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Abstract: Increased wildfire activity and altered post-fire climate in the Southern Rocky Mountains
has the potential to influence forest resilience. The Southern Rocky Mountains are a leading edge of
climate change and have experienced record-breaking fires in recent years. The change in post-fire
regeneration and forest resilience could potentially include future ecological trajectories. In this
paper, we examined patterns of post-fire spectral recovery using Landsat time series. Additionally,
we utilized random forest models to analyze the impact of climate and burn severity on three fire
events in the Southern Rocky Mountains. Fifteen years following the fires, none of the burned stands
fully recovered to their pre-fire spectral states. The results suggested that burn severity significantly
impacted post-fire spectral recovery, but that influence may decrease as time since fire increases. The
biggest difference in forest recovery was among fire events, indicating that post-fire climate may
be influential in post-fire recovery. The mean and minimum growing-season temperatures were
more significant to post-fire recovery than the variability in precipitation, which is consistent with
field-based analysis. The present study indicated that, as warming continues, there may be changes
in forest density where forests are not regenerating to their pre-fire spectral states. Additionally, this
study emphasizes how high-elevation forests continue to regenerate after fires, but that regeneration
is markedly affected by post-fire climate.

Keywords: forest resilience; fires; the Southern Rocky Mountains; climate change; Landsat; lodgepole
pine; disturbances; regeneration

1. Introduction
1.1. Wildfires and Climate Change

Wildfires are burning in the Southern Rocky Mountains (e.g., Northern Colorado
and Southern Wyoming), 22% more than any other time in the past 2000 years [1]. The
previous record was established ~1100 years ago, during the Medieval Climate Anomaly
(MCA). During the MCA, the Northern Hemisphere was 0.3 ◦C (0.5 ◦F) warmer than
the 20th-century average and subalpine forests, ranging from 9000 to 10,000 ft, burned
on average every 150 years. In contrast, over the past 2000 years, subalpine fires in the
Southern Rocky Mountains burned a given spot on average every 230 years. In 2020, the
Northern Hemisphere was 1.28 ◦C (2.3 ◦F) above the 20th-century average, and fires are
now expected to occur, on average, every 117 years. This dramatic increase in the wildfire
activity is directly related to the warmer–drier weather caused by climate change [1].

The 2020 fire season included three of the largest wildfires in Colorado’s history and
set records across the Western United States. Many fires in 2020 occurred in subalpine
forests dominated by lodgepole pine (Pinus contorta var. latifolia). Subalpine forests were
historically less impacted by fire suppression and other land management compared to
lower elevation forests, making them good historians of climate–fire relationships [2].
Increased burning and hotter and drier post-fire climate conditions have consequences
for tree regeneration, ecosystem connectivity, and total forested areas [1]. During the
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MCA, increased fire activity and temperature converted the lower tree line from a dense
closed-canopy forest to the lower-density ribbon forest we have today [3]. Additionally,
burning during the MCA reduced ecosystem connectivity, which could negatively impact
ecosystem conservation if it were to recur [2,4].

Lodgepole pine is a shade-intolerant, early successional species that regenerates
rapidly after wildfires; its serotinous cones release seeds only when heated, giving the tree a
post-fire advantage over other species. However, the number of serotinous cones produced
by an individual tree or stand varies greatly and appears to be linked to disturbance
regimes (especially fire frequency and severity) [5]. Although lodgepole pine has been
thought to reproduce well under adverse conditions (e.g., following severe fires and altered
post-fire climate) [5], recent evidence suggests that regeneration success is also affected by
post-fire climate conditions (e.g., increased temperatures) in a manner that increases forest
patchiness [6]. Additional research on non-serotinous Sierra lodgepole pine (Pinus contorta
var. murrayana) suggested that regeneration is influenced by burn severity. A repeated high-
severity fire can result in a lower tree seeding density compared with a low-severity fire
followed by a high-severity fire, because a past high-severity fire may reduce the seedbank
and other seed sources [7,8]. As wildfire frequency and severity increase, understanding
the dynamic relationship among climate, vegetation, and fire regimes is evermore necessary
for understanding post-fire regeneration and anticipating future forest dynamics.

