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Abstract: Spatially explicit, wall-to-wall rainfall data provide foundational climatic information
but alone are inadequate for characterizing meteorological, hydrological, agricultural, or ecological
drought. The Standardized Precipitation Index (SPI) is one of the most widely used indicators of
drought and defines localized conditions of both drought and excess rainfall based on period-specific
(e.g., 1-month, 6-month, 12-month) accumulated precipitation relative to multi-year averages.
A 93-year (1920–2012), high-resolution (250 m) gridded dataset of monthly rainfall available for
the State of Hawai‘i was used to derive gridded, monthly SPI values for 1-, 3-, 6-, 9-, 12-, 24-, 36-,
48-, and 60-month intervals. Gridded SPI data were validated against independent, station-based
calculations of SPI provided by the National Weather Service. The gridded SPI product was also
compared with the U.S. Drought Monitor during the overlapping period. This SPI product provides
several advantages over currently available drought indices for Hawai‘i in that it has statewide
coverage over a long historical period at high spatial resolution to capture fine-scale climatic gradients
and monitor changes in local drought severity.

Dataset: https://doi.org/10.4211/hs.822553ead1d04869b5b3e1e3a3817ec6.

Dataset License: This dataset is licensed under a CC0 1.0 Universal (CC0 1.0) Public Domain
Dedication license.

Keywords: Standardized Precipitation Index; drought; Hawai‘i; gridded data; climate; rainfall

1. Summary

Hawai‘i is characterized by extreme variability in rainfall in both space and time [1,2] due
primarily to trade winds, land heating, and the archipelago’s complex topography. Rainfall ranges
in Hawai‘i are greater than those found on some continents, with extreme spatial variation found
between wet windward areas (up to 10,000 mm per year) and dry leeward locations (less than
300 mm per year) [1]. A long history of plantation agriculture has led to the development of a dense
network of rain gauges to attempt to capture these fine-scale variations. Recent efforts to compile and
spatially interpolate historical weather station data have resulted in the development of long-term
(1920–2012) high-resolution gridded monthly rainfall data for the State of Hawai‘i [3]. These new
products and analyses provide an unprecedented opportunity to understand the effects and impacts of
rainfall variability in Hawai‘i over time and space. While spatial trends in seasonal rainfall have been
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examined [2], these high-resolution datasets have yet to be utilized to study drought in the islands.
Drought is a significant feature of the climate in Hawai‘i, and identifying and characterizing drought
and drought response is critical due to the acute, severe impacts such as increasing the risk of fire,
crop yield losses, reduced groundwater recharge, mortality of native species, and negative impacts on
traditional cultural practices [4–6].

At present, there are only a few drought products available for Hawai‘i with limited spatial
and temporal coverage [7], as Hawai‘i is not included in many of the indices produced for the
conterminous U.S. (e.g., the Crop Moisture Index [8] and the Palmer Drought Severity Index (PDSI) [9]).
The Keetch–Byram Drought Index [10] is calculated daily by the National Weather Service for fire
risk monitoring and is available from 1985 to present, but only for one location in the state (Honolulu
International Airport). This limits its utility for real-time fire risk assessments in other locations
in the state. The Standardized Precipitation Index (SPI) [11] is calculated at a limited number of
stations by the National Weather Service Honolulu Office (NWS; https://www.weather.gov/hfo/fullspi),
however, only the most recent 12 months are available online to the public. The U.S. Drought
Monitor [12] (USDM; https://droughtmonitor.unl.edu/), in contrast, provides statewide spatial patterns
and categorical drought statistics that are updated weekly. The USDM has been operational since
2000 and is the most widely used drought resource in Hawai‘i. The USDM incorporates rainfall data
from multiple weather stations and on-the-ground drought impact reporting through expert analysis.
However, the spatial delineations can be arbitrary and coarse, and the categorical values and short
record length limit the value for numerical analysis and characterizing changes over time. Natural
resource managers, farmers, and utilities need high-spatial and -temporal resolution products for
monitoring drought conditions and making both short-term and long-term decisions.

In response to these needs and the shortcomings of available products, the existing gridded
monthly rainfall dataset [3] was used to develop a long-term (1920–2012) dataset of the high-resolution
(250 m) gridded Standardized Precipitation Index (SPI) [11] for the State of Hawai‘i. The SPI is one
of the most widely used drought indices since it is based solely on precipitation and, unlike the
Palmer Severity Drought Index (PDSI), SPI allows easy comparison of standardized precipitation
across regions with different climates [11,13]. Additionally, SPI allows the user to calculate levels of
drought (and excess rainfall) for different time intervals (e.g., one-month, three-month, six-month)
which can reflect meteorological, agricultural, and hydrological drought impacts [11,13]. Since SPI
compares current precipitation with its local, multi-year average (see Methods), SPI allows wet and
dry climates to be represented on a common scale to enable comparisons. SPI does not consider other
important variables relating to drought, such as soil moisture or potential evapotranspiration, that are
integrated into other indices such as PDSI [9] or the Standardized Precipitation and Evapotranspiration
Index (SPEI) [14]. However, at present, only gridded monthly rainfall data have been published for
Hawai‘i [3], preventing the calculation of indices like PDSI and SPEI.

2. Data Description and Methods

This dataset contains the gridded monthly Standardized Precipitation Index (SPI) at 10 timescales:
1-, 3-, 6-, 9-, 12-, 18-, 24-, 36-, 48-, and 60-month intervals from 1920 to 2012 at 250 m resolution for
seven of the eight main Hawaiian Islands (18.849◦ N, 154.668◦ W to 22.269◦ N, 159.816◦ W; the island of
Ni‘ihau is excluded due to lack of data). The gridded data use the World Geographic Coordinate System
1984 (WGS84) and are stored as individual GeoTIFF files for each month–year, organized by SPI interval,
as indicated by the GeoTIFF file name. Thus, for example, the file “spi3_1999_11.tif” would contain
the gridded 3-month SPI values calculated for the month of November in the year 1999. Currently,
the data are available from 1920 to 2012, but the datasets will be updated as new gridded monthly
rainfall data become available. Data are available to download at https://www.hydroshare.org [15].

https://www.weather.gov/hfo/fullspi
https://droughtmonitor.unl.edu/
https://www.hydroshare.org
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2.1. Calculating Gridded SPI

SPI is a normalized drought index that converts monthly rainfall totals into the number of standard
deviations (z-score) by which the observed, cumulative rainfall diverges from the long-term mean.
The conversion of raw rainfall to a z-score is performed by fitting a designated probability distribution
function to the observed precipitation data for a site. In doing so, anomalous rainfall quantities take
the form of positive and negative SPI z-scores. Additionally, because distribution fitting is based on
long-term (>30 years) precipitation data at that location, the SPI score is relative, making comparisons
across different climates possible.

The creation of a statewide Hawai‘i SPI dataset relied on a 93-year (1920–2012) high-resolution
(250 m) spatially interpolated monthly gridded rainfall dataset [3]. This dataset is recognized as the
highest-quality precipitation data available [2,6,16,17] for the main Hawaiian Islands. After performing
extensive quality control on the monthly rainfall station data (including homogeneity testing of over
1100 stations [1,3]) and a geostatistical method comparison, ordinary kriging was used to generate a
time series of gridded monthly rainfall from January 1920 to December 2012 at 250 m resolution [3].
This dataset was then used to calculate the monthly SPI for 10 timescales (1-, 3-, 6-, 9-, 12-, 18-, 24-,
36-, 48-, and 60-month) at each grid cell. A 3-month SPI in May 2001, for example, represents the
March–April–May (MAM) total rainfall in 2001 compared to the MAM rainfall in the entire time
series. The resolution of the gridded rainfall dataset provides a more precise representation of drought
(and pluvial) events compared to the other available drought products.

To create the gridded SPI dataset from the gridded monthly rainfall data, the “SPI” function
from the “SPEI” package [18] in R [19] was used to calculate the SPI at every grid cell (n = 287,982)
in the monthly rainfall dataset [3]. The “SPI” function fits a gamma distribution to each pixel time
series over the entire 93-year period (1920–2012) using unbiased probability weighted moments from
which monthly SPI values were calculated. The use of the entire 93-year time series rather than a more
limited reference period (e.g., 30 years) ensures a robust characterization of local rainfall and drought
climatology [20]. This process was repeated for each of the 10 SPI timescales.

2.2. Validation

Gridded results were validated against an independent station-based time series of SPI provided
by the NWS Honolulu Office (K. Kodama, unpublished data) for the 1-, 3-, 6-, 12-, 18-, and 24-month
SPI. Monthly values from the novel gridded product for each SPI timescale were extracted at the
location and aligned with the full time series (all spanning 3 or more decades) available for each
set of station-based calculations (N = 186,448 across 42 stations). The two datasets were evaluated
independently for each county (Kaua‘i, Honolulu (O‘ahu), Maui, and Hawai‘i) as well as statewide
using R2, root mean squared error (RMSE), mean absolute error (MAE), and mean biased error (MBE)
statistics [21].

As another objective validation of the gridded SPI dataset, a comparison of the gridded SPI results
with the USDM was performed. It is expected that differences will be found between the USDM
and SPI products, as their methodologies and input datasets differ. We also acknowledge that the
USDM data cannot be regarded as a metric of ground truth, however, they have been widely used in
Hawai‘i as the main source of drought information, and have been used to validate drought indices in
a variety of other studies [12,22–24]. The SPI values were converted to the USDM categories (D0–D4)
using the percentiles approach used by the USDM shown in Table 1 [12,22,23]. For each month and
each SPI timescale, the percent of the land area with SPI values within each USDM drought category
range (Table 1) was calculated. The weekly USDM percent area statistics were averaged to monthly
for comparison with the monthly SPI values. R2, RMSE, MAE, and MBE statistics [21] were then
calculated between the percent area values in each USDM category and each SPI timescale. Values
were compared for each county as well as statewide.
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Table 1. The SPI values are converted using the USDM classifications ([22]).

USDM Category Percentile Chance SPI Range

D0: Abnormally dry From >20 to 30 From −0.5 to −0.7
D1: Moderate drought From >10 to 20 From −0.8 to −1.2

D2: Severe drought From >5 to 10 From −1.3 to −1.5
D3: Extreme drought From >2 to 5 From −1.6 to −1.9

D4: Exceptional drought ≤2 ≤−2.0

3. Validation Results

Validation analysis with the NWS station data indicated that the gridded data performed well
statewide across all available SPI timesteps with R2 values ranging from 0.8 to 0.85, RMSE values
from 0.39 to 0.48, and MBE ranging from −0.02 to 0.07 for the 1-, 3-, 6-, 12-, 18-, and 24-month SPI
(Figure 1). Most of the average MBE values were positive, indicating that the gridded data tend to
over-predict the SPI compared to the station data. Per county, all SPI validations had similar results
(median R2 = 0.84, range = 0.75 to 0.90; Table 2). Results across different SPI timescales were similar,
with SPI-3 and SPI-6 having the best overall performance, and SPI-24 performing the worst (highest
errors, lowest R2; Table 2).
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Figure 1. Density scatterplots between the gridded and station-based SPI for: (a) 1-month SPI;
(b) 3-month SPI; (c) 6-month SPI; (d) 12-month SPI; (e) 18-month SPI; and (f) 24-month SPI. Validation
statistics shown in lower right corner: Pearson R2 correlation coefficient, mean bias error (MBE),
mean absolute error (MAE), and root mean square error (RMSE).
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Table 2. Validation results (R2 and RMSE) of the gridded SPI product against station-based calculations
by the National Weather Service per SPI timescale per county.

SPI Timescale County R2 RMSE

1-month Hawai‘i 0.80 0.45
Kaua‘i 0.88 0.34
Maui 0.83 0.42
O‘ahu 0.84 0.40

3-month Hawai‘i 0.82 0.44
Kaua‘i 0.90 0.32
Maui 0.85 0.39
O‘ahu 0.85 0.38

6-month Hawai‘i 0.82 0.45
Kaua‘i 0.90 0.33
Maui 0.85 0.40
O‘ahu 0.86 0.38

12-month Hawai‘i 0.80 0.48
Kaua‘i 0.88 0.36
Maui 0.83 0.42
O‘ahu 0.85 0.40

18-month Hawai‘i 0.78 0.52
Kaua‘i 0.87 0.38
Maui 0.81 0.45
O‘ahu 0.82 0.44

24-month Hawai‘i 0.76 0.54
Kaua‘i 0.86 0.39
Maui 0.80 0.48
O‘ahu 0.81 0.46

Comparing the gridded SPI with the USDM for the overlapping period (2000–2012) indicates that
the SPI classifies a larger percent of the land area in more severe classes of drought, as seen in Figure 2
and by the positive MBE values for D3 and D4 (Figure 3d). The bias errors for the statewide data show
an underestimation of the percent of area in the D0 category in the SPI compared to the USDM, and an
overestimation of areas in the D4 category, especially for SPI-18 and SPI-24 (Figure 3d). The SPI-3 grids
had the lowest RMSE and MAE when compared with the USDM percent area (Figure 3), while SPI-6
had the highest R2. SPI-3 has been used in other studies to compare with the USDM, along with SPI-6,
e.g., [22,23]. The individual county results are similar, in that SPI-3 and SPI-6 overall performed better
than SPI-18 and SPI-24 (not shown). Since the USDM conditions tend to show shorter-term drought
conditions, not longer-term (24-month) conditions, it is expected that SPI-3 and SPI-6 would perform
better than SPI-24. One of the largest differences seen in the county-level results is that the USDM over
this period (2000–2019) has never categorized any portions of Kaua‘i or Honolulu counties as having
any D4 conditions, while the SPI maps often show D4 conditions (not shown). This again speaks to the
drