Clark University Clark Digital Commons

Chemistry

Faculty Works by Department and/or School

8-1-2024

Dichloridotetrakis(3-methoxyaniline)nickel(II)

Benjamin A. Mukda

Mark M. Turnbull

Follow this and additional works at: https://commons.clarku.edu/chemistry

Part of the Chemistry Commons

ISSN 2414-3146

Received 30 July 2024 Accepted 6 August 2024

Edited by M. Zeller, Purdue University, USA

Keywords: nickel chloride; 3-methoxyaniline; NiN $_4$ Cl $_2$ coordination; crystal structure.

CCDC reference: 2376104

Structural data: full structural data are available from iucrdata.iucr.org

Dichloridotetrakis(3-methoxyaniline)nickel(II)

Benjamin A. Mukda,^a Diane A. Dickie^b and Mark M. Turnbull^a*

^aCarlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA, and ^bDepartment of Chemistry, University of Virginia, 409 McCormack Rd., Charlottesville, VA 22904, USA. *Correspondence e-mail: mturnbull@clarku.edu

The reaction of nickel(II) chloride with 3-methoxyaniline yielded dichloridotetrakis(3-methoxyaniline)nickel(II), $[NiCl_2(C_7H_9NO)_4]$, as yellow crystals. The Ni^{II} ion is pseudo-octahedral with the chloride ions *trans* to each other. The four 3-methoxyaniline ligands differ primarily due to different conformations about the Ni–N bond, which also affect the hydrogen bonding. Intermolecular N–H··· Cl hydrogen bonds and short Cl···Cl contacts between molecules link them into chains parallel to the *b* axis.

Structure description

The structures of binary transition-metal halide complexes of aniline are varied and have been known for nearly two decades, since the report of CoCl₂(aniline)₂ by Burrow et al. (1997). Structures for compounds of the formula MX_2 (aniline)₂, where M is a transition metal, are known for trans-square planar (SP) Pd (Chen et al., 2002) and Cu (Low et al., 2013), and tetrahedral (T_d) Zn (Khan et al., 2010; Ejaz et al., 2009; Rademeyer et al., 2004) and Cd (Costin-Hogan et al., 2008). Structures of first row transition-metal (FTM) complexes with the same general formula, $FTMX_2(sub-aniline)_2$ are known for substituents such as o-methyl (SP: Daniliuc et al., 2023), p-methyl (T_d: Chellali et al., 2019), pethyl (T_d: Govindaraj et al., 2015; T_d: Harmouzi et al., 2017), p-acetyl (T_d and SP: Macek et al., 2023; SP, Nemec et al., 2020), p-bromo (T_d: Subashini et al., 2012a; T_d, Li: 2023), pchloro (T_d: Chellali et al., 2019), p-fluoro (T_d: Subashini et al., 2012b), o-methoxy, mmethoxy and p-methoxy (T_d: Kupko et al., 2020; T_d: Amani, 2018) and p-carboxylic acid (T_d: Rademeyer et al., 2010; SP: Guedes et al., 2011). Only slightly less common, but particularly favored by Ni^{II}, are those structures of the formula $FTMX_2(sub-aniline)_2$ -(solvent)₂, which include solvents such as water (Macek et al., 2023; Meehan et al., 2021) methanol (Meehan et al., 2021), ethanol (Meehan et al., 2021; Clegg & Martin, 2007) and acetonitrile (Fawcett *et al.*, 2005); all are *trans*-pseudooctahedral $(O_{\rm h})$. A smaller number of structures have been reported with aniline and substituted aniline ligands of the formula $FTMX_2(sub-aniline)_4$, which include the *trans*-Oh complexes NiCl₂(*p*-methyl-

Table 1	
Selected geometric parameters (Å, $^{\circ}$).	

Ni1-N11	2.1388 (19)	Ni1-N41	2.2056 (18)
Ni1-N21	2.1544 (19)	Ni1-Cl1	2.3658 (6)
Ni1-N31	2.1621 (18)	Ni1-Cl2	2.4051 (6)
N11 N61 N21	178 52 (8)	N11 N51 C12	80.10 (6)
N11 N11 N21	170.32(0)	NO1 NI1 CI2	03.10(0)
N11-N11-N31	94.62 (7)	N21-N11-C12	92.06 (6)
N21-Ni1-N31	86.39 (7)	N31-Ni1-Cl2	85.45 (5)
N11-Ni1-N41	84.25 (7)	N41-Ni1-Cl2	93.82 (5)
N21-Ni1-N41	94.75 (7)	Cl1-Ni1-Cl2	179.86 (2)
N31-Ni1-N41	178.66 (8)	C11-N11-Ni1	120.77 (14)
N11-Ni1-Cl1	90.80 (6)	C21-N21-Ni1	116.21 (14)
N21-Ni1-Cl1	88.04 (6)	C31-N31-Ni1	125.09 (14)
N31-Ni1-Cl1	94.66 (5)	C41-N41-Ni1	123.17 (14)
N41-Ni1-Cl1	86.07 (5)		

aniline)₄ and NiBr₂(*p*-methylaniline)₄ (Meehan *et al.*, 2021) and NiI₂(*p*-methylaniline)₄ (Dhital *et al.*, 2020), again favored by six-coordinate nickel(II) complexes. In the course of our investigations of complexes of substituted aniline ligands, we have encountered one more such compound and here report the synthesis and structure of NiCl₂(3-methoxyaniline)₄.