1.2. Remote Sensing, Burn Severity, and Post-Fire Regeneration

Remotely sensed (RS) data are used in fire science to monitor the size and frequency of
wildfires [9–11]. Additionally, space-borne sensors can be utilized in assessing climate and
environmental conditions before and after fire events [12,13]. RS data also have been used
for fire detection [14], assessing active fire behavior [15], characterizing burn severity [16],
examining post-fire vegetation response [17–19] and identifying areas where vegetation
recovery has been limited [20].

Fire severity describes the magnitude with which fire has affected the ecosystem. In
general, fire severity is defined as a spectrum based on the percentage of vegetation that
is killed in a fire. On one side of the spectrum, a low-severity fire consumes understory
vegetation and leaves most trees alive. On the other side of the spectrum, high-severity fires
are synonymous with crown fires that kill most trees and other vegetation. Spectral indices
(SIs) are among the most common remote sensing techniques in fire science due to their
conceptual simplicity and computational efficiency. The normalized burn ratio (NBR) has
emerged as one of the most widely used SIs to track post-disturbance regeneration [21–23].
The NBR utilizes a ratio between the near-infrared (NIR) and short-wave infrared (SWIR)
regions. Healthy, unburned vegetation is highly reflective in the NIR region and has a
low reflectance in the SWIR portion of the electromagnetic spectrum. The SWIR region is
strongly absorbed by the water content in vegetation or soil [24]. After a fire, burned areas
have a low reflectance in the NIR region and a high reflectance in the SWIR region, which
decreases the NBR [24,25]. The Monitoring Trends in Burn Severity (MTBS) program was
established in 2006 to remotely map the extent, burned area, and burn severity of fires over
405 hectares in Western United States, Alaska, and Hawaii and fires over 202 hectares in
Eastern United States and Puerto Rico using Landsat imagery for all fires since 1984 [26].
The MTBS program defined burn severity as a visible alteration of vegetation, dead biomass,
and soil within a fire perimeter [26]. Low severity corresponds to damaged ground herba-
ceous vegetation, moderate severity correlates with mostly burned understory vegetation
with some canopy mortality, and high severity indicates completely burned understory
vegetation with major canopy mortality. These changes can be assessed tracking changes
in SI estimates of burn severity. The differenced normalized burn ratio (dNBR) assesses
the changes in the reflection of NIR and SWIR regions of vegetated surfaces resulting from
fire [24]. The dNBR metric measures the difference between a pre- and post-fire NBR image,
with typical values ranging between −2000 and 2000.
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The MTBS program classified dNBR values into thematic classes to interpret the burn
severity. A higher value of the dNBR indicates more severe damage (Table 1).

Table 1. Burn severity levels obtained calculating the differenced normalized burn ratio (dNBR),
proposed by the United States Geological Survey.

Severity Level dNBR Range (Scaled by 103) Relationship to Ecological Damage

low severity +100 to 269 damaged ground herbaceous vegetation

moderate severity +270 to +659 completely burned understory vegetation with some
canopy mortality

high severity +660 to +1300 completely burned understory vegetation with major
canopy mortality

1.3. Remote Sensing to Quantify Forest Resilience

In remote sensing applications, resilience or “recovery” is typically defined as a return
or near-return to pre-fire spectral values [27]. However, it is important to note that a
return to pre-fire spectral values may not always indicate a recovery of forest function,
structure [28,29], or the same forest type [30]. Thus, using remote sensing to map post-fire
regeneration trajectories focuses on a return to a pre-fire spectral reflectance in the growing
season [29–31]. This paper defines forest resilience as the degree of perturbation (e.g., low,
medium, and high fire severity levels) which a forest can absorb and return to a similar
pre-spectral state [32,33].

