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Evaluation of species distribution model algorithms for
fine-scale container-breeding mosquito risk prediction

C. K H A T C H I K I A N1∗†, F. S A N G E R M A N O2†, D. K E N D E L L3

and T. L I V D A H L1

1Department of Biology, Clark University, Worcester, MA, U.S.A., 2Clark Laboratories, Clark University, Worcester, MA, U.S.A.

and 3Bermuda Ministry of Health, Paget, Bermuda, U.K.

Abstract. The present work evaluates the use of species distribution model (SDM)
algorithms to classify high densities of small container-breeding Aedes mosquitoes
(Diptera: Culicidae) on a fine scale in the Bermuda Islands. Weekly ovitrap data
collected by the Department of Health, Bermuda for the years 2006 and 2007 were
used for the models. The models evaluated included the algorithms Bioclim, Domain,
GARP (genetic algorithm for rule-set prediction), logistic regression and MaxEnt
(maximum entropy). Models were evaluated according to performance and robustness.
The area under the receiver operating characteristic curve was used to evaluate each
model’s performance, and robustness was assessed according to the spatial correlation
between classification risks for the two datasets. Relative to the other algorithms,
logistic regression was the best and MaxEnt the second best model for classifying
high-risk areas. We describe the importance of covariables for these two models
and discuss the utility of SDMs in vector control efforts and the potential for the
development of scripts that automate the task of creating risk assessment maps.

Key words. Aedes, risk prediction, species distribution models, SDMs, Bermuda
Islands.

Introduction

Because Aedes mosquitoes are important vectors of human
arboviruses (Beaty & Aitken, 1979; Dohm et al., 1995;
Mitchell, 1995), the accurate determination, at multiple scales,
of areas that are prone to breed high densities of mosquitoes is
critical to the development of control and mitigation strategies.
Public health officers in many countries conduct surveys
and sampling programmes that allow them to direct their
resources efficiently to protect the public. Different types of
traps and collection devices, designed to collect mosquitoes at
different life stages, provide information on species presence
and densities. Additional methods that detect the presence of
specific human pathogens in mosquito populations, such as
polymerase chain reaction-based technologies (Porter et al.,

Correspondence: Todd Livdahl, Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A. Tel.: +1 508 793 7514;
Fax: +1 508 793 7174; E-mail: tlivdahl@clarku.edu
∗Present address: Department of Biology, University of Pennsylvania, Philadelphia, PA, U.S.A.
†These authors contributed equally to this paper.

1993; Hadfield et al., 2001; Shi et al., 2001), could be
combined to provide critical public health information.

Ovitrap sampling allows the collection of eggs from small
container-breeding mosquitoes and has been commonly used
to monitor Aedes populations (e.g. Evans & Bevier, 1969;
Lee, 1992; Dhang et al., 2005; Morato et al., 2005; Kaplan
et al., 2010). Data obtained with this sampling scheme are
often used as proxy estimators for the presence, activity
or size of mosquito populations in the vicinity of traps.
This methodological approach allows for the collection of
large amounts of data with relatively low effort. However,
several sources of error can remain, including the inhibition
of oviposition by the presence of chemical clues in the water,
habitat selection (including attraction to preferable habitats
near the trap), or multiple ovitrap oviposition events. The data
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2 C. Khatchikian et al.

obtained with ovitraps, as with any other sampling procedure,
are subject to stochastic variation and may make the production
of a comprehensive risk assessment map challenging.

Several different species distribution models (SDMs) are
commonly used to produce coarse-scale risk prediction maps
(i.e. on continental, national and state or provincial scales) and
an extensive list of examples can be found in the literature.
For example, Benedict et al. (2007) used an ecological
modelling algorithm [genetic algorithm for rule-set prediction
(GARP)] to predict worldwide Aedes albopictus risk and
Foley et al. (2010) used two different algorithms to predict
the distribution of Anopheles spp. (Diptera: Culicidae) in the
Republic of Korea. Species distribution models use presence,
presence/absence or quantitative data for the species of
interest to produce predictions based on a combination of
geographically referenced climatic, biological, demographic
and/or physical data. Similar procedures are seldom used to
produce comparable predictions on a very fine scale (i.e. with
pixel sizes of <100 m) for small study areas (i.e. areas of
<100 km2), perhaps because the availability of environmental
variables at such fine scales is scarce, their degree of variability
over short distances is small and species information at a
very fine scale that could successfully account for microhabitat
variation is lacking.