The molecule is pseudo-octahedral with *trans*-chloride ions and all atoms lie on general crystallographic positions (Fig. 1). The Cl1-Ni1-Cl2 bond angle is nearly linear [179.8 (2)°]. The Cl-Ni-N angles range from 85.45 (5) to 93.82 (5)° while the *cis* N-Ni-N angles are similar in the range 84.3 (7) to 94.75 (7)° (Table 1). Taking the NiN₄ atoms as the equatorial plane (mean deviation of constituent atoms = 0.0141 Å), the Ni ion lies 0 0029 Å out of the plane. One *trans*-pair of aniline ligands lie with their C-N bonds oriented nearly in that plane with angles of the C-N vector 2.6 (1)° (C11-N11) or 5.3 (1)°

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary size. Only those hydrogen atoms whose positions were refined are labeled.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N11 $-$ H11 B ···Cl1 ⁱ	0.83 (2)	2.44 (3)	3.264 (2)	168 (2)
$N21 - H21A \cdots Cl2^{ii}$	0.86 (2)	2.62 (2)	3.468 (2)	166 (2)
$N31 - H31B \cdot \cdot \cdot Cl2^{ii}$	0.85 (2)	2.69 (2)	3.509 (2)	160 (2)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1.

(C21-N21) out of the plane. Conversely, the alternate pair of aniline ligands have their C-N vectors tilted significantly out of the plane at 49.0 (1)° (C31-N31) and 44.0 (1)° (C41-N41). As expected, the aromatic rings are almost planar (mean deviation by ring: N11, 0.0115 Å; N21, 0.0212 Å; N31, 0.0028 Å; N41, 0.0222 Å). The methoxy groups lie very nearly in their respective ring planes as based on the torsion angles [torsion angle Cn7-On3-Cn3-Cn2: n = 1, -10.9 (3)°; 2, -7.8 (3)°; 3, -1.4 (3)°; 4, 179.32 (19)°]. The N41 ring is again unique; the conformations of the methoxy groups of the other three 3-methoxyaniline molecules all show the methoxy group directed toward the amino substituent, while for the N41 ring, it is rotated ~180° and lies *anti* to the amino substituent.

It is also noteworthy that the conformations of the anisidine rings are such that three of the rings have their methoxy substituents tipped toward, and above, the Cl2 side of the NiN₄ plane. The O33–C33 methoxy group is also tipped in that direction, but due to the orientation of the N31–C31 bond, the methoxy group itself lies on the opposite side of the NiN₄ plane.

In the crystal, molecules are linked into chains *via* weak $N-H\cdots$ Cl hydrogen bonds (Table 2), which results in short contacts between inversion-related chloride ions parallel to the *b* axis $[d_{Cl1}\dots Cl1A = 3.725 (2) \text{ Å}$, $angle_{Ni1-Cl1}\dots Cl1A = 92.4 (1)^{\circ}$; $d_{Cl2-Cl2B} = 3.721 (2) \text{ Å}$, $angle_{Ni1-Cl2}\dots Cl2B = 89.3 (1)^{\circ}$; symmetry codes: (A) = 1 - x, 1 - y, 1 - z; (B) = 1 - x, -y, 1 - z] (Fig. 2). The chains are well separated in both the *b*- and *c*-axis directions by the bulk of the 3-methoxy-aniline molecules.

Figure 2 Chain formation *via* hydrogen bonding (*b* axis horizontal).

Synthesis and crystallization

Synthesis: 0.5035 g of 3-methoxyaniline were dissolved in 18 ml of EtOH, creating a red solution. NiCl₂ hexahydrate was dissolved in 25 ml of EtOH, creating a green solution. Both solutions were heated until they began to boil, at which point the methoxyaniline solution was poured into the nickel chloride solution, resulting in a peach-colored solution that quickly became cloudy. The mixture was repeatedly decanted to remove the majority of the precipitate over the course of two hours and then allowed to cool. The next day, a green powdery precipitate was collected using vacuum filtration and washed using DI water. The filtrate was collected and allowed to evaporate slowly. The next day, small dark-yellow crystals were observed and collected by vacuum filtration, 0.002 g (0.2%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Acknowledgements

BAM is grateful for financial support from the Bernard and Vera Kopelman Fund. Author contributions: BAM (synthesis, characterization), DAD (X-ray data), MMT (concept, writing)

Funding information

Funding for this research was provided by: NSF grant No. CHE-2018870.

References

- Amani, V. (2018). J. Mol. Struct. 1155, 477-483.
- Bruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burrow, R. A., Hörner, M., Lang, L. S., Neves, A. & Vencato, I. (1997). Z. Kristallogr. New Cryst. Struct. 212, 41-42.
- Chellali, J. E., Keely, C., Bell, G., Dimanno, K. L., Tran, T., Landee, C. P., Dickie, D. A., Rademeyer, M., Turnbull, M. M. & Xiao, F. (2019). Polyhedron, 168, 1-10.
- Chen, Y.-B., Li, Z.-J., Qin, Y.-Y., Kang, Y., Wu, L. & Yao, Y.-G. (2002). Jiegou Huaxue, 21, 530-2.
- Clegg, W. & Martin, N. C. (2007). Acta Cryst. E63, m856.
- Costin-Hogan, C. E., Chen, C.-L., Hughes, E., Pickett, A., Valencia, R., Rath, N. P. & Beatty, A. M. (2008). CrystEngComm, 10, 1910-1915.
- Daniliuc, C. G., Kotov, V., Frohlich, R. & Erker, G. (2023). CSD Communication (CCDC 2308702). CCDC, Cambridge, England.
- Dhital, R. N., Sen, A., Sato, T., Hu, H., Ishii, R., Hashizume, D., Takaya, H., Uozumi, Y. & Yamada, Y. M. A. (2020). Org. Lett. 22, 4797-4801.
- Ejaz, Sahin, O. & Khan, I. U. (2009). Acta Cryst. E65, m1457.
- Fawcett, J., Sicilia, F. & Solan, G. A. (2005). Acta Cryst. E61, m1256m1257.
- Govindaraj, J., Thirumurugan, S., Reddy, D. S., Anbalagan, K. & SubbiahPandi, A. (2015). Acta Cryst. E71, m21-m22.
- Guedes, G. P., Farias, F. F., Novak, M. A., Machado, A. & Vaz, F. L. (2011). Inorg. Chim. Acta, 378, 134-139.