In the present study, we examined patterns of post-fire spectral recovery following
three fires in the Southern Rocky Mountains. Based on field validation in [6] these fires
were of high severity and occurred in pure lodgepole pine (Pinus contorta var. latifolia)
stands. Post-fire regeneration trajectories have been attributed to pre-fire conditions [30,34],
burn severity [7], topography including slope, aspect, and elevation [35,36], and post-fire
climate, including temperature and moisture [6]. Our primary objectives were as following:
(1) to monitor forest resilience and quantify post-fire spectral change in the Southern Rocky
Mountains following the fires; (2) to analyze how climate anomalies may have affected
the rate of the post-fire spectral change; and (3) to analyze how the magnitude and rate
of the post-fire spectral change are influenced by burn severity, topography, and geology.
We broke down our analysis into three phases. In the first phase, we created a Landsat
time series (LTS) using Google Earth Engine (GEE)’s Landsat-based Detection of Trends in
Disturbance and Recovery (LandTrendr). We utilized the NBR to evaluate the presence of
healthy and burned vegetation in the time series. The NBR time series was stratified by
burn severity and allowed us to understand how burn severity impacted forest resilience
(e.g., the degree of perturbation a forest can absorb and return to a similar pre-spectral state).
In the second phase, we looked at understanding how the climate influenced the rate and
magnitude of the post-fire recovery. In the third phase, we utilized random forests (RFs) to
understand how topography, burn severity, fire regimes, and geological data interacted and
influenced the rate and magnitude of the post-fire recovery. Given the likely importance of
the climate and the topography on the post-fire recovery, we hypothesized the following:
(1) the recovery to a pre-fire spectral state would vary by burn severity and elevation; and
(2) the post-fire recovery would be influenced by growing-season climate conditions.

2. Materials and Methods
2.1. Study Area

We studied three wildfires that occurred in the Southern Rocky Mountains (extending
from Northern New Mexico to Southern Wyoming) from 1999 to 2006 (Figure 1, Table 2)
in forests dominated by lodgepole pine [6]. For the past seven decades, the Southern
Rocky Mountains have felt the effects of warmer and drier conditions resulting from the
climate change in North America [6]. Ecological disturbances (e.g., windstorms, insect
outbreaks, and wildfires) have increased primarily because of climate change. Increased
disturbances have been especially prominent in forests dominated by lodgepole pine.
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Furthermore, the climate change in the Southern Rocky Mountains has the potential to
influence forest resilience and ecological trajectories. Disturbances have been pronounced
in forests dominated by lodgepole pine [6].
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Table 2. Site and stand characteristics of burned forest stands.

Fire Year 1999 2002 2006

size (ha) 10.600 4397 1200

mean elevation (masl) 2426 2825 2645

dominant aspect ESE SE E
Refer to [6] for more detailed information about field validations of fires and post-fire regeneration [6].

2.2. Data Analysis
2.2.1. Landsat Data Pre-Processing and Segmentation

We used GEE’s implementation of the LandTrendr temporal segmentation algorithm
to derive the yearly LTS maps of the post-fire recovery. LandTrendr incorporates temporal
segmentation and a fitting approach for each pixel of the LTS. LandTrendr identifies
breakpoints (vertices) and determines straight-line trajectories that result in a fitted-to-
vertex (FTV) time series. With the FTV time series, LandTrendr provides information on
the magnitude and rate of post-fire recovery.

In this study, we used the United States Geological Survey (USGS) Landsat Surface
Reflectance Tier 1 data from Landsat 5, 7, and 8 to examine spectral recovery trajectories
following fires in 1999, 2002, and 2006. Clouds and cloud shadows were filtered using masks
produced by the CFMask algorithm and included five-year pre-fire to 15-year post-fire
time series, including all images from 1st June to 30th September for each year. LandTrendr
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utilized medoid compositing, a multi-dimensional analog of the median, to aggregate all
the images in the LTS. For each pixel, the medoid was selected from the available data,
with the result that a single observation for each pixel preserved the relationship between
Landsat bands. This output was a new annual LTS where the pixel values between vertices
were interpolated and reduced the year-to-year noise. The result was an LTS with a single
summer observation per year for a 20-year time series.