Two of the most commonly used presence data-only
algorithms, MaxEnt (maximum entropy) (Phillip et al., 2004)
and GARP (Stockwell & Peters, 1999), have often shown
accurate prediction capabilities in simulations and evaluations,
outperforming classical modelling approaches, such as those
of Domain, Bioclim and logistic regression (Phillip et al.,
2004; Hijmans & Graham, 2006; Phillip & Dudík, 2008; see
also Stockman et al., 2006). These algorithms differ in their
rationales and procedures. Briefly, MaxEnt finds the maximum
entropy probability distribution that agrees with the provided
presence data based on environmental data; a large literature
describes in detail the underlying MaxEnt algorithms and
rationale (e.g. Phillip et al., 2004, 2006). By contrast, GARP
includes multiple, non-deterministic iterative procedures that
incorporate various model distribution methods such as logistic
regression and range envelopes, producing with each run
predicted binary maps of presences and absences. Multiple
optimal models are produced for each dataset, which can
be converted into presence likelihoods. The three additional
algorithms mentioned above, Domain (multivariate distance
metric algorithm), Bioclim (envelop algorithm) and logistic
regression (which considers both presences and absences) are
less complex than the former two, and often perform poorly in
simulations (Phillip et al., 2004; Wisz et al., 2008). Different
algorithms produce different outputs, but in general convey
presence probabilities or some arbitrary value that can be
interpreted in a similar fashion.

The Bermuda Islands, an archipelago located in the Atlantic
Ocean off the east coast of the U.S.A. (32◦14′–32◦24′ N,
64◦39′–64◦53′ W), have a subtropical climate, with mild win-
ters and hot, humid summers, which provides suitable con-
ditions for Aedes mosquitoes. Historically, these mosquitoes
have been responsible for extensive outbreaks of yellow and
dengue fevers. No vector-borne diseases have been recently
reported, despite the presence of Aedes mosquitoes in the

area. However, the Health Department of Bermuda maintains
an aggressive mosquito monitoring and control programme
to prevent potential health risks found in similar locations
and to reduce the biting nuisance that may affect the local
economy.

In this study, we aim to assess the performance of commonly
used SDM algorithms to classify areas that are prone to sup-
porting high densities of small container-breeding mosquitoes.
Specifically, we aim initially to evaluate the performance of
the Bioclim, Domain, GARP, logistic regression and MaxEnt
algorithms at a very fine scale in the Bermuda Islands. Sub-
sequently, we aim to identify environmental covariates that
contribute to high mosquito prevalence at this fine scale.

Materials and methods

The small size of the Bermuda Islands (<54 km2) makes
the application of SDMs for the generation of risk maps
a challenging task, as typical bioclimatic variables cannot
be used as a result of the lack of spatial variability in
the region. However, the region seems suitable for the
empirical determination of infestation risk, given: (a) the
presence of an extensive weekly ovitrap programme [see
Kaplan (2006) for a comprehensive description of the sampling
programme]; (b) the almost exclusive presence of a single
small container-breeding mosquito species, Ae. albopictus
(Skuse), with the marginal and occasional presence of Aedes
aegypti (L.) (Kaplan et al., 2010), and (c) the availability of
mosquito records for two consecutive years in which the
population appears to remain constant (see below), which
allows area classifications to be compared between datasets
as a measure of the robustness of the algorithms.

The selection of environmental data layers was based on
availability and a priori expectation of influences in the
mosquito population. Distance to buildings, distance to roads
and human population densities were selected as proxies of
human influence on the mosquito population because human
activities provide both breeding habitats (artificial containers
and other breeding grounds) and dispersal opportunities
(through the movement of containers colonized by eggs or
larvae). Elevation and slope were selected in consideration
of their influence on water accumulation. Slope was also
presumed to influence the access of cleaning crews to steep
areas. Distance to shore was selected to consider seawater
effects, such as salt spray, and wind exposure. Aspect
was selected to consider effects of solar irradiation, wind
incidence and their potential effects on egg desiccation. Some
variables that are commonly used in SDMs, including primary
productivity, temperature, precipitation and moisture, were not
used in our study. There is low variation in these variables
because of the small size of the islands (see above).

The same ovitrap data and environmental variables were
used in all models (elevation, slope, aspect, distance to build-
ings, distance to shore, distance to roads, human population).
The Shuttle Radar Topography Mission (SRTM) digital ele-
vation model (DEM) with a spatial resolution of 90 m was
used for elevation data; the DEM was resampled based on a
bilinear interpolation in order to match the 45-m resolution

© 2010 The Authors
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of the remaining layers. Slope and aspect layers were derived
from the DEM. Aspect was rescaled to an index of southwest-
ness, using the cosine function (aspect degrees, 225◦

) (Franklin
et al., 2000), in which values range from 1 (representing south-
west) to −1 (representing northeast). This measure was con-
sidered appropriate in view of the islands’ general orientation
along a southwest–northeast axis. Layers representing distance
to buildings, distance to roads and distance to shore, as well as
human population according to public vote registration records,
were also included as variables. All geographic information
system (GIS) processing to obtain the layers described above
was performed using idris Version 16.05 Taiga edition (East-
man, 2010).

Weekly presence data for 292 ovitraps from 2006 to 2007
were used in all models. The prevalence values [frequency
of positive ovitraps: 2006, 0.12 ± 0.02 standard error (SE);
2007, 0.11 ± 0.02 SE] of Aedes eggs for these years appeared
stable and were found not to differ significantly (Kaplan
et al. 2010). In order to classify ovitraps as positive for high
density, we selected those that presented values higher than
the mean (i.e. disturbance criterion). Ovitraps were scored as
positive (presence data point for the SDMs) for high mosquito
density if eggs were detected in ≥6 weeks in each year,
which represents values higher than the mean for both datasets
(mean number of positive weeks: 2006, 5.89 ± 0.03 SE; 2007,
5.79 ± 0.03 SE). Ovitraps with lower values were considered
negative and included as absences for logistic regression
and receiver operating characteristic (ROC) calculations (see
below).

The 292 ovitraps used in this study were deployed by the
Bermuda Ministry of Health. In order to perform statistical
comparisons and validations, data were partitioned into training
sets consisting of 75% of the observations (used to develop the
prediction models) and testing sets consisting of 25% of the
data (used to evaluate the accuracy of the results). The process
was performed in diva-gis Version 5.2.0.2 (Hijmans et al.,
2001) with 30 repetitions in order to obtain 30 training–testing
subsamples for each dataset. Each modelling algorithm was run
independently with each of the 30 subsamples. The algorithms
used were Bioclim (Nix & Busby, 1986), as implemented
in diva-gis, Domain, as implemented in diva-gis, garp
Version 1.1.6 (Stockwell & Peters, 1999), logistic regression,
as implemented in idris Version 16.05 module logreg
(Eastman, 2010), and MaxEnt Version 3.3.1 (Phillip et al.,
2004).

MaxEnt was run using linear, quadratic, product, threshold
and hinge features, with output set to logistic (Phillip &
Dude, 2008). GARP was run with optimization parameters
set to 100 runs with a convergence limit of 0.005 and a
maximum of 1000 iterations. All four rule types (atomic,
range, negated range, logistic regression) were used. The
best subset option was enabled to select the 10 best models
(omission threshold = 20%, commission threshold = 50%, 20
total models under hard omission threshold). The 10 best
models were imported into idris Version 16.05 and converted
into probabilities. Bioclim and Domain were run using the
default 0.025 percentile cut-off level. The logistic regression
algorithm also requires absence values (i.e. negative presence
points) and these were included in its input file.

Because many algorithms produce dimensionally different
outputs, the outputs from each run were rescaled to values
of 0–1 by dividing each pixel by the maximum pixel value.
The performance of each model predicting yearly presences
was evaluated using the area under the ROC curve (AUC),
using the online tool jlabroc4 (www.jrocfit.org). The AUC
can range from 0 to 1; a value of 1 indicates perfect model
agreement, a value of 0.5 indicates agreement equal to chance,
and 0 indicates complete disagreement. Differences among
AUC values obtained for each subsample with each algorithm
were tested by anova. A subsequent Tukey–Kramer honestly
significant differences (HSD) procedure was used to assess
pairwise differences. The AUC values obtained for the 2007
dataset failed a normality goodness-of-fit test (Shapiro–Wilk
test, W = 0.98, P < 0.05) and were transformed (y ′ = −1/y)
to achieve normality. In order to check the robustness of
algorithms, a spatial correlation between the classification
predictions for 2006 and 2007 for each subsample and each
algorithm was performed using idrisi (regress module).
The obtained statistic failed the normality goodness-of-
fit test (Shapiro–Wilk test, W = 0.88, P < 0.05) and no
satisfactory transformation for normality was found. For
pairwise comparisons, bootstrap procedures were used to
produce 95% confidence intervals (CIs) after 10 000 replicates
using S-plus Version 8.0.4 (Insightful Corp, 2007). Non-
overlapping CIs were considered statistically different. Unless
stated otherwise, statistical analyses were performed using jmp
Version 7.0 (SAS Institute, 2007).

To obtain classification risk maps, we used the complete
datasets for both years and the AUC values as goodness-of-fit
indicators for the two models that performed best according
to the AUC criterion described above. We compare the overall
performance of the algorithms based on classification risk maps
and AUCs.

Results

Model performance

The five models performed differently with both datasets
based on the 30 subsamples (anova: 2006 dataset, F149 =
49.9, P < 0.001; 2007 dataset, F149 = 75.5, P < 0.001). In
terms of the overall performance of the algorithms in each
dataset, two models surpassed the rest: logistic regression and
MaxEnt. For the 2006 dataset, logistic regression performed
best, followed by MaxEnt. For the 2007 dataset, both logistic
regression and MaxEnt performed better than any other model.
For both datasets, Bioclim presented an intermediate perfor-
mance, whereas GARP and Domain presented consistently
low performances. Figure 1 shows the overall performance and
pairwise statistical differences for all models for both datasets.
Examination of the best performance among the 30 subsamples
for each algorithm presented a similar pattern: logistic regres-
sion and MaxEnt showed the highest AUC values. Table 1
summarizes the performance of each model.

Using both complete datasets, the goodness-of-fit for each of
the two best models, logistic regression and MaxEnt, indicates
acceptable performances for each dataset (Fig. 2).

© 2010 The Authors
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4 C. Khatchikian et al.

Fig. 1. Performance [area under the curve (AUC)] of the five algo-
rithms evaluated (MaxEnt, logistic regression, GARP, Domain, Bio-
clim) with the two different datasets based on the 30 training–testing
subsamples. , mean values for 2006; , mean values for 2007; error
bars, 1 standard deviation. Markers not connected by same letter are
significantly different [Tukey–Kramer honestly significant differences
(HSD) test, α = 0.05].

Table 1. Algorithm performance with the 30 training–testing sub-
samples for the two datasets, based on the area under the receiver
operating characteristic curve (AUC).