Table 3

Experimental details.

Crystal data	
Chemical formula	$[NiCl_2(C_7H_9NO)_4]$
Mr	622.22
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.4514 (5), 12.1629 (5),
	12.6920 (5)
$lpha,eta,\gamma(^\circ)$	67.9946 (13), 67.3255 (14), 65.8759 (14)
$V(Å^3)$	1438.34 (11)
Z	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.90
Crystal size (mm)	$0.09\times0.06\times0.04$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
Tmin Tmar	0.714. 0.746
No. of measured, independent and	42960, 7138, 4852
observed $[I > 2\sigma(I)]$ reflections	
Rint	0.076
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.667
Deference	
Remement $\mathbf{p}[\mathbf{r}^2 + 2\pi(\mathbf{r}^2)] = \mathbf{p}(\mathbf{r}^2) \mathbf{c}$	0.028 0.080 1.01
$K[F > 2\sigma(F)], WK(F), S$	0.038, 0.089, 1.01
No. of renewators	/158
No. of parameters	Journal and the stand has a minimum of
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.39, -0.32

Computer programs: APEX4 and SAINT (Bruker, 2022), SHELXS2014 and XP (Sheldrick 2008) and SHELXL2018/3 (Sheldrick, 2015).

- Harmouzi, A., Daro, N., Guionneau, P., Belaaraj, A. & Khechoubi, E. M. (2017). J. Cryst. Growth, 472, 64-70.
- Khan, I. U., Ejaz, Şahin, O. & Büyükgüngör, O. (2010). Acta Cryst. E66. m492.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Kupko, N., Meehan, K. L., Witkos, F. E., Hutcheson, H., Monroe, J. C., Landee, C. P., Dickie, D. A., Turnbull, M. M. & Xiao, F. (2020). Polyhedron, 187, 1146801-13.
- Li, X. (2023). CSD Communication (CCDC 2223797). CCDC, Cambridge, England.
- Löw, S., Becker, J., Würtele, C., Miska, A., Kleeberg, C., Behrens, U., Walter, O. & Schindler, S. (2013). Chem. A Eur. J. 19, 5342-5351.
- Macek, L., Bellamy, J. C., Faber, K., Milson, C. R., Landee, C. P., Dickie, D. A. & Turnbull, M. M. (2023). Polyhedron, 229, 1162141-1162145.
- Meehan, K. L., Fontaine, D. F. A., Richardson, A. D., Fowles, S. M., Mukda, B., Monroe, J. C., Landee, C. P., Dickie, D. A., Turnbull, M. M., Jiang, S. & Xiao, F. (2021). Polyhedron, 200, 1150941.
- Nemec, V., Lisac, K., Liovic, M., Brekalo, I. & Cincic, D. (2020). Materials 13, 2385.
- Rademeyer, M. (2004). Acta Cryst. E60, m871-m872.
- Rademeyer, M., Overbeek, G. E. & Liles, D. C. (2010). Acta Cryst. E66, m1634.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Subashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012a). Acta Cryst. E68, m1152.
- Subashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012b). CSD Communication (CCDC 894045). CCDC, Cambridge, England.

full crystallographic data

IUCrData (2024). 9, x240776 [https://doi.org/10.1107/S2414314624007764]

Dichloridotetrakis(3-methoxyaniline)nickel(II)

Benjamin A. Mukda, Diane A. Dickie and Mark M. Turnbull

Dichloridotetrakis(3-methoxyaniline)nickel(II)

Crystal data [NiCl₂(C₇H₉NO)₄] Z = 2 $M_r = 622.22$ F(000) = 652Triclinic, $P\overline{1}$ $D_{\rm x} = 1.437 {\rm Mg m^{-3}}$ a = 11.4514(5) Å Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 5693 reflections b = 12.1629 (5) Å $\theta = 2.9 - 27.2^{\circ}$ c = 12.6920(5) Å $\alpha = 67.9946 (13)^{\circ}$ $\mu = 0.90 \text{ mm}^{-1}$ $\beta = 67.3255 (14)^{\circ}$ T = 100 K $\gamma = 65.8759 \ (14)^{\circ}$ Plate, yellow $V = 1438.34 (11) \text{ Å}^3$ $0.09 \times 0.06 \times 0.04 \text{ mm}$ Data collection Bruker APEXII CCD 7138 independent reflections diffractometer 4852 reflections with $I > 2\sigma(I)$ φ and ω scans $R_{\rm int} = 0.076$ Absorption correction: multi-scan $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$ $h = -15 \rightarrow 15$ (SADABS; Krause et al., 2015) $T_{\rm min} = 0.714, T_{\rm max} = 0.746$ $k = -16 \rightarrow 16$

