokaryotic cells. The

details of preparation of metavirome data and quality

control can be found in Supplementary Materials and

Supplementary Table S3. Up to 1.3 million of sequences

were generated from the metavirome data, and they were

combined with sequences derived from viral RefSeq

before May 2015 for training. The same number of

prokaryotic sequences were paired with the viral

sequences in the enlarged dataset for training. The new

model was evaluated and compared with the original

model trained based on RefSeq only, using the test

sequences from RefSeq after May 2015.

Simulation of metagenomic datasets

To assess the performance of DeepVirFinder trained

previously using RefSeq on predicting viruses in

metagenomic samples, we generated sythetic metage-

nomic samples based on organism abundance profiles

derived from a real human gut metagenomic sample

(accession ID SRR061166, Platform: Illumina). Given a

total budget of base pairs in a sample, the number of base

pairs in contigs sampled from each genome was

computed proportionally to the abundance profile. For

each reference genome, contigs were sampled randomly

and independently from the genome, where the contig

length follows the same distribution as that in a real

human metagenomics dataset for CRC patients (Fig. 4A),

until the number of base pairs reaches the total budget.

The details can be found in Supplementary Materials.

We constructed metagenomic samples with different

viral fractions and evaluated DeepVirFinder on each of

them. In metagenomic sequencing experiments, there are

two major types of genome sampling strategies. One is

referred to as cellular metagenomes in which all the

genetic materials, including bacteria, archaea, and viruses,

are sampled and sequenced. Another type of data is

metavirome where cellular organisms like bacteria are

filtered out first before sequencing and mostly viruses are

sequenced. To mimic the different viral fractions in real

metagenomic data, the abundance profile was rescaled to

make samples of three different viral fractions 10%, 50%,

and 90%, while keeping the relative abundance within

viruses and that within hosts the same.

Viral analysis of human gut metagenomics from
patients with colorectal cancer

Human gut metagenomics samples from patients with

CRC and the control group were downloaded from

European Nucleotide Archive (ENA) database (see the

website:www.ebi.ac.uk/ena) with accession number

ERP005534. Samples from 53 cancer patients and 61

normal individuals were randomly split into 2/3 for

training and 1/3 for testing. The patient ID and the disease

status can be found in the Supplementary Materials. The

metagenomics samples from training were combined and

cross-assembled. To guarantee high accuracies in the

downstream analysis including virus contig identification

and contig binning, we filtered contigs smaller than 500

bp. DeepVirFinder was then applied to predict viral

contigs in the remaining dataset. To control the false

discovery rate, the predicted p-value for each contig was

converted to a q-value. The q-value is an estimation of the

proportion of false prediction if the prediction is made at

the level of the corresponding p-value. Contigs were

sorted by q-values from the smallest to the largest, and the

contigs having q-values< 0.01 were predicted as viruses.

The viral contigs predicted by DeepVirFinder were then

grouped into contig bins, and the abundance of contig

bins was derived based on the read mapping results. To

study the association between the viruses and the cancer

status, we built a logistic regression classifier with Lasso

penalty to predict the CRC status based on the bin

abundance on training data, and evaluated the perfor-
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mance on test data. The details can be found in the

Supplementary Materials.

Data and code availability

The software DeepVirFinder is available at the website

(github.com/jessieren/DeepVirFinder). The NCBI acces-

sion numbers of the viral and prokaryotic RefSeq, the

species abundance profile for simulated metagenomic

samples, and the sample IDs used for identifying viruses

in CRC patients can be found at the website (github.com/

jessieren/DeepVirFinder/tree/master/supplementary_ta-

bles).

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://

doi.org/10.1007/s40484-019-0187-4.
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NOTE TO RELATED WORK OF FANG et al. [64]

A preliminary version of this manuscript was put in arXiv (arxiv.org/abs/

1806.07810) on June 20, 2018. During the process of the submission to

regular journals, Fang et al. [64] used deep learning to classify metagenomic

fragments to chromosomal, viral and plasmid sequences. Similar prediction

accuracy for viruses using nucleotide base encoding as presented in this

paper was obtained. The two studies should be considered independent.
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