Mean AUC Median AUC Best model AUC

Model 2006 2007 2006 2007 2006 2007

Bioclim 0.56 0.60 0.57 0.60 0.68 0.69
Domain 0.50 0.49 0.51 0.49 0.58 0.58
GARP 0.52 0.53 0.53 0.53 0.56 0.60
Logistic

regression
0.66 0.65 0.76 0.65 0.81 0.75

MaxEnt 0.61 0.67 0.76 0.68 0.75 0.76

AUC values: 1 indicates a perfect model agreement; 0.5 indicates
agreement equal to chance; 0 indicates complete disagreement.

Model robustness

The algorithms showed high robustness (all algorithms
presented mean coefficients of correlation of >82%), which is
consistent with high spatial correlation between the predicted
risk for the two consecutive years. Bioclim and Domain
presented the highest agreement between risk classifications
across the years, with coefficient of regression values between
the two datasets of >0.96. Interestingly, the two algorithms
that performed best according to the AUC criterion, MaxEnt
and the logistic regression approach, showed lower robustness
values than Bioclim and Domain, and the model with the
lowest robustness across dates was GARP (Fig. 3). This
suggests that the predicted risk surfaces produced with these
algorithms were slightly different for each yearly dataset.

Importance of variables

For the logistic regression algorithm, four variables stand
out as most important in both datasets: distance to shore;
distance to roads; distance to buildings, and elevation.

Specificity

Specificity

Logistic regression

MaxEnt

Se
ns

iti
vi

ty
Se

ns
iti

vi
ty

Fig. 2. Goodness-of-fit of the two best performing models using the
complete datasets for 2006 and 2007: logistic regression [area under
the curve (AUC): 2006, 0.71; 2007, 0.70] and MaxEnt (AUC: 2006,
0.74; 2007, 0.76).

However, predictions across the different subsamples vary
widely (Fig. 4A, C). For MaxEnt, identifying the importance
of the respective variables is more difficult. The variables
that contribute most to the model are distance to shore for
the 2006 dataset (Fig. 4B) and slope for the 2007 dataset
(Fig. 4D). Calculations of the contributions of variables in
MaxEnt are sensitive to correlations between variables. If
two variables are important, MaxEnt will assign a large
contribution to one of them and a low contribution to the
other. This characteristic of MaxEnt may be responsible for
the variability observed between contributions in 2006 and
2007. Although the correlation between distance to shore and

© 2010 The Authors
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Fig. 3. Coefficients of correlation between the risk classifications of
the five algorithms evaluated (MaxEnt, logistic regression, GARP,
Domain, Bioclim) with the two datasets based on the 30 train-
ing–testing subsamples. ©, mean values for 10 000 replicates; bars
indicate 95% bootstrap confidence intervals (CIs) for 10 000 replicates.
Symbols marked by same letter indicate overlapping CIs.

slope is low (r = −0.18), it seems large enough to affect
MaxEnt determination of weights. This can be corroborated
by observing the individual importance of each variable to the

model (MaxEnt jack-knife approach; Table 2); the variables
that contribute the most alone (when run with that variable in
isolation) are elevation, distance to shore, slope and distance
to buildings. However, they all have redundant information
(model gain does not vary when the variable is excluded) and
therefore contribute quite diversely across models. Distance to
roads has the least redundant information and, if excluded, is
the variable that affects model performance the most. However,
this variable is not important when used alone, which suggests
the presence of interactions between distance to roads and other
variables that improve model performance.

Overall, three variables (distance to shore, elevation and
slope) vary in their contributions across the different subsam-
ples, with high importance values in some, but not in others.
By contrast, aspect and population consistently have very low
importance (Fig. 4).

Risk assessment

The risk maps produced from all the points with the two
better-performing models, logistic regression and MaxEnt,
differ in their classification of risk areas. Both models agreed

(A) (B)

(C) (D)

Fig. 4. Importance of environmental variables (covariates) for the two best models: logistic regression and MaxEnt. (A) Logistic regression for
the 2006 dataset. (B) MaxEnt for the 2006 dataset. (C) Logistic regression for the 2007 dataset. (D) MaxEnt for the 2007 dataset. Importance is
expressed in terms of regression coefficients for logistic regression and as a percentage for MaxEnt. , median values; lines represent range values.
DEM, digital elevation model; DBuildings, distance to buildings; DShore, distance to shore; DRoad, distance to road.