2.2.2. Phase 1: Monitoring Forest Resilience

We were interested in understanding how burn severity influences forest resilience.
To answer this question, we extracted thematic burn severity categories (i.e., low, moderate,
and high) from the MTBS program for each fire and created an LTS for the fire segregated
by burn severity. This resulted in three LTSs per fire stratified by burn severity (low-,
moderate-, and high-severity LTSs) for all pixels. These time series were made using the
entire population of pixels in each burn severity group. The mean NBRs were extracted
five-, 10-, and 15-year post-fire.

We then calculated the “annual %NBR recovery”, defined as the magnitude of the NBR
recovery divided by the magnitude of the fire-induced decrease in the NBR multiplied by
100 (Figure 2). The “annual %NBR recovery” time series allowed us to calculate how an area
recovered annually in relation to its pre-fire spectral state as a measure of forest recovery.
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Figure 2. A conceptual example of Landsat-based Detection of Trends in Disturbance and Recovery
(LandTrendr) fitting the normalized burn ratio (NBR) values to the spectral-temporal segments of a
pixel burned at a high severity level in the 1999 Fire. The original NBRs are displayed by black circles,
and the fitted are displayed by open circles. The percent of the NBR change in 2010 was defined as
distance 2 divided by distance 1 multiplied by 100.

2.2.3. Phase 2: Climate Influence on Resilience

Using the Parameter-elevation Regressions on Independent Slopes Model (PRISM)
data, we assessed differences in the summer (June–September) and winter (October–March)
precipitations and temperatures 15-year post-fire and analyzed the effects of cumulative
climate anomalies on the annual NBR recovery. The post-fire cumulative climate anomalies
considered were changes in the minimum post-fire winter and summer temperatures, aver-
age temperatures, maximum temperatures, total precipitations, and average precipitations.
All variables were calculated as site-specific cumulative climate anomalies. We utilized
cumulative climate anomalies, because vegetation responds to the accumulated effects of
climate change during regeneration. This decision allowed us to account for interannual cli-
mate variations of the growing and winter seasons. Cumulative climate anomalies provide
a broader perspective on the deficit or surplus of the precipitation and the temperature. We
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defined the reference conditions for the precipitation and the temperature over the 30 years
from 1990 to 2020.

Backward stepwise selection models were utilized to examine the effect of cumulative
climate anomalies on post-fire recovery. The models were run based on the fire event, fire
severity, and season (summer vs. winter) for a total of 18 backward stepwise selection
models. Post-fire cumulative climate anomalies were used to model the influence of the
NBR for the 15-year post-fire period. A 15-year post-fire period was chosen, because
lodgepole pine requires 5–15 years to reach maturity and produce serotinous seeds [37].
Data were analyzed using R statistical package [38,39]. Other packages included “tidyverse”,
“caret”, and “leaps”. The stepAIC() function chooses the best model, and the leaps package
provides the tuning parameter “nvmax” that allows specifying the maximal number of
predictors to incorporate in the model. The mean absolute error (MAE) statistical metric
was used to compare the models and automatically choose the best one, where the best is
defined as the model that minimizes the MAE.

2.2.4. Phase 3: Influence of the Topography, Burn Severity, Fire Regimes, and Geological
Data on Resilience

Shuttle Radar Topography Mission (SRTM) digital elevation data, LANDFIRE Fire
Regime Groups (FRG) v1.2.0 dataset, and PRISM Monthly Spatial Climate Dataset data
were obtained from the GEE platform. The SRTM elevation data were used to extract the
slope, elevation, and aspect for each fire. LANDFIRE FRG provided the mean fire return
interval, which quantified the average period between fires under the presumed historical
fire regime. Time-varying variables, specific to each year and site, included the post-fire
climate derived from PRISM Monthly Spatial Climate Dataset data. The ESRI Living Atlas
provided the Soil Survey Geographic Database (SSURGO) that includes Ecological Section
(soils and landcover), USA Hydraulic Group, USA Soils Bedrock Depth, USA Soils Hydric
Class, and USA Soils Drainage Class (Table 3).

