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Abstract: In this study, we present methods to assess newly developed urban impervious surface
(UIS) datasets derived from satellite imagery of the cities of Kumasi and Accra, Ghana, at three
different time points. Each city has three binary maps from 2000, 2011, and 2021, in which one
shows the presence of UIS and zero shows its absence. We employed the binaryTimeSeries method to
compare the gross gains and losses in the two cities. In addition, we show how three components
of change—quantity, allocation, and alternation—compare across the two sites. The results show
that both cities experienced a large proportion of gains during the change in impervious surfaces
between 2000 and 2011, and 2011 and 2021, with relatively smaller loss proportions and alternations.
Comparatively, the results from the components of change show that change is fastest in Kumasi,
which had a larger proportion of quantity gain. Our methods show an acceleration in UIS in the
two cities during the temporal extent, and this trend is likely to continue with increasing urban
populations. As a result, we recommend that the Land Use and Spatial Planning Authority, Town
and Country Planning and other stakeholders make contingency plans to regulate the unplanned
increase in UIS, since other studies have shown their negative effects on people and the environment.

Keywords: urban; impervious; trajectories

1. Introduction

Globally, the increasing number of people living in urban areas has grown rapidly over
the past two decades. In 2000, 3.5 billion people, comprising 46% of the global population,
settled in urban areas, and this number increased to 54% (4 billion) in 2015. Projections are
that 6 billion people (~60% of the world’s population) will reside in urban areas by 2050, and
more than 90% of this growth will occur in Asia and Africa [1]. Scientists and stakeholders
have employed urbanization levels as proxies for economic development, modernization,
and the capacity of people to transform natural environments into built environments.
However, the increasing urbanization levels result in urban impervious surface expansion
(UISE). The UISE significantly contributes to cropland reduction [2,3], air pollution [4–6],
greenhouse gas emissions [7,8] and increasing land surface temperature [9–11]. Thus, there
is an increasing need to generate reliable data and metrics to study the changes associated
with impervious surface expansion.

Admittedly, remote sensing has provided data for developing global-, regional-,
national-, and local-level products to monitor and detect urban impervious surface area
expansion. However, the global products underestimate the urban extents in Africa, and
the existing regional-level data in Africa are only available at 2 km resolution, meaning we
could not detect subtle changes in urban areas. Moreover, the national-level and local-level
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products use different image classification methods, including maximum likelihood, a sup-
port vector machine, and random forest, to create urban change maps, making it difficult to
make comparative change analyses [12]. Regardless, remote sensing has provided Earth
observation data that facilitates the quantification and analysis of urban impervious surface
change over time.

Methods to measure the change in urban impervious surfaces abound. However, these
methods have two main drawbacks. First, the methods only measure the net change and,
as a result, fail to show the gross gains and losses that contribute to the net change. For
instance, Ref. [13] used annual time series Landsat data to measure the spatiotemporal
dynamics of impervious surfaces in Guangzhou, China. Their study used a time series
graph to show the sizes of impervious surfaces at each time point, which facilitates the
measurement of the net annual change but not of gross losses and gains. Second, existing
methods compare change during a single time interval, even when data are available for
more than two time points. Mugiraneza et al. [14] suffered the same drawback when they
used a time series graph to measure the change in urban land cover in Kigali, Rwanda.

Other studies have employed the transition matrix to circumvent the time series
graphs’ drawbacks. The transition matrix allows scientists to compare change during a
time interval. A time interval is the duration between two time points; thus, the tran-
sition matrix compares the change between an initial and a subsequent time point. For
example, Ref. [15] used the transition matrix to develop a metric to measure quantity and
allocation disagreements among land cover categories. Similarly, Ref. [16] extended the
transition matrix to create intensity analysis—a framework that measures the intensities
of change in categorical variables at the interval, categorical and transitional levels. The
original framework of intensity analysis inspired the authors of [17] to develop component
intensities that facilitate the comparison of each category with other categories and their
overall differences.

Intensity analysis and its cohort of derived metrics have gained currency in studies
concerning urban change and, by extension, urban impervious surfaces. For instance,
Ref. [18] used intensity analysis to study the patterns and process of slum growth in
Lagos, Nigeria, between 2009 and 2015. Feng et al., Manzoor et al., Abass et al., and
Gandharum et al. [19–22] echo the popularity of intensity analysis in their studies concern-
ing land change. Despite its popularity, intensity analysis has one major shortcoming—it is
limited to studies considering change between two time points. On the other hand, exam-
ining change beyond two time points provides tremendous opportunities for unearthing
critical information such as alternation, which can indicate data errors or the oscillation of
the change [23].