© 2010 The Authors
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Table 2. MaxEnt jack-knife of variable importance.

2006 2007

With only Without With only Without

DShore 2.00 2.39 1.91 2.46
DEM 1.99 2.42 2.00 2.44
Slope 1.82 2.45 1.86 2.44
DBuildings 1.62 2.43 1.81 2.44
Aspect 1.43 2.44 1.44 2.45
Population 0.50 2.45 0.56 2.47
DRoad 0.01 2.16 0.01 2.17

The values represent the training gains when the variable is used in
isolation (‘with only’) and when the variable is excluded (‘without’).
Gain represents the fit between MaxEnt’s probability distribution
and the distribution of the sample observation data. A variable that
contributes useful information to the model will have a high gain when
used in isolation. A variable that contributes unique information will
have the gain reduced when it is excluded from the model. Gain with
all variables equals 2.58 for 2006 and 2.61 for 2007.
DShore, distance to shore; DEM, digital elevation model; DBuildings,
distance to buildings; DRoad, distance to road.

on the classification of some areas as low risk (dark areas in
Fig. 5); these areas included the airport, a large nature reserve
and small islands. Interestingly, these areas share some general
characteristics, including closeness to shore, low elevation, low
slope and low population, in addition to a low prevalence of
human-related features such as roads and buildings.

Discussion

Several modelling strategies are often used to produce vector
risk maps, but generally these approaches are implemented on
a much coarser scale than that used here (e.g. Benedict et al.,
2007; Moffett et al., 2007; Foley et al., 2010). In this study, we
explored a similar approach (i.e. the probability of mosquito
presence) on a very fine scale, which allowed the modelling of
risk in specific, restricted local areas. This modelling approach
can produce especially advantageous results in the case of
mosquitoes breeding in small containers, given that breeding
habitats are indeed very small and are thus well below the
resolution of satellite images that can be used in risk modelling
exercises for other vector mosquitoes, such as marsh breeders.

Most algorithms analysed here produced better-than-random
classifications (Table 1, Fig. 1), and some algorithms per-
formed better than others, especially logistic regression. How-
ever, the overall classification performance of the algorithms
could be considered as low, which may stem from the eco-
logical situation. The ovitrap data reflect the stochasticity in
females’ oviposition events in discrete time intervals. Remark-
ably, two of the algorithms that produced low predictions (Bio-
clim and Domain) presented extremely high robustness values
(>96%). It is possible that these algorithms closely follow
independent variables that only partially explain the dependent
variable and thus provide highly correlated predictions that
fail to accurately predict the risk areas for container-breeding
mosquitoes.

(A) (B)

4500 m 4500 m

4500 m 4500 m

(C) (D)

Fig. 5. Relative risk prediction maps produced by logistic regression (A, C) and MaxEnt (B, D) for 2006 (A, B) and 2007 (C, D). Lighter shading
indicates areas at higher risk.

© 2010 The Authors
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The differences in classification performance across dates
detected in most models is puzzling and unexpected; no
a priori observation or descriptive statistic suggested any
significant difference between these two datasets. Nevertheless,
the difference allows two interesting conclusions: firstly,
that any modelling approach should use multiple datasets
when possible, and, secondly, that the logistic regression
approach was much less sensitive to this variation, presenting
similar classification performance values according to the
AUC criterion (Table 1, Fig. 1). However, some authors
(Peterson et al., 2007) have recently raised concerns about the
extensively used AUC to assess the accuracy of ecological
models, as two very different ROC curves can produce similar
areas and, consequently, two very spatially different models
may result in similar AUCs. Nevertheless, it has been pointed
out that the criterion remains extremely useful for comparing
the relative performances of different models (Wisz et al.,
2008); further evaluations, beyond the scope of this work, are
necessary to address this issue.

