GIS and Spatial Analysis: Summer Internship with the Center for Health and Global Environment at the Harvard T.H. Chan School of Public Health

Wensi Hu
wehu@clarku.edu

Follow this and additional works at: http://commons.clarku.edu/idce_masters_papers
Part of the Environmental Studies Commons, International and Area Studies Commons, and the Urban Studies and Planning Commons

Recommended Citation

This Thesis is brought to you for free and open access by Clark Digital Commons. It has been accepted for inclusion in International Development, Community and Environment (IDCE) by an authorized administrator of Clark Digital Commons. For more information, please contact celwell@clarku.edu.
GIS and Spatial Analysis:
Summer Internship with the Center
for Health and Global Environment

at the Harvard T.H. Chan School of Public Health

Wensi Hu

Degree will be conferred May 2015

A MASTER’S PROJECT

submitted to the faculty of Clark University, Worcester, Massachusetts,
in partial fulfillment of the requirements for the degree of
Masters of Arts in Geographic Information Sciences for Development and Environment
in the Department of International Development, Community, and Environment

Accepted on the recommendation of

Jie Tian, Ph.D., Project Advisor
The objective of the report is to introduce and discuss my internship at the Center for Health and Global Environment at the Harvard T.H. Chan School of Public Health, in Boston, MA. The internship lasted four months from the middle of May to the middle of September, with 15 hours each week. My tasks included geocoding, developing GIS-calculated variables, data visualization/mapping and documentation. Creation of variables was vital as it included air quality data, land use map, greenness (NDVI), roads data as well as parks data.

I am happy that I have a chance to work under a professional environmental with talented students and professors. I gained quantities of knowledge about both geospatial data and non-geospatial data. Overall, I am very satisfied with my summer internship, and I encourage everyone who is interested in public health to apply for internships like this.

Jie Tian, Ph.D., Project Advisor
ACADEMIC HISTORY

Name: Wensi Hu

Place of Birth: Dazhou, China Date: August 9th, 1991

Baccalaureate School: Date: June, 2014

Chengdu University of Technology

Baccalaureate Subject: Geospatial Information & Digital Technique
DEDICATION

I would like to thank my parents for supporting me to pursue the academic goals in America. I would also like to thank the GISDE communities and IDCE staff who help me to adept the new environment and acquaint with the Clark University.
ACKNOWLEDGEMENTS

I would like to thank Gary Adamkiewicz who offered me the opportunity to work at the Center for Health and Global Environment at the Harvard T.H. Chan School of Public Health. I would also like to thank Linyan, a Ph.D. student of Public Health. We worked together in a same project. She was in charge of the statistics analysis section and I was responsible for the GIS section. She guided me to complete the whole research project and let me acquainted with the working condition. After the internship, we continued contacting each other and she gave me a lot of useful advice when I faced statistics problems in the class of Intermediate Quantitative Methods. My thanks as well to my professors, Yelena Ogneva-Himmelberger and Jie Tian. Without the class of Advanced Vector taught by Yelena, I would not have been mastered spatial analysis and mapping using ArcMap. Without Jie’s helps, I could not solve technical problems in the summer internship.
TABLE OF CONTENTS

Chapter 1. INTRODUCTION .. 7

CHAPTER 2: DESCRIPTION OF ORGANIZATION .. 8
 2.1 Organization Introduction ... 8
 2.2 Location ... 8
 2.3 Area of Expertise .. 9
 2.4 Organization Structure .. 10

CHAPTER 3: INTERNSHIP DESCRIPTION ... 11
 3.1 Project Introduction ... 11
 3.2 Internship Responsibility .. 11
 3.2.1 Geocoding ... 11
 3.2.2 Air Quality Data .. 12
 3.2.3 Land Use .. 13
 3.2.4 NDVI .. 13
 3.2.5 Roads Data ... 13
 3.2.6 Parks Data .. 13
 3.3 Support of Organization’s Project .. 14

CHAPTER 4. INTERNSHIP ASSESSMENT .. 15
 4.1 Skills Required ... 15
 4.2 Skills Learned ... 16
 4.3 Relation to Career Goal .. 16
 4.4 Recommendation ... 17