Refinement

42960 measured reflections

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.038$ Hydrogen site location: mixed $wR(F^2) = 0.089$ H atoms treated by a mixture of independent S = 1.01and constrained refinement 7138 reflections $w = 1/[\sigma^2(F_0^2) + (0.0334P)^2 + 0.4355P]$ where $P = (F_0^2 + 2F_c^2)/3$ 380 parameters 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $l = -16 \rightarrow 16$

Refinement. Data collection for compound **1** was carried out with a Bruker *APEX4* v2022.10–1 CCD diffractometer employing Mo—K α radiation ($\lambda = 0.71073$ Å). The data were collected and reduced using Bruker *SMART* and *SAINT*+ software (Bruker, 2014). Absorption corrections were performed using *SADABS* (Krause, 2015). The structure was solved using *SHELXS2014* (Sheldrick, 2008) and refined using *SHELXL2018* (Sheldrick, 2015). Hydrogen atoms bonded to carbon atoms were placed geometrically and refined with fixed isotropic thermal parameters, U_{iso}(H) = 1.2 (C). Hydrogen atoms bonded to nitrogen atoms were located in the difference map and their positions refined with fixed isotropic thermal parameters, U_{iso}(H) = 1.2 (N) (d_{N—H} = 0.81 (2)–0.91 (2) Å). Final data collection and refinement parameters may be found in Table 2.

	x	v	Z	$U_{\rm iso}^*/U_{\rm eq}$
Nil	0.50342 (3)	0.25347 (2)	0.48264 (2)	0.01306 (8)
Cl1	0.64202 (5)	0.35611 (5)	0.47889 (5)	0.01674 (12)
C12	0.36209 (5)	0.14962 (5)	0.48636 (5)	0.01653 (12)
N11	0.3352 (2)	0.36558 (18)	0.58739 (17)	0.0166 (4)
H11A	0.275 (2)	0.378 (2)	0.558 (2)	0.020*
H11B	0.352 (2)	0.431 (2)	0.573 (2)	0.020*
C11	0.2928 (2)	0.31967 (19)	0.71270 (19)	0.0157 (4)
C12	0.2248 (2)	0.2323 (2)	0.75867 (19)	0.0164 (5)
H12	0.205531	0.205855	0.707310	0.020*
013	0.11618 (18)	0.09999 (16)	0.93113 (14)	0.0279 (4)
C13	0.1853 (2)	0.1843 (2)	0.8798 (2)	0.0195 (5)
C14	0.2155 (2)	0.2202 (2)	0.9554 (2)	0.0222 (5)
H14	0.190108	0.185492	1.038361	0.027*
C15	0.2830 (2)	0.3071 (2)	0.9086 (2)	0.0223 (5)
H15	0.303439	0.332402	0.960012	0.027*
C16	0.3215 (2)	0.3580 (2)	0.7873 (2)	0.0185 (5)
H16	0.366913	0.418434	0.755974	0.022*
C17	0.0651 (3)	0.0796 (2)	0.8560 (2)	0.0306 (6)
H17A	0.006179	0.158736	0.820813	0.037*
H17B	0.014986	0.020045	0.902455	0.037*
H17C	0.139042	0.046029	0.793178	0.037*
N21	0.6746 (2)	0.14469 (17)	0.37458 (16)	0.0158 (4)
H21A	0.664 (2)	0.072 (2)	0.397 (2)	0.019*
H21B	0.741 (2)	0.143 (2)	0.391 (2)	0.019*
C21	0.6950 (2)	0.1932 (2)	0.24955 (18)	0.0162 (5)
O33	1.00929 (15)	-0.14771 (14)	0.62401 (13)	0.0208 (4)
C22	0.6279 (2)	0.1668 (2)	0.19530 (19)	0.0170 (5)
H22	0.575639	0.112201	0.239635	0.020*
O23	0.57495 (17)	0.20291 (15)	0.01482 (13)	0.0227 (4)
C23	0.6384 (2)	0.2214 (2)	0.07549 (19)	0.0185 (5)
C24	0.7149 (3)	0.3015 (2)	0.0103 (2)	0.0261 (6)
H24	0.721742	0.338922	-0.071467	0.031*
C25	0.7802 (3)	0.3257 (2)	0.0657 (2)	0.0287 (6)
H25	0.832512	0.380328	0.021309	0.034*
C26	0.7717 (2)	0.2719 (2)	0.1858 (2)	0.0226 (5)
H26	0.817848	0.289221	0.222808	0.027*
C27	0.5077 (3)	0.1107 (2)	0.0754 (2)	0.0247 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H27A	0.569940	0.031131	0.105624	0.030*
H27B	0.473733	0.100612	0.020716	0.030*
H27C	0.433351	0.137241	0.141548	0.030*
N31	0.55035 (19)	0.10066 (17)	0.63226 (16)	0.0147 (4)
H31A	0.475 (2)	0.121 (2)	0.691 (2)	0.018*
H31B	0.551 (2)	0.040 (2)	0.614 (2)	0.018*
C31	0.6663 (2)	0.06435 (19)	0.67155 (18)	0.0146 (4)
C32	0.7799 (2)	-0.02535 (19)	0.62731 (18)	0.0152 (4)
H32	0.780233	-0.061587	0.572592	0.018*
C33	0.8928 (2)	-0.0614 (2)	0.66390 (19)	0.0165 (5)
C34	0.8918 (2)	-0.0100 (2)	0.74531 (19)	0.0200 (5)
H34	0.968644	-0.035787	0.771305	0.024*
C35	0.7780 (2)	0.0787 (2)	0.78804 (19)	0.0205 (5)
H35	0.777267	0.114153	0.843589	0.025*
C36	0.6646 (2)	0.1173 (2)	0.75138 (19)	0.0187 (5)
H36	0.587098	0.179170	0.780764	0.022*
C37	1.0107 (2)	-0.2039 (2)	0.5425 (2)	0.0223 (5)
H37A	0.943022	-0.246875	0.579432	0.027*
H37B	1.098606	-0.264165	0.520807	0.027*
H37C	0.991446	-0.139306	0.471444	0.027*
N41	0.4506 (2)	0.41029 (18)	0.33230 (17)	0.0174 (4)
H41A	0.464 (2)	0.465 (2)	0.343 (2)	0.021*
H41B	0.509 (2)	0.388 (2)	0.273 (2)	0.021*
C41	0.3218 (2)	0.4570 (2)	0.31188 (19)	0.0158 (5)
C42	0.2933 (2)	0.4009 (2)	0.25224 (18)	0.0166 (5)
H42	0.360547	0.334924	0.219965	0.020*
O43	0.14760 (16)	0.38059 (15)	0.17817 (14)	0.0234 (4)
C43	0.1662 (2)	0.4410 (2)	0.23955 (19)	0.0175 (5)
C44	0.0670(2)	0.5362 (2)	0.2874 (2)	0.0232 (5)
H44	-0.020672	0.562393	0.280350	0.028*
C45	0.0980 (3)	0.5922 (2)	0.3455 (2)	0.0285 (6)
H45	0.030717	0.658162	0.377741	0.034*
C46	0.2242 (2)	0.5547 (2)	0.3578 (2)	0.0221 (5)
H46	0.244053	0.595015	0.397112	0.027*
C47	0.0172 (2)	0.4192 (2)	0.1650 (2)	0.0251 (5)
H47A	-0.046398	0.405454	0.243101	0.030*
H47B	0.016330	0.370547	0.118882	0.030*
H47C	-0.007743	0.507929	0.123847	0.030*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01355 (15)	0.01235 (14)	0.01499 (15)	-0.00477 (11)	-0.00524 (11)	-0.00311 (10)
Cl1	0.0156 (3)	0.0136 (3)	0.0248 (3)	-0.0050 (2)	-0.0089 (2)	-0.0049 (2)
Cl2	0.0178 (3)	0.0147 (3)	0.0210 (3)	-0.0067 (2)	-0.0081 (2)	-0.0040 (2)
N11	0.0163 (10)	0.0139 (9)	0.0203 (10)	-0.0064 (8)	-0.0050 (8)	-0.0033 (7)
C11	0.0107 (11)	0.0146 (11)	0.0188 (11)	-0.0008 (9)	-0.0029 (9)	-0.0057 (8)
C12	0.0137 (11)	0.0171 (11)	0.0196 (11)	-0.0042 (9)	-0.0056 (9)	-0.0056 (8)