All factors considered, the logistic regression algorithm, as
implemented in idrisi, provides the best modelling approach
for mapping areas at risk for mosquito infestation in Bermuda.
Logistic regression presented the higher AUC values for both
datasets, with high consistency between years in terms of
both the visual examination (Fig. 5B, D) and the correla-
tion between the classification areas (Fig. 3). Moreover, a
comparison of the areas classified as prone to high densi-
ties of mosquitoes with those of the closest competing model,
MaxEnt, suggests that the logistic regression algorithm pro-
duces a more realistic classification. The MaxEnt classification
appears to be biased by the presence of roads. Interestingly,
distance to roads does not have high covariance in MaxEnt
runs, nor an ample range among replicates (Fig. 4) (i.e. dis-
tance to roads does not make a high contribution in MaxEnt
models, although the jack-knife analysis of variable importance
suggests the possible presence of interactions between distance
to roads and other variables, as mentioned above.

The algorithms evaluated in this study were selected for their
simplicity and feasibility of use by mosquito control officials;
most of these algorithms are available in standalone packages
that require minimal data preparation once the environmental
variables have been produced. Some recent or more elaborate
algorithms, such as GAM (generalized additive models), GDM
(generalised dissimilarity modelling) and MARS (multivariate
adaptive regression splines), have not been evaluated here,
either because they require more complex scripting and the
use of advanced statistical languages, or because they had
not been released for public use at the time our evaluations
were performed, as in the cases of om-garp and lives (Elith
et al., 2006; Wisz et al., 2008). It seems feasible to implement
an automatic script within idrisi (i.e. by using the macro
functionality) that could take data obtained by the monitoring
programmes of control agencies at any point in the season and
immediately produce risk maps. Such a procedure may allow
for quicker responses and a more efficient use of vector control
and prevention resources.

From a critical point of view, none of the algorithms pre-
sented here are able to produce extremely accurate classifi-
cations (Table 1), but this evaluation may help to promote

the development or improvement of specific algorithms suit-
able for this task. The only dynamic variables (i.e. those that
change over time) used in the models were distance to roads,
distance to buildings and population. Because these variables
contributed the least to the models, we can consider that our
results are static representations of risk and are therefore of
limited use in analyses of future risk. Other dynamic vari-
ables that might influence risk on this fine scale, such as
canopy density and evapotranspiration, micro-climate condi-
tions and abundance of discarded small containers, were not
included in the analyses because information on these variables
at the spatial scale of this research was lacking. If spatially
detailed micro habitat variables were available for the Bermuda
Islands, the empirical models of best accuracy (logistic regres-
sion in this work) could be used to model future mosquito risk.
There exist, however, limitations in the application of empiri-
cal species distribution models to predict future risk. Because
the main purpose of the mathematical formulations of empir-
ical models is to describe the distribution of the observations
and not the underlying ‘cause–effect’ (Guisan & Zimmermann,
2000), these models may decrease in performance when pro-
jecting species distributions under future conditions. Decreased
prediction accuracy can arise as a result of the dependence of
inferred relationships on current conditions and sample data as
a model may be trained under a combination of environmen-
tal conditions that may not exist in the future, or the species
may adapt to combinations of variables that currently do not
exist (Hijmans & Graham, 2006). Moreover, if the sample
data used are spatially biased (e.g. as a result of accessibil-
ity), the relationships may be taken on only part of the species
niche and therefore the accuracy of both current and future
projections may be affected. Mechanistic models are consid-
ered superior for understanding the effect of climate on species
distribution under the assumption of universal dispersal and
absence of competition (Hijmans & Graham, 2006). This is
because mechanistic models are based on knowledge of the
physiology of the species and thus do not depend on sampling
schemes. Although detailed physiological data are required to
parameterize mechanistic models, they may produce better rep-
resentations of future risk. Their applicability in the context of
fine-scale production of risk for container-breeding mosquitoes
should be evaluated in future research as they may represent
useful tools for controlling and eradicating Aedes populations.
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