Therefore, we propose a new metric to help city governments, planning institutions,
and stakeholders interested in UISE dynamics make informed urban land use decisions.
Bilintoh and Pontius, Jr. [23] developed a metric and the binaryTimeSeries R package to
measure the change in the trajectories of a binary variable during a time series. The metric
allows scientists to measure gross losses and gains during a time series and facilitates
cross-site comparison.

2. Materials and Methods
2.1. Study Sites

Accra, the capital of Ghana and the Greater Accra Region, occupies an area of
225 square km with a population density of 129 people per square km. Kumasi, the
capital of the Ashanti Region, covers an area of 230 square km with a population density
of 223 people per square km (see Figure 1). Between 2010 and 2021, Accra’s population
increased by 2.1% annually, while Kumasi’s grew by 1.2%. These two cities, which are about
270 km apart, are the two largest cities in Ghana and have been the focus of infrastructure
investments from governments and investors, both local and foreign.
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Figure 1. Locations of Accra and Kumasi, Ghana.

The concentration of economic, educational, and health facilities attracts people to
these cities, resulting in growing urban populations and a demand for housing. The demand
for housing has resulted in speculative developments, where people are developing in
anticipation of profits. Additionally, many new developments are emerging in these
cities in response to globalization and the real estate turn in major African cities [24–26].
Consequently, the majority of foreign (in)direct investments flow into Accra and Kumasi,
and this is made possible through the privatization of communal lands [27]. Although
the two cities have substantially increased their areas over the past 20 years, comparative
studies are lacking, partly due to the inconsistent and city-level characterization of UIS.
Therefore, knowledge of UIS trajectories between the two largest cities in Ghana can
potentially inform sustainable city-level urban planning and management.

2.2. Data Source and Preparation

In this study, we used the United States Geological Survey (USGS) Landsat 7 Enhanced
Thematic Mapper Plus (ETM+) and the Landsat 8 Operational Land Imager and Thermal
Infrared Sensors collection 2, tier 1, level 2 science products. First, we used a date filter
to retrieve all Landsat images acquired for 2000 (24 images), 2011 (25 images), and 2021
(94 images), and applied a median reducer to generate a single image for each year. Due
to the different bandwidths between Landsat 7 and 8 sensors, we harmonized the two
using coefficients in [28]. We then used the CFMASK algorithm to mask clouds and cloud
shadows. We generated an annual collection of four indices, including the normalized
difference built-up index [29], normalized built-up index [30], normalized built-up area
index [31], and built-up [32] for each of the three years.

We generated random points within the city boundaries of Accra and Kumasi and
created a gridded 30 × 30 m pixel around each point. Using Google Earth Pro 7.3, we
estimated the urban impervious area percentages of 435 points, resulting in 52 points in
2000, 158 points in 2011, and 225 points in 2021. We partitioned the samples into 70% for
training (305 points) and 30% (130 points) for validation.
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Next, we used Google Earth Engine to generate a continuous urban impervious cover
using a random forest regression model, which estimates the relationships between the
urban spectral indices and the interpreted points from Google Earth.

2.3. Methodology

Bilintoh and Pontius, Jr. [23] developed methods and the binaryTimeSeries R pack-
age to analyze the trajectories of a binary variable during a time series. We employed
their methods and the R package to analyze the trajectories of UIS in the two cities.
Equations (2) and (3) show how to compute the gains and losses of the variable, consider-
ing its trajectories as a proportion of the product of the duration of time interval t, and the
number of locations for the trajectory j. The size of the unified region (U), which facilitates
site comparison, is the union of all pixels that show the presence of the variable during
temporal extent. dt annualizes the results. Equations (4) and (5) show how to compute the
average loss and gain during the temporal extent. Then, Equations (6)–(9) compute the
three components of change: quantity, allocation, and alternation. The quantity component
measures the net change from the initial time point to the final time point of the time
series. The allocation measures the simultaneous gain in some locations and the loss in
other locations from the initial time point to the final time point of the series, which the net
change does not reveal. Alternation occurs when a pixel experiences one or more pairs of
loss and gain during the time series. Tables 1 and 2 describe the trajectories and provide
notations concerning Equations (1)–(11). Finally, Equation (10) shows how to compute the
size of presence in the binary category at time t, while Equation (11) shows how to compute
the annual net change proportion from time t − 1 to t in Equation (3). As [23] intimated, it
is impossible to see trajectory types 3 and 4 for datasets with time points less than 4. Thus,
our results reflect only six trajectories. The six trajectories are as follows: (1) loss without
alternation, (2) gain without alternation, (3) all alternation loss first, (4) all alternation gain
first, (5) stable presence, and (6) stable absence.