We developed regression tree models using random forests (RFs) [40] to examine
the variability in post-fire recovery for 15 years in relation to topography, soil variables,
and burn severity (low, moderate, and high) in R [38,41]. We took the LandTrendr time
series bands and extracted the magnitude and rate of spectral recovery for the 15-year
post-fire period. We developed regression tree models of the following: (1) the magnitude
of spectral recovery; and (2) the rate of recovery. The RF is an extension of classification
and regression trees analysis, whereby trees are constructed by repeatedly dividing the
data into two mutually exclusive groups [40]. We chose the RF as a means for determining
important predictors of lodgepole pine regeneration, because it is known to work well
with complex ecological data [42]. We generated node purities, analogous to Gini-based
importance, to identify the most important variables in the prediction. The node purity
was calculated based on the reduction in the sum of squared errors whenever a variable
was chosen to split a tree.

Each model was generated by partitioning the dependent variable into 75% for the
model training and 25% for the model testing. We then compared the predicted value with
the actual value in the test data and analyzed the model’s accuracy. To test the accuracy of
our model, we used the MAE. To improve the predictive power of our models, we tuned the
parameters ntrees (the number of trees in the forest) and maxnodes (the maximum number
of terminal nodes that trees in the forest can have). The best parameters were the ones with
the lowest MAE.
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Table 3. Explanatory topographic variables impact on the NBR change (%).

Variable Name Data Type Variable Definition Significance for the NBR Recovery

Elevation continuous elevation on the latitude (m)
Reflecting the size and shape of

stand-replacing fire
Common in upper elevations

Aspect discrete direction the slope faces North-facing slopes are cooler than
south-facing slopes

Slope continuous Slope gradient (◦) Steeper slopes retain less moisture and may
be less suitable for regeneration.

Fire Regime Group (FRG) discrete

The LANDFIRE Fire dataset provides
presumed historical fire regimes within

landscapes based on interactions
between vegetation dynamics, fire

spread, fire effects, and spatial contexts.

Lodgepole pine is limited to crown fires
every 200–350 years.

USA Soils Hydraulic Group discrete
The hydrologic soil group is displayed
in seven classes that describe the rate at

which the soil absorbs rainfall.

The physical properties of soil affect the rate
at which water is absorbed. Hydrologic soil

groups provide the rate at which water
infiltrates the soil.

USA Soils Bedrock Depth discrete The shallowest depth to bedrock from
the top of the soil is displayed. Bedrock is the material under soils.

USA Soils Hydric Class discrete

Hydric soils for conditions of saturation,
flooding, or ponding long enough

during the growing season to develop
anaerobic conditions for the under part

of the soil are displayed.

Hydric soils drain poorly and may have
additional moisture.

USA Soils Drainage Class discrete Soils are classified in seven classes based
on the rate of water infiltration.

The rate at which water drains into the soil
has a direct effect on how plants can grow.

Burn Severity discrete The Monitoring Trends in Burn Severity
(MTBS) provided burn severity.

Lodgepole pine is adapted to high-severity
fires. Mixed-severity and low-severity fires

can impact forest recovery.

3. Results
3.1. Assessing Forest Resilience

Post-fire NBR recovery varied non-linearly by fire severity, time since fire, and par-
ticular fire event (Figure 3). Fifteen years following fires, none of the burned stands fully
recovered to their pre-fire NBR spectral states. However, the percent of the annual NBR
recovery was greatest in patches burned at high severity levels (58% to 90%), in contrast
to patches burned at moderate severity levels (50% to 82%) and low severity levels (46%
to 62%) (Table 4). In low-severity areas, the vegetation changes following fires were most
likely due to the greater opportunity for the establishment and growth of new species
instead of regeneration. Post-fire %NBR recovery increased annually in areas burned at
both medium and low severities (Table 4). This may be because the fire thinned out the
stand and allowed other trees to grow more or because the fire was intense enough to
release some seeds from serotinous cones. [6].