O13	0.0374 (11)	0.0331 (10)	0.0220 (9)	-0.0243 (9)	-0.0084 (8)	-0.0012 (7)
C13	0.0187 (12)	0.0155 (11)	0.0240 (12)	-0.0070 (9)	-0.0049 (10)	-0.0040 (9)
C14	0.0241 (13)	0.0240 (12)	0.0173 (12)	-0.0087 (10)	-0.0059 (10)	-0.0024 (9)
C15	0.0220 (13)	0.0238 (12)	0.0242 (13)	-0.0052 (10)	-0.0089 (10)	-0.0089 (10)
C16	0.0166 (12)	0.0169 (11)	0.0239 (12)	-0.0070 (9)	-0.0058 (10)	-0.0049 (9)
C17	0.0397 (17)	0.0384 (15)	0.0250 (13)	-0.0279 (13)	-0.0076 (12)	-0.0037 (11)
N21	0.0173 (10)	0.0148 (10)	0.0178 (10)	-0.0072 (8)	-0.0061 (8)	-0.0029 (7)
C21	0.0142 (11)	0.0167 (11)	0.0163 (11)	-0.0029 (9)	-0.0023 (9)	-0.0067 (8)
O33	0.0160 (9)	0.0248 (9)	0.0243 (9)	-0.0022 (7)	-0.0067 (7)	-0.0124 (7)
C22	0.0178 (12)	0.0150 (11)	0.0179 (11)	-0.0064 (9)	-0.0029 (9)	-0.0047 (8)
O23	0.0293 (10)	0.0268 (9)	0.0178 (8)	-0.0128 (8)	-0.0097 (7)	-0.0036 (7)
C23	0.0187 (13)	0.0201 (12)	0.0184 (12)	-0.0051 (10)	-0.0046 (10)	-0.0083 (9)
C24	0.0325 (15)	0.0320 (14)	0.0154 (12)	-0.0174 (12)	-0.0047 (10)	-0.0015 (10)
C25	0.0338 (16)	0.0341 (15)	0.0227 (13)	-0.0236 (12)	-0.0036 (11)	-0.0017 (11)
C26	0.0224 (13)	0.0291 (13)	0.0226 (12)	-0.0140 (11)	-0.0073 (10)	-0.0054 (10)
C27	0.0318 (15)	0.0255 (13)	0.0250 (13)	-0.0136 (11)	-0.0137 (11)	-0.0038 (10)
N31	0.0132 (10)	0.0129 (9)	0.0184 (10)	-0.0037 (8)	-0.0042 (8)	-0.0048 (7)
C31	0.0160 (11)	0.0138 (11)	0.0138 (10)	-0.0069 (9)	-0.0052 (9)	0.0002 (8)
C32	0.0178 (12)	0.0150 (11)	0.0143 (11)	-0.0057 (9)	-0.0047 (9)	-0.0043 (8)
C33	0.0152 (12)	0.0156 (11)	0.0170 (11)	-0.0047 (9)	-0.0037 (9)	-0.0034 (8)
C34	0.0181 (12)	0.0254 (12)	0.0192 (12)	-0.0070 (10)	-0.0080 (9)	-0.0053 (9)
C35	0.0253 (13)	0.0244 (12)	0.0179 (12)	-0.0086 (10)	-0.0073 (10)	-0.0094 (9)
C36	0.0187 (12)	0.0180 (11)	0.0181 (11)	-0.0027 (9)	-0.0047 (9)	-0.0069 (9)
C37	0.0167 (12)	0.0255 (13)	0.0268 (13)	-0.0012 (10)	-0.0053 (10)	-0.0155 (10)
N41	0.0183 (11)	0.0167 (10)	0.0197 (10)	-0.0073 (8)	-0.0075 (8)	-0.0029 (8)
C41	0.0142 (11)	0.0150 (11)	0.0172 (11)	-0.0058 (9)	-0.0063 (9)	0.0003 (8)
C42	0.0165 (12)	0.0162 (11)	0.0163 (11)	-0.0040 (9)	-0.0045 (9)	-0.0045 (8)
O43	0.0202 (9)	0.0271 (9)	0.0312 (9)	-0.0043 (7)	-0.0129 (7)	-0.0136 (7)
C43	0.0224 (13)	0.0173 (11)	0.0165 (11)	-0.0080 (10)	-0.0092 (9)	-0.0023 (8)
C44	0.0177 (13)	0.0260 (13)	0.0269 (13)	-0.0004 (10)	-0.0112 (10)	-0.0098 (10)
C45	0.0256 (14)	0.0267 (13)	0.0359 (15)	0.0053 (11)	-0.0149 (12)	-0.0190 (11)
C46	0.0247 (13)	0.0210 (12)	0.0268 (13)	-0.0021 (10)	-0.0153 (11)	-0.0095 (10)
C47	0.0238 (14)	0.0313 (14)	0.0282 (13)	-0.0106 (11)	-0.0132 (11)	-0.0074 (10)