CHAPTER 5. CONCLUSION .. 18

GLOSSARY .. 19

BIBLIOGRAPHY .. 20

Figures ... 21
CHAPTER 1. INTRODUCTION

The seminar of Geographic Information Science for Development and Environment (GISDE) program, held by Professor Yelena, provided GIS information and helped us plan a career path. The requirement of graduation not only include courses, but also a fulfilment of a track that could be the Internship track, Research track or Portfolio track. I chose the internship track because I wanted to work directly after my graduation next year. The internship would definitely rich my professional work experience and allow me to be more competitive in job hunting. Through one year study at Clark, I was equipped with more professional GIS knowledge and skills. The internship could be a best way to practice and improve myself.

In the summer of 2015, I got an internship in Harvard School of Public Health and as a GIS specialist to focus on a project that explored the associations between the public health and built environment in Suzhou, China. It was a perfect working and learning experience for me to apply GIS spatial analysis to a real research project. During the internship at Harvard, I devoted to GIS-based variables creation and map design using ArcGIS software. The internship also provided me the chance to meet with many well-known professors in public health field.

The internship paper has 5 chapters in total. Chapter 2 provides details on the Harvard school of public health and the research center. Chapter 3 introduces the responsibility of the internship, which includes specific works I did and the methodology I used. Chapter 4 is the internship assessment, which mainly describes the skills required and skills learned. The end of the report includes a conclusion, figures and literatures sources.
CHAPTER 2: DESCRIPTION OF ORGANIZATION

2.1 Organization Introduction

Harvard University was established in 1636 and is the oldest institute of higher education in the United States. The University has grown from 9 students at first, to more than 20,000 degree candidates now, including professional, undergraduate and graduate students. Plus, there are more than 360,000 living alumni in the United States and over 190 countries all over the world. Harvard is honored for its great achievements, including 47 Nobel Laureates, 32 heads of state, 48 Pulitzer Prize Winners. “The mission of Harvard University College is to educate the citizens and citizen-leaders for our society. We do this through our commitment to the transformative power of a liberal arts and sciences education”. (Harvard website 2015)

Harvard School of Public Health is the first graduate training program in public health in United States, and definitely The Harvard-MIT School of Health Officers is the predecessor in the field of public health. It was founded in 1913, school of health office separated from MIT as an affiliate of medical school of Harvard in 1922 and finally became an independent school in 1946. As of January 2015, Harvard School of Public Health officially was renamed as Harvard T.H Chan School of Public Health in appreciation of Mr. T.H Chan through The Morningside Foundation for his largest single donation, $350 million. Since established, the School has been devoted to the mission of advancing worldwide public’s health. To achieve this mission, the School provides the excellent education to students who are future scientists, practitioners and leaders, research new discoveries to promote public’s health in whole world, enhance health capacity and offer best services for public, and inform public of health information and let people realize health itself as a fundamental right of every human being.

2.2 Location

The Harvard T. H Chan School of Public Health is comprised of two parts. The main buildings is located at 651 and 677 Huntington Avenue on the Harvard Longwood Campus in Boston, which are used to teach and research. A second part of the school is
located in the Landmark Center Building on the corner of Brookline Avenue, which maintains offices and is also used for teaching and research.

2.3 Area of Expertise

Harvard University is a well-known university, their main area of work and expertise is to foster excellent talents to the society and contribute to the society. In addition to the education, research is as an important role. Professors and students discover and do researches together to make landmark contribution for public health worldwide.

The field of public health is an inter-disciplinary as well as a multidiscipline, so the school’s faculty and students specialize in several disciplines, for example biology, quantitative science, social science, statistics, environmental science, genetics, policy making, nutrition and behavior science. The biological, chemical and genetic knowledge in biology field help them to confront the urgent diseases, such as AIDS and many types of cancer, and for providing treatment. For the quantitative science, the most important disciplines are Epidemiology and Biostatistics. Biostatistics involves many statistical science that allow them to explore the underlying impacts of health problems and examine the relations between health problems and different factors. In addition, disease prevention is the core mission of public health, social science lets them better understand societal influences of health-related behaviors and inform public of policy to prevent disease.