Only the stands that were burned in 2006 were able to recover to a near pre-fire spectral
state, indicating the most resilience. The stands that were burned in 2002 and 1999 did not
recover to a near pre-fire spectral state (Figure 3). When comparing the NBR spectral values
15 years post-fire, there was no difference in the NBR spectral values among fire severities
in individual fire events, indicating that burn severity may not be the most important
variable in determining resilience.
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Table 4. Post-fire %NBR recovery by burn severity.

Fire Severity Five Years
Post-Fire

Ten Years
Post-Fire

Fifteen Years
Post-Fire

1999 high 56.10 55.31 59.99

1999 medium 51.60 54.59 58.17

1999 low 36.20 41.68 45.81

2002 high 82.50 67.06 58.10

2002 medium 17.49 40.72 50.40

2002 low 17.49 32.94 41.89

2006 high 62.90 68.79 89.97

2006 medium 41.48 66.84 81.61

2006 low 27.84 46.14 61.55

3.2. Climate Influence on the %NBR Recovery

The backward stepwise regression produced models showing that the minimum and
mean temperatures of the summer season were highly influential in post-fire recovery.
All insignificant variables were removed from the model, and significant variables were
reported in Table 5. The tolerances were calculated for each model and the interaction
between the temperature variables and the precipitation. However, when the interaction
term was removed, the models were no longer significant. Therefore, these variables were
included in the model, despite their collinearity. Overall, the change in the temperature
(mean and minimum growing-season temperatures) was more significant for post-fire
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recovery than the variability in precipitation (Table 5). The total annual precipitation was
important only in the 1999 fire, where there was a small climate anomaly for the decreased
precipitation. The minimum growing-season temperature was important for all the models,
except for high-severity patches in the 1999 fire. The mean growing-season and winter
temperatures were statistically important for all the 1999 fire models (Table 5), indicating
that summer temperature may be an influential variable for post-fire recovery.

Table 5. Regression parameters from the backward stepwise regression conducted between the
%NBR change and climate variables.

Fire Severity Season Variable Estimate SE t-Value Pr (>|t|) R2 p-Value

1999 high summer
season

intercept 28.63 10.94 2.62 0.05
0.33 0.09ppt −0.02 0.01 −1.90 0.10

1999 medium
summer
season

intercept 58.36 22.22 2.62 0.03
0.50 0.11tmean −1.60 1.57 −1.02 0.34

tmin 1.66 0.90 1.84 0.11

1999 low
summer
season

intercept 44.69 14.73 3.04 0.02
0.61 0.05tmean −1.42 1.04 1.04 0.22

tmin 1.41 0.60 0.60 0.06

1999 high winter
season

intercept 20.78 9.69 2.14 0.07
0.49 0.02ppt −0.03 0.00 −2.97 0.02

1999 medium
winter
season

intercept 14.40 10.88 1.39 0.21
0.52 0.01ppt −0.03 0.00 −3.12 0.02

1999 low
winter
season

intercept 7.71 7.76 0.90 0.40
0.53 0.04ppt −0.16 0.00 −1.89 0.10

tmean 0.49 0.53 0.91 0.39

2002 high summer
season

intercept 77.74 2.07 37.49 0.00
0.91 0.00tmean −0.06 0.14 −0.43 0.68

tmin −0.66 0.07 −.96 0.00

2002 medium
summer
season

intercept 25.20 3.76 6.70 0.00
0.87 0.00tmean 0.45 0.25 1.80 0.12

tmin 0.95 0.13 7.16 0.00

2002 low
summer
season

intercept 22.26 2.07 10.73 0.00
0.91 0.00tmean 0.06 0.13 0.42 0.68

tmin 0.65 0.07 8.95 0.00

2002 high winter
season

intercept 76.32 1.95 39.03 0.00
0.87 0.00tmax 0.44 0.06 6.58 0.00

tmean −1.02 0.17 −5.95 0.00

2002 medium
winter
season

intercept 28.43 2.79 10.15 0.00
0.89 0.00tmax −0.60 0.09 −6.17 0.00

tmean 1.83 0.24 7.43 0.00

2002 low
winter
season

intercept 23.67 1.95 12.10 0.00
0.87 0.00tmax −0.44 0.06 −6.58 0.00

tmean 1.028 0.17 5.95 0.00

2006 high summer
season

intercept 67.42 8.06 8.36 0.00
0.81 0.00tmean −2.17 0.73 −2.96 0.02

tmin 1.87 0.46 4.04 0.00

2006 medium
summer
season

intercept 65.27 9.88 6.60 0.00
0.84 0.00tmax −1.33 0.41 −3.21 0.01

tmin 0.96 0.14 6.68 0.00
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Table 5. Cont.