U = ∑7
j=1 Mj (1)

Ljt =
[
∑

Mj
m=1 MINIMUM

(
0, Yjmt −Yjmt−1

)]
/(Udt) (2)

Gjt =
[
∑

Mj
m=1 MAXIMUM

(
0, Yjmt −Yjmt−1

)]
/(Udt) (3)

Loss =
[
∑6

j=1 ∑T
t=1

(
Ljtdt

)]
/
(
∑T

t=1 dt

)
(4)

Gain =
[
∑6

j=1 ∑T
t=1

(
Gjtdt

)]
/
(
∑T

t=1 dt

)
(5)

Net = Loss + Gain (6)

Quantity = |Net| =
∣∣∣∑4

j=1 ∑
Mj
m=1

(
YjmT −Yjm0

)∣∣∣/(U ∑T
t=1 dt

)
(7)

Allocation =
[(

∑4
j=1 ∑

Mj
m=1

∣∣YjmT −Yjm0
∣∣)/

(
U ∑T

t=1 dt

)]
− Quantity (8)

Alternation = Gain − Loss − Allocation − Quantity (9)

vt =
St − St−1

Udt
(10)

St = ∑7
j=1 ∑

Mj
m=1 Yjmt (11)
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Table 1. Description of the six types of trajectories.

Code Change Trajectory Color Definition

0 Mask White Eliminated from computation
1 Loss without Alternation Dark Red Y1m0 > Y1mT and Y1mt−1 ≥ Y1mt for all t
2 Gain without Alternation Dark Blue Y2m0 < Y2mT and Y2mt−1 ≤ Y2mt for all t
3 Loss with Alternation Light Red Y3m0 > Y3mT and Y1mt−1 < Y1mt for at least one t
4 Gain with Alternation Light Blue Y4m0 < Y4mT and Y1mt−1 > Y1mt for at least one t
5 All Alternation Loss First Dark Yellow Y5m0 = Y5mT and loss is first change
6 All Alternation Gain First Light Yellow Y6m0 = Y6mT and gain is first change
7 Stable Presence Dark Gray Y7mt−1 = Y7mt 6= 0 for t = 1, 2, . . . , T
8 Stable Absence Light Gray Y8mt−1 = Y8mt = 0 for t = 1, 2, . . . , T

Table 2. Mathematical notations for equations.

Symbol Meaning

dt Duration of time interval from time t − 1 to t where dt > 0
Gjt Annual gross gain as a proportion of the unified region in trajectory j from time t − 1 to t where Gjt ≥ 0
J Index for trajectory where j = 1, 2, 3, 4, 5, 6, 7, 8
Ljt Annual gross gain as a proportion of the unified region in trajectory j from time t − 1 to t where Ljt ≤ 0
M Index for an observation in trajectory j where m = 1, 2, . . . , Mj
Mj Number of observations in trajectory j
St Size of presence in the binary category at time t
t Index for a time point where t = 0, 1, 2, . . . , T
T Number of time intervals where T ≥ 1
U Size of the unified region
vt Annual net change proportion from time t − 1 to t in Equation (3)
Yjmt Value of binary variable in trajectory j at location m at time t

3. Results

For our binary analysis, we classified the continuous urban impervious cover into
two binary classes: urban impervious surfaces with pixel values greater than 20 percent,
and non-urban impervious surfaces with pixel values less than or equal to 20 percent
(Figures 2 and 3). UIS have a 0.1739 commission and a 0.0952 omission error, while non-
UIS have a 0.0984 commission and a 0.1791 omission error. The errors for UIS and non-UIS
are balanced, meaning we neither overclassified nor underclassified each class.