Geometric parameters (Å, °)

Nil—N11	2.1388 (19)	С25—Н25	0.9500
Ni1—N21	2.1544 (19)	C26—H26	0.9500
Ni1—N31	2.1621 (18)	C27—H27A	0.9800
Nil—N41	2.2056 (18)	C27—H27B	0.9800
Ni1—Cl1	2.3658 (6)	C27—H27C	0.9800
Ni1—Cl2	2.4051 (6)	N31—C31	1.440 (3)
N11-C11	1.428 (3)	N31—H31A	0.91 (2)
N11—H11A	0.85 (2)	N31—H31B	0.85 (2)
N11—H11B	0.83 (2)	C31—C36	1.381 (3)
C11—C16	1.385 (3)	C31—C32	1.391 (3)
C11—C12	1.392 (3)	C32—C33	1.388 (3)
C12—C13	1.384 (3)	С32—Н32	0.9500

С12—Н12	0.9500	C33—C34	1.388 (3)
O13—C13	1.367 (3)	C34—C35	1.379 (3)
O13—C17	1.428 (3)	C34—H34	0.9500
C13—C14	1.387 (3)	C35—C36	1.388 (3)
C14—C15	1.382 (3)	С35—Н35	0.9500
C14—H14	0.9500	С36—Н36	0.9500
C15—C16	1.390 (3)	С37—Н37А	0.9800
С15—Н15	0.9500	С37—Н37В	0.9800
C16—H16	0.9500	C37—H37C	0.9800
C17—H17A	0.9800	N41—C41	1 436 (3)
C17—H17B	0.9800	N41—H41A	0.81(2)
C17—H17C	0.9800	N41—H41B	0.01(2) 0.83(2)
N21_C21	1,430(3)	C41 - C42	1.381(3)
N21 H21A	1.450(5)	C_{41} C_{46}	1.301(3)
N21 H21R	0.85(2)	$C_{41} = C_{40}$	1.390(3) 1.387(3)
$\begin{array}{c} \mathbf{N}21 \\ \mathbf{C}21 \\ \mathbf{C}26 \end{array}$	0.03(2)	$C_{42} = C_{43}$	1.387 (3)
$C_{21} = C_{20}$	1.379(3) 1.202(2)	C42 - H42	0.9300
022 022	1.393 (3)	043-043	1.370 (3)
033-033	1.368 (3)	043 - 047	1.428 (3)
033-037	1.431 (3)	C43—C44	1.385 (3)
C22—C23	1.391 (3)	C44—C45	1.383 (3)
С22—Н22	0.9500	C44—H44	0.9500
023—C23	1.366 (3)	C45—C46	1.380 (3)
O23—C27	1.430 (3)	C45—H45	0.9500
C23—C24	1.391 (3)	C46—H46	0.9500
C24—C25	1.371 (3)	C47—H47A	0.9800
C24—H24	0.9500	C47—H47B	0.9800
C25—C26	1.397 (3)	C47—H47C	0.9800
N11—Ni1—N21	178.52 (8)	C21—C26—H26	120.6
N11—Ni1—N31	94.62 (7)	С25—С26—Н26	120.6
N21—Ni1—N31	86.39 (7)	O23—C27—H27A	109.5
N11—Ni1—N41	84.25 (7)	O23—C27—H27B	109.5
N21—Ni1—N41	94.75 (7)	H27A—C27—H27B	109.5
N31—Ni1—N41	178.66 (8)	O23—C27—H27C	109.5
N11—Ni1—Cl1	90.80 (6)	H27A—C27—H27C	109.5
N21—Ni1—Cl1	88.04 (6)	H27B—C27—H27C	109.5
N31—Ni1—Cl1	94.66 (5)	C31—N31—Ni1	125.09 (14)
N41—Ni1—Cl1	86.07 (5)	C31—N31—H31A	110.5(15)
N11— $N11$ — $C12$	89.10(6)	Ni1—N31—H31A	100.9(14)
N_{21} N_{11} C_{12}	92.06 (6)	C_{31} N ₃₁ H ₃₁ B	100.2(16)
N31 Ni1 Cl2	92.00 (0) 85.45 (5)	Nil N31 H31B	107.2(10)
$N_{1} = N_{1} = C_{12}$	03.43(5)	H31A N31 H31B	101.4(10) 100(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	170.86(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107(2) 120.8(2)
C11 N11 N31	177.00(2) 120.77(14)	$C_{30} - C_{31} - C_{32}$	120.0(2) 120.7(2)
C11 N11 H114	120.77(14)	$C_{30} - C_{31} - N_{31}$	120.7(2)
NI NII HIIA	109.0(10) 100.8(16)	$C_{32} = C_{31} = N_{31}$	110.40(19)
	100.8(10) 107.7(10)	$C_{22} = C_{22} = U_{22}$	119.5 (2)
UII—NII—HIIB	10/./(10)	C33-C32-H32	120.3
N11—N11—H11B	106.1 (17)	C31—C32—H32	120.3