Geographic Information System (GIS) may be not a core discipline, but GIS techniques could support public health in different way. GIS as a useful tool can develop GIS-calculated variables. Taking my summer internship as an example, the research explored the associations between attributes of the built environment on resident health. We required variables that is related to locations, like distance to roads, greenness, and air pollution for each resident. Using GIS techniques, we can relatively easy to get these variables. In addition, geographic visualizing could inform of proper
understanding and lead best decisions, geospatial tools could reveal spatial autocorrelation between causes and factors.

2.4 Organization Structure

The Harvard T, H Chan School of Public Health has eight departments, including Biostatistics, Environmental Health, Epidemiology, Genetics and Complex Disease, Global Health and Population, Health Policy and Management, Immunology and Infectious Diseases, Nutrition as well as Social and Behavior Science. There are total 1251 students and 476 faculty in 2014. 838 students are U.S citizens and permanent residents and 413 students are international students. In the School, 60% of students are females and rest of 40% students are males. The School of Public Health faculty include 187 primary appointments and 88 tenured. In the School history, they have received two Nobel Prize, five MacArthur Awards, the National Medal of Science, etc. The acting dean now is David Hunter.
CHAPTER 3: INTERNSHIP DESCRIPTION

3.1 Project Introduction

The urbanization is increasing rapidly in the current time. Factors such as air pollution, lack of greenness and high population density from the result of excessive urbanization affects people’s lives, the Center for Health and Global Environment at the Harvard T.H. Chan School of Public Health is tasked with designing health buildings that promote human health. Working with the largest construction company in China, researchers conducted a study to investigate the associations between attributes of residential housing, neighborhoods and other elements of the built environment on resident health in Suzhou, China. The study area is shown in Figure 1. This project is under the program of Nature, Health & Built Environment and led by program leader, Gary Adamkiewicz. Linyan Li who is a PHD student in Harvard School of Public Health was primarily responsible for the whole project and built statistical models. I was hired as the GIS research assistant.

3.2 Internship Responsibility

As the GIS research Assistant, my tasks included geocoding, developing GIS-calculated variables, data visualization/mapping and documentation. Creation of variables was vital as it included air quality data, land use map, greenness (NDVI), roads data as well as parks data.

3.2.1 Geocoding

When I accessed the project, they researchers collected over 8,000 residents’ information in Suzhou, including addresses and public health information via surveys. The surveys were conducted in schools in Suzhou, including kindergartens and middle schools shown in Figure 1. About 2,000 residents’ data came from 12 kindergartens and about 6,000 residents data came from 12 middle schools. My first work was to geocode these residents’ points on the map.

I used a free geocoding software called XGocoding to automatically convert addresses to points of latitude and longitude. The XGeocoding specializes in geocoding
Chinese addresses whose format is different from English addresses because it uses Baidu Map as address resolution server. Baidu Map is more accurate than Google Maps in China. After automatic geocoding, each address in the result table has an accuracy index ranging from 1 to 5. 1 represents high accuracy and 5 represents low accuracy. I manually geocoded the addresses that had an accuracy index greater than 2 and ensured the geocoding quality.

So far, the geocoding work did not finish yet. In meeting the security requirement from Chinese government, the Baidu Map Geocoding API applies the BD-09 instead of normal WGS-1984 as their coordinate system, so the latitude and longitude cannot display in ArcMap with WGS-1984 coordinate system. The parameters of BD-09 coordinate system are not open to the public but I found an approximate formula that converts latitude and longitudes under BD-09 to under WGS-1984. After the coordinate conversion, the geocoding work was finished.

3.2.2 Air Quality Data
The center provided daily air quality data from December of 2014 recorded by 92 monitors in Suzhou. Each monitor included average concentration of PM 2.5, SO2, NO, O3, NO2 and CO every day. In order to know the effect of air pollution on eight thousand residents, one of method was to assign the closest monitor’s value to each resident. However, as here are over 8,000 thousand residents and only 92 monitors, it is not an ideal method.

Another method was to employ interpolation to make continuous maps for each air pollutant. Based on the literature (Wong, David W., Lester Yuan, and Susan A. Perlin, 2004), I chose Kriging method to do interpolations by using the GeoSpatial Wizard in ArcMap. The Kriging regression model was adjusted according to different air pollutants. For example, the recorded CO data had several outliers and in order to promote the fit of the model, I eliminated samples that are outside of three standard deviation from the mean.
3.2.3 Land Use

Land types are found around residents is also a key factor affect human’s life. Our project planned to do ‘Land Use Regression’ to analyze the influence of land use on public health. So, my work is to make land use map of Suzhou.