Figure 4 shows a three-way map overlay for each study site. For each region, we
analyzed maps at three time points. Therefore, the maximum number of times UIS can
exist is three, which reflects UIS persistence. The map in Figure 4 shows a concentration
of UIS persistence in the southern parts of Accra. These areas are along the coastal areas.
Conversely, most of the change in UIS (all other colors except white and the two shades
of gray) occurs in the northern parts of the map. The persistence of UIS in Kumasi turns
into a cluster in the central part of the region and is flanked by other changes in a random
pattern. UIS loss during the first time interval and UIS loss during the second time interval
dominate the changes in both regions, with the latter occurring closer to UIS.

Figure 5a,b show the spatial distributions of the trajectories of change. Although the
legend shows six trajectories, only four are visible on the map because of the relatively
small number of pixels representing the two shades of yellow. Indeed, the pie charts show
a slider in yellow, which is difficult to see. Tables 3 and 4 show the number of pixels for
each trajectory. Overall, the maps show that absence–gain–absence accounts for most of
the change in both regions.
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Figure 4. Three-way map overlay for Accra (top) and Kumasi (bottom). The two shades of gray
show no change, while the other colors apart from white in the legend show change involving UIS.

The stacked bars in Figure 6a,b show the impervious surfaces’ gross gains and losses
in Accra and Kumasi during the temporal extent. The gross gains are above the time axis,
which is at the 0-mark line, while the gross losses are below. In addition, the stacked bars
partition the temporal change into time intervals, where 2000–2011 constitute the first time
interval and 2011–2021 constitute the second time interval. Thus, the trajectories appearing
during a time interval denote their contribution to the size of the trajectory. For instance,
absence-alternation-absence appears as a gain during the first time interval and as a loss
during the second time interval. We interpreted the yellow in the first time interval as
how much the first time interval contributes to the size of absence-alternation-absence
during the temporal extent. Intuitively, we interpreted the yellow segment in the second
time interval as to how much the second time interval contributes to the size of absence-
alternation-absence during the temporal extent. The proportion of the darker shade of
yellow is approximately 0; thus, it does not appear on the stacked bar. Figure 6a,b show that
gains account for most of the change in Accra and Kumasi. Furthermore, the stacked bars
reveal that the range of the segments is greater during the second time interval, indicating
that change accelerated in both sites. The gross loss and the gain line show the annual
average loss and gain, which we interpreted as the change we may observe if the losses
and gains occur uniformly. Therefore, the difference between the gross loss and gain lines
communicates the net change.
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Table 3. Sizes of trajectories that constitute the unified region in Accra.

Trajectory Number of Pixels

Loss Without Alternation 21,634
All Alternation Loss First 253
All Alternation Gain First 3021
Gain Without Alternation 401,352
Stable Presence 252,695
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Table 4. Sizes of trajectories that constitute the unified region in Kumasi.

Trajectory Number of Pixels

Loss Without Alternation 2280
All Alternation Loss First 46
All Alternation Gain First 808
Gain Without Alternation 188,367
Stable Presence 55,796
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Figure 7a,b show the sizes of quantity, allocation, and alternation during the temporal
extent. Quantity gain occurs when gross losses < gross gains. Quantity loss occurs when
the reverse is true. Figure 7 shows that quantity gain accounts for most of the change in
both sites, with Kumasi having a greater size of quantity gain. Despite having about an
equal amount of alternation, allocation is greater in Accra. Overall, the range of the stacked
bar in Figure 7b is greater than that in Figure 7a. As a result, change is faster in Kumasi.
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4. Discussion
4.1. Unified Region Facilitates Site Comparison

Scientists have developed and applied several equations to studies concerning ur-
ban change. FAO and Puyravaud [33,34] are popular among these equations. Both are
exponential equations; thus, we can assume that the patterns in the data are exponential.
However, [23] described the limitations of these equations. We will reiterate the pitfalls
of the changing denominators for emphasis. FAO and Puyravaud [33,34] proposed expo-
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nential equations with the initial variable size in the denominator. This creates two sets of
complications: (1) the equations assume growth from zero is impossible, and (2) the initial
size can vary for multiple time intervals. The former is a fallacy because some land cover
classes can exhibit growth from zero. For example, a landscape might have an absence
of urban areas during the initial time point and a presence of urban areas during the
subsequent time point, which will result in a positive change in the urban area. The latter
makes it difficult to compare change across time intervals and sites because of a changing
base, as [23] intimated. U in Equations (2) and (3) rectifies the problems associated with a
varying denominator. Specifically, U is constant during all time intervals and can only be
unique for multiple sites.