H11A—N11—H11B	112 (2)	O33—C33—C32	123.3 (2)
C16—C11—C12	120.4 (2)	O33—C33—C34	116.24 (19)
C16—C11—N11	121.1 (2)	C32—C33—C34	120.4 (2)
C12—C11—N11	118.4 (2)	C35—C34—C33	119.3 (2)
C13—C12—C11	119.5 (2)	С35—С34—Н34	120.4
С13—С12—Н12	120.3	С33—С34—Н34	120.4
C11—C12—H12	120.3	C34—C35—C36	121.2 (2)
C13—O13—C17	116.54 (18)	С34—С35—Н35	119.4
O13—C13—C12	122.6 (2)	С36—С35—Н35	119.4
O13—C13—C14	116.7 (2)	C31—C36—C35	119.0 (2)
C12—C13—C14	120.7 (2)	С31—С36—Н36	120.5
C15—C14—C13	119.2 (2)	С35—С36—Н36	120.5
C15—C14—H14	120.4	033—C37—H37A	109.5
C13—C14—H14	120.4	033—C37—H37B	109.5
C14-C15-C16	1210(2)	H37A-C37-H37B	109.5
C14-C15-H15	119 5	033 - C37 - H37C	109.5
C16—C15—H15	119.5	H37A - C37 - H37C	109.5
C_{11} C_{16} C_{15}	119.2 (2)	H37B - C37 - H37C	109.5
$C_{11} - C_{16} - H_{16}$	120.4	C41—N41—Ni1	109.3 123 17 (14)
C_{15} C_{16} H_{16}	120.4	C41 N41 H41A	129.17(14) 1091(18)
013 - C17 - H17A	109.5	Ni1—N41—H41A	109.1(10) 101.2(17)
013 - C17 - H17R	109.5	C41—N41—H41B	101.2(17) 109.4(17)
H17A - C17 - H17B	109.5	Ni1_N41_H41B	109.4(17) 104.0(17)
013-017-H170	109.5	$H41\Delta N41 H41B$	109.0(17)
$H_{17} - C_{17} - H_{17} C$	109.5	C42 - C41 - C46	109(2) 1203(2)
H17R C17 H17C	109.5	$C_{42} = C_{41} = C_{40}$	120.3(2) 120.1(2)
$\frac{1117D}{C21} = \frac{117}{N11}$	109.5 116 21 (14)	$C_{42} = C_{41} = N_{41}$	120.1(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.21(14) 100.8(15)	$C_{40} = C_{41} = N_{41}$	119.0(2)
N;1 N21 H21A	105.0(15)	$C_{41} = C_{42} = C_{43}$	119.9 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103.2(10) 107.8(16)	$C_{41} = C_{42} = 1142$	120.1
$\frac{1}{1}$	107.8(10) 104.7(16)	$C_{43} = C_{42} = 1142$	120.1
$\frac{1}{12} \frac{1}{12} \frac$	104.7(10)	$C_{43} = C_{43} = C_{47}$	110.04(10) 122.7(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113(2) 1207(2)	043 - 043 - 044	123.7(2)
$C_{20} = C_{21} = C_{22}$	120.7(2)	C44 = C42 = C42	113.7(2)
$C_{20} = C_{21} = N_{21}$	120.4(2)	$C_{44} = C_{43} = C_{42}$	120.0(2)
$C_{22} = C_{21} = N_{21}$	116.0(2) 116.99(17)	C45 = C44 = C45	110.7 (2)
$C_{33} = C_{33} = C_{37}$	110.00(17) 110.2(2)	$C_{43} = C_{44} = H_{44}$	120.7
$C_{23} = C_{22} = C_{21}$	119.5 (2)	C45 - C44 - H44	120.7
$C_{23} = C_{22} = H_{22}$	120.4	C46 - C45 - U45	121.7(2)
C21—C22—H22	120.4	C40 - C43 - H43	119.2
$C_{23} = C_{23} = C_{24}$	117.27(17)	C44—C45—H45	119.2
023 - 023 - 022	115.8(2) 122.7(2)	C45 - C40 - C41	119.0 (2)
023 - 023 - 022	123.7(2)	C43 - C40 - H40	120.5
$C_{24} = C_{23} = C_{22}$	120.5(2)	C41 - C40 - H46	120.5
$C_{23} = C_{24} = C_{23}$	119.1 (2)	043 - 047 - H4/A	109.5
$C_{23} = C_{24} = H_{24}$	120.5	U43 - U4/ - H4/B	109.5
$C_{23} - C_{24} - H_{24}$	120.3	H4/A - U4/-H4/B	109.5
$C_{24} = C_{25} = C_{26}$	121.6 (2)	U43—U4/—H4/U	109.5
C24—C25—H25	119.2	H4/A - C4/-H4/C	109.5