I downloaded the remote sensing image of Suzhou in Jul 24, 2014 from Landsat 8 on USGS website. I then classified the imagery using ‘Maxlike’ and ‘Unmixing’ modules in TerrSet. My classification map is shown in Figure 3 and includes five categories, water, residential, industry, vegetation and roads. In order to calculate the percentage of land use types for each resident at final step, I broke them into five individual Boolean images and one image corresponded to a land use type.

3.2.4 NDVI

Greenness for public health is evaluated by NDVI, which stands for Normalization Difference Vegetation Index. The pixels with values greater than 0 are regarded as vegetation. The NDVI maps could be obtained by using VegIndex module in TerrSet or calculation with the formula (Infrared – red) / (Infrared – red). The NDVI maps for Suzhou are shown in the Figure 4, 5, 6, 7.

3.2.5 Roads Data

Referring to Figure 8, red and green points are residents in Suzhou and grey lines are major roads. I used these data to create GIS variables including distances from nearest major roads to each resident and lengths of major roads in different buffers for each resident. Buffer distance was set at 200 meters. I achieved them using the tools of ‘Near’, ‘Select By Location’ and ‘Summarize’ in ArcMap.

3.2.6 Parks Data

Based on the literature, parks play important roles in people’s life and the easy access to park promotes the public health. However, the complete parks data in Suzhou with usable formats, like Excel were not available and I could only find the results in Google Maps or Baidu Maps through searching key word “Parks”, which can be displayed online but cannot be downloaded. Faced this problem, I searched the solution online that used the VBA code to extract searching results from Google Maps in Excel. I
copied and adjusted the code and finally obtained the 230 parks data with addresses that could be used to geocode parks in Google Maps.

3.3 Support of Organization’s Project

The organization’s project aimed to explore the relations between the public health and urban environment. Researchers already had the survey data of public health for each resident, so what I need to provide are the GIS-based data of built environment for every resident. Air quality maps, land use map and NDVI maps were all continuous raster maps that should be converted to point data for each resident. I employed a very useful tool, ‘Zonal Stats Over Lapping Polys’ which calculates Zonal Stats using Zonal Statistics as table with an overlapping polygon feature class, as total residents were up to 8000 points in a city, their buffer polygons would have many overlaps that could not be solved by the normal Zonal Statistics as table in ArcMap. For example, I created NDVI data of residents’ points with three different buffer distances, including 200m, 500m and 1000m. In terms of roads and parks data, they were easy to be converted to data for residents’ point using tools in ArcMap. Overall, I provided them an Excel table with all variables data for residents, which could be analyzed by their workers without GIS experience. Figure 9 is a part of the excel table I finally created that contains all the information they needed.
CHAPTER 4. INTERNSHIP ASSESSMENT

4.1 Skills Required

My internship was to create GIS calculated variables for a public health project in China, so the main skills required included Geo-Spatial analysis using ArcMap, processing remote sensing images, collecting data from China-based GIS sources (e.g. ChinaMap) and programming.

I was very familiar with the GIS analysis using ArcMap because I took both Intro to GIS and Advanced Vector taught by Professor Yelena Ogneva-Himmelberger, giving me much practice to do GIS work including Geo-Spatial analysis and mapping. This skill was involved in my internship everywhere. For instance, I created the variable that estimated distances from residents to major roads using the ‘Near’ tool in ArcMap. I calculated the number of parks within a certain buffer distance using the tools of ‘Buffer’ and ‘Select by Location’ in ArcMap.

Remote sensing expertise learned from Intro to Remote Sensing was useful when I developed the NDVI data and Land Use data. I downloaded the remote sensing images from USGS and processed them in TerrSet.

The study area of the project was Suzhou, China. Data Collection, like the shape file of administer boundary and major roads, needed China-based GIS sources and fluency of Chinese language. I did not know many China-based GIS sources at beginning of the intern but knew a lot during this summer.