4.2. Trajectories of Gross Loss and Gains

Urban impervious surfaces stem from several factors and may either provide solutions
to a country’s development or be its Achilles’ heel. For instance, a country might intensify
its infrastructure development through the construction of roads, hospitals, housing units,
electricity power stations, and airports, in response to the demand for economic develop-
ment. These infrastructures stimulate urbanization and require impervious surfaces [35,36].
Accra, the capital region of Ghana, has witnessed an influx of people seeking greener
pastures, leading to an increase in the demand and supply effects of infrastructure during
the 20th century [37,38]. This is evident in Figure 7, which shows UIS accelerated during the
temporal extent. Ref. [39] reports similar trends in their study about the causes of flooding
in Accra, Ghana. Their study identified an increase in impervious surfaces as one of the
contributing factors to flooding in Accra. Amoako and Boamah [39] quantified the urban
sprawl in Accra from 1985–2014 and reported an annual increase of about 7.8% in urban
development. Similar studies show that the narrative in Kumasi is no different [40–42].

4.3. Components of Change

Quantity gain is the largest change component in both cities during the temporal extent
(see Figure 7a,b) because both sites experience large proportions of gains compared to
losses during the temporal extent. The previous paragraph explains this observation; thus,
this paragraph will focus on allocation and alternation. First, however, we will dissect the
definition of allocation, which is a measure of the simultaneous gain in some locations and
the loss in other locations between the time series’ first and last time points. Furthermore,
Ref. [15] shows that allocation comprises exchange and shift. Exchange is the pair of losses
and gains occurring between two categories through space, thereby contributing zero to
quantity gain or loss. In comparison, a shift occurs when the gains and losses occur among
more than two categories. In our case, we analyzed a binary variable; thus, all the allocation
components result from the exchange. The first stacked bar in Figure 7 shows that Accra’s
allocation size is almost three times the allocation size of Kumasi (the bottom stacked bar).
This means that the occurrence of pairs of losses and gains in different parts of the study
sites was higher in Accra.

Overall, the stacked bars in the components of change section (see Figure 7) show
a commutative change of about 3% and 3.7% for Accra and Kumasi, reflecting a faster
change in Kumasi. We attributed the faster change in Kumasi to the availability of land
and the relatively fewer problems associated with land acquisition for development. Accra
is bound to the south by the Gulf of Guinea and the Atlantic Ocean, which limits the
amount of infrastructure expansion. Kumasi, on the other hand, does not have any natural
bounding restrictions, thus making it viable for infrastructural expansion in all directions.
Furthermore, Accra has witnessed an increase in land litigations in the last decade [43,44].
These litigations range from feuds between clans, stools, and private developers, to lengthy
land litigations in courts, multiple sales of land, and sometimes death [45]. As a result,
we suspect that many individuals and private corporate firms find it more productive
to establish their infrastructure projects in Kumasi, which is an equally attractive and
productive metropolitan region.
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4.4. Limitations and Next Steps

The data used cover only three time points with about 10-year intervals. Given that
many cities in Africa are rapidly increasing their impervious areas, there is a constant
need for high-temporal-frequency urban impervious surface data that researchers and
stakeholders can use to inform planning and policy interventions.

5. Conclusions

Countries require infrastructure to meet economic and social needs. Such develop-
ments require monitoring and evaluation, both in isolation and by comparison. Therefore,
this study presents data and methods for evaluating and monitoring the trajectories of UIS
in two Ghanaian cities. The random forest approach we used to create our data drew from
annual image collection for each time step, having the potential to eliminate data gaps and
remove noise associated with phenology. Moreover, the data are consistent across both
cities, allowing reliable comparisons of the growth trajectories of multiple cities. The binary
time series method employed in this study to quantify the trajectories of UIS facilitates
cross-site comparison while providing insight into the gross gains and losses of the trajecto-
ries of change. Furthermore, our methods reveal key pieces of information that can indicate
problems associated with data quality. Overall, our approach reveals more information
about the trajectories of UIS during a time series than popular existing methods.
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