Fire Severity Season Variable Estimate SE t-Value Pr (>|t|) R2 p-Value

2006 low
summer
season

intercept 20.45 2.11 9.67 0.00
0.75 0.00tmin 0.43 0.08 5.11 0.00

2006 high winter
season

intercept 46.69 3.03 15.41 0.00
0.65 0.00tmin 0.58 0.14 4.04 0.00

2006 medium
winter
season

intercept 37.55 3.72 10.09 0.00
0.65 0.00tmin 0.72 0.17 4.02 0.00

2006 low
winter
season

intercept 22.12 1.60 13.77 0.00
0.83 0.00tmin 0.49 0.07 6.35 0.00

Note: The significance level was based on a 90% confidence level.

3.3. RF Analysis

In the RF analysis, burn severity was the most important variable that influenced
post-fire spectral recovery (Table 6), indicating that burn severity plays a role in resilience.
This can be explained by lodgepole pine’s common prolific initial post-fire regeneration [6].
However, when comparing post-fire spectral values 15 years post-fire, there was not a
significant impact, suggesting that fire severity may impact regeneration following high-
severity fires, but the importance of fire severity on regeneration may decrease over the
long term. An increase in the elevation correlated with an increase in the magnitude and
rate of post-fire NBR recovery. Elevations of >2155 m had the highest magnitude and rate
of recovery. Slopes of >28 degrees had decreased recovery. Northeast- and northwest-
facing slopes had the greatest post-fire recovery. The higher spectral recovery indicated the
greater regeneration of forest cover regeneration in high-severity and high-elevation burns.
Soil and substrate compositions did not make a significant impact on post-fire spectral
recovery trends.

Table 6. Random forest magnitude and rate.

Severity Response
Variables Explanatory Variables Mean Absolute

Error (MAE)
Percent Variance

Explained mtry

all magnitude severity, elevation, and slope 21,949.49 46.88 3

high magnitude elevation, slope, and aspect 20,461.66 18.12 2

medium magnitude elevation, slope, and aspect 31,936.84 −6.03 2

low magnitude elevation, slope, and fire regime 2287.456 10.77 2

all rate severity, elevation, and slope 763.1918 33.13 2

high rate elevation, slope, and aspect 2536.23 23.45 2

medium rate elevation, slope, and aspect 819.4543 −9.18 2

low rate elevation, slope, and aspect 56.15127 −11.5 2
Note: We used mtry, the number of variables randomly sampled, as candidates at each split to parameterize.

4. Discussion

We analyzed spectral changes based on LandTrendr following three large (>16,000 ha),
mixed-severity fires in lodgepole pine forests in the Southern Rocky Mountains. The NBR
time series were compared with the data on post-fire climate, burn severity, topography,
and geology to identify potential drivers of spectral recovery. We found LandTrendr to be
an effective way of tracking spectral recovery over space and time. Our results indicated
that the spectral recovery in the Southern Rocky Mountains was highly variable and
influenced by fire severity and post-fire growing-season temperatures. In terms of both
spectral recovery measurements presented here and field-based results [6], the climate
(minimum growing-season temperature) and the topography (elevation, slope, and aspect)
were the more important determinants in post-fire forest recovery.
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Resilience was measured as the ability to return to a pre-fire spectral state. We analyzed
the resilience in two ways, i.e., based on the annual NBR values and the annual %NBR
recovery. The annual NBR values allowed us to compare the NBR values between fires and
burn severity. When comparing the annual NBR values 15 years post-fire, there was no
difference in the spectral reflectance between burn severities. Instead, the biggest difference
in the NBR was between fire events, indicating that climate may be the primary driver of
forest resilience.

The use of the annual %NBR recovery allowed us to compare how much the burned
areas recovered in relation to their pre-fire spectral states. None of the burned areas
returned to their pre-fire spectral values. However, stands burned at a high severity level
recovered the most. From this perspective, resilience was most pronounced in patches that
burned at a high severity level. This may be indicative of lodgepole pine’s adaptation of
serotinous cones that release seeds only after high-severity fires. As high-severity fires
become larger, more frequent, and more severe in the decades ahead, serotinous lodgepole
pine will likely have a competitive advantage over other conifer species that rely on seed
dispersal [2]. However, if fires become too severe, seeds in serotinous cones can be damaged
or consumed, and forest regeneration will become more dependent on the wind dispersal of
seeds from surrounding stands [2]. Similarly, short intervals between stand-replacing fires
may reduce the abundance of available seeds (which are not produced in abundance until
maturity 15 years later), further increasing the reliance on wind-dispersed seeds [43,44].
Thus, if climate change significantly increases fire severity or frequency, then the resilience
of lodgepole pine to high-severity fires may decrease from a reduced seedbank. Patches
burned at a low severity level had the slowest rate and smallest magnitude of the annual
post-fire NBR recovery. The slow recovery is most likely because low-severity fires have
little effect on the stand structure, tree density, and crown surface area [45,46] and thus
provide fewer opportunities for new establishment or growth compared to more severe
fires. The use of the annual %NBR recovery as a metric of resilience showed how a stand
spectrally recovers in relation to its pre-fire spectral state. However, the use of percentages
predisposes the analysis to exaggerate the recovery following severe fires and minimizes the
importance of forests remaining closer to their pre-fire states following low- and moderate-
severity fires.

The biggest difference in forest recovery was among fire events, indicating that post-
fire climate may be the most crucial variable in recovery capacity. Following the 2006 fire,
stands that were burned at all severities recovered to similar pre-fire spectral states. In
comparison, stands that were burned in the 1999 and 2002 fires did not recover to similar
pre-fire spectral states, regardless of burn severity. The post-fire summer temperature
following the 2006 fire was warmer than those following the 2002 and 1999 fires, suggesting
a slightly warmer post-fire temperature may help initial post-fire recovery.

Although the data presented here point to climatic variability as a dominant factor in
determining post-fire regeneration, we recognize that other factors could contribute to varia-
tion in regeneration among fires. These include biological factors, soil moisture, competitive
interactions, and other variables that are not easily monitored with remote sensing.

The findings of the current study are consistent with field-based analysis, which found
that post-fire recovery was limited by post-fire growing-season temperature [6,47]. In
the future, a warming growing summer season may promote post-fire regeneration at
some sites and inhibit regeneration at other sites [48]. For example, seedlings may be
able to establish and survive at high elevations where historically cool conditions have
limited the expansion of the upper treeline [48]. In contrast, warmer summer temperatures
may continue to compromise post-fire recovery at lower elevations and warmer sites, as
noted by the poor recovery following fires in 1999 and 2002. The present study indicates
that, as warming continues, there may be changes in forest density where forests are not
regenerating to their pre-fire spectral state. The combination of increasing climatically
driven disturbances and unfavorable post-disturbance conditions could lead to increased
forest patchiness or conversion to a non-forest state.
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5. Conclusions

Landsat NBR SIs successfully documented changes in post-fire recovery in lodgepole
pine forests following three high-severity fires. As climate change continues to increase
wildfire activity, remote sensing information will continue to be valuable in documenting
changes in forest density in the years after each event. We found that regeneration was
most prolific following high-severity burns and at high elevations, but that regeneration
was most strongly influenced by climate, such that the minimum and mean growing-
season temperatures appear to limit post-fire recovery at lower elevations, which has
implications for future forest dynamics and ecological trajectories. The combination of
Landsat data and field observations is helpful in detecting and monitoring different aspects
of post-disturbance resilience under climate change.
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