Programming is the last but not least. Much of the work was duplicate works, such as performing Zonal Statistics for different buffer distances, and I used Python and Model Builder in ArcMap to reduce my work load. In addition, I learned JavaScript in the internship and help me a lot as well.
4.2 Skills Learned

As I mention before, collecting data and programming languages are the critical skills I learned from this intern. I collected the county boundaries from China Map, collected the major roads from OpenStreetMap, got the parks data from Baidu Map and obtained the air quality data from the local government website. Data collection was a hard work and I learned how to use internet to find resources from the internship.

I learned Python in the class of Python and GIS Programming last semester, which was helpful to perform GIS operations with Arcpy library, but it did not help when I wanted to use web API, like Baidu Map API and ArcGIS API. Baidu Map is a mapping service for Chinese, which can interpret Chines addresses more correctly than Google Maps. In my work, I needed geocoding over 8000 addresses. It was not possible to geocode them by hands, so I learned JavaScript and employed Baidu Map Geocoding API to automatically geocode the addresses.

I also learned VBA, which is short for Visual Basic for Applications, to program in Excel. One of variables I created is parks data, which were not available online but could be searched in Baidu Maps. However, Baidu Maps does not provide the download function for searching results. The way I found was to extract the search results using VBA in Excel.

Besides the hard power above, I also learned some soft power, like independent working, cooperation and communication. I was an only GIS assistant there and had to cope any GIS problems by myself. The group work brought more inspirations and ideas. The communication let me fully understand thinking of co-workers and supervisor, so as to offer a better result.

4.3 Relation to Career Goal

My internship role was a research assistant to help a PHD student to do a research about public health in Harvard. The working environment was still an education organization that was same as the situation I have been in and it is relative
easy when compared with most companies. I like the relaxing working environment, so I hope I can work at education organizations after the graduation.

4.4 Recommendation

I recommend this internship to other students if they like GIS analysis, self-study and handling problems. In addition, the center I worked at a sub-organization of Harvard School of Public Health and staff and students there are not familiar with GIS, so I met many well-known professors and smart students who are expert in Public Health. If someone interests in the field of public health, this internship was a good chance to learn more knowledge about public health and meet more professionals in this field. However, this internship may not be offered in next summer because GIS internships depend on the demand of GIS knowledge of their projects.
CHAPTER 5. CONCLUSION

Harvard school of public health is one of the best education organizations in public health field and I was honored to work with talented students and professors. I was the only GIS specialist on this Suzhou project and the independent work gave me both the responsibility and freedom to perform GIS-related data processing and data analysis. I am happy that I have a chance to work under a professional environmental with professional people. One of the most important thing is the independence and space the work gives to me, and I received good results with the minimum supervision. I also gained quantities of knowledge about non-geospatial data, for instance, health-related data, population, air pollution, etc. Moreover, I went through the whole process of searching for non-geospatial data, processing data and applying those non-geospatial data to the geospatial database. Overall, I am very satisfied with my summer internship, and I encourage everyone who is interested in public health to apply for internships like this.
GLOSSARY

GIS – Geographic Information Science/System

GISDE – Geographic Information Science for Development and Environment
BIBLIOGRAPHY

The Center for Health and Global Environment, 2015

http://www.chgeharvard.org/

Harvard website, 2015

http://www.harvard.edu/

FIGURES

School Distribution in Suzhou HAPI Study

Legend
- ▲ Middle School
- ● Kindergarten

Districts
- Suzhou Industrial Park
- Suzhou New District
- Wujiang Downtown
- Wuzhong District
- Xiangcheng District
- Suzhou Ancient City
- Suzhou Downtown

Figure 1. The Study Area and the School Distribution in Suzhou HAPI Study
Figure 2. The PM2.5 Distribution Maps in Suzhou at Four Different Dates
Figure 3. The Land Use Map of Suzhou in 2014
Figure 4. The NDVI of Suzhou in 16 March 2014

Figure 5. The NDVI of Suzhou in 22 July 2014
Figure 6. The NDVI of Suzhou in 26 October 2014

Figure 7. The NDVI of Suzhou in 29 December 2014
Figure 8. The Map of Suzhou Residential and its Roadway

Figure 9. The Final Excel Table including all GIS-calculated Variables for all Residents