C26—C25—H25 C21—C26—C25	119.2 118.8 (2)	H47B—C47—H47C	109.5
Ni1—N11—C11—C16	102.6 (2)	Ni1—N31—C31—C36	88.5 (2)
N11 - N11 - C11 - C12	-75.6(2)	$N_{11} = N_{31} = C_{31} = C_{32}$	-91.6 (2)
C10-C11-C12-C13	0.3(3)	$C_{30} - C_{31} - C_{32} - C_{33}$	-0.2(3)
N11 - C11 - C12 - C13	1/8.3(2)	$N_{31} = C_{31} = C_{32} = C_{33}$	1/9.83(19)
C17 - 013 - C13 - C12	-10.9(3)	$C_{37} = 0_{33} = C_{33} = C_{32}$	-1.4(3)
C17 - 013 - C13 - C14	109.4(2)	$C_{37} = C_{33} = C_{33} = C_{34}$	1/6.55(19)
$C_{11} = C_{12} = C_{13} = C_{14}$	1/0.0(2)	$C_{31} = C_{32} = C_{33} = C_{33}$	-1/9.19(19)
C11 - C12 - C13 - C14	-1.3(3)	$C_{31} - C_{32} - C_{33} - C_{34}$	1.1(3) 170.2(2)
$C_{12} = C_{13} = C_{14} = C_{15}$	-1/8.7(2)	033 - 033 - 034 - 035	1/9.2(2)
C12 - C13 - C14 - C13	1.3(4)	$C_{32} = C_{33} = C_{34} = C_{35}$	-1.0(3)
C_{13} C_{14} C_{15} C_{10} C_{15}	-0.4(4)	$C_{33} = C_{34} = C_{35} = C_{30}$	0.2(3)
C12-C11-C16-C15	0.8(3)	$C_{32} = C_{31} = C_{30} = C_{35}$	-0.0(3)
$\mathbf{N}\mathbf{I} = \mathbf{C}\mathbf{I}0 = \mathbf{C}\mathbf{I}0$	-1//.4(2)	$N_{31} = C_{31} = C_{30} = C_{33}$	1/9.3(2)
C14 $C15$ $C16$ $C11$	-0.8(4)	$C_{34} - C_{35} - C_{36} - C_{31}$	0.7(3)
$N_{11} = N_{21} = C_{21} = C_{26}$	90.7(2)	N11 - N41 - C41 - C42	-84.4(2)
$N_{11} = N_{21} = C_{21} = C_{22}$	-84.6 (2)	$N_{11} - N_{41} - C_{41} - C_{46}$	92.3 (2)
$C_{26} = C_{21} = C_{22} = C_{23}$	-0.3(3)	C46-C41-C42-C43	-0.9(3)
N21—C21—C22—C23	174.9 (2)	N41—C41—C42—C43	1/5./5 (19)
C27—O23—C23—C24	173.2 (2)	C47—O43—C43—C44	-0.5(3)
C27—O23—C23—C22	-7.8 (3)	C47—O43—C43—C42	179.32 (19)
C21—C22—C23—O23	-179.01 (19)	C41—C42—C43—O43	179.42 (19)
C21—C22—C23—C24	0.0 (3)	C41—C42—C43—C44	-0.7 (3)
O23—C23—C24—C25	179.2 (2)	O43—C43—C44—C45	-178.6 (2)
C22—C23—C24—C25	0.2 (4)	C42—C43—C44—C45	1.5 (3)
C23—C24—C25—C26	0.0 (4)	C43—C44—C45—C46	-0.7 (4)
C22—C21—C26—C25	0.5 (3)	C44—C45—C46—C41	-0.9 (4)
N21—C21—C26—C25	-174.7 (2)	C42—C41—C46—C45	1.7 (3)
C24—C25—C26—C21	-0.3 (4)	N41—C41—C46—C45	-175.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N11—H11 <i>B</i> ···Cl1 ⁱ	0.83 (2)	2.44 (3)	3.264 (2)	168 (2)
N21—H21A····Cl2 ⁱⁱ	0.86 (2)	2.62 (2)	3.468 (2)	166 (2)
N31—H31 <i>B</i> ····Cl2 ⁱⁱ	0.85 (2)	2.69 (2)	3.509 (2)	160 (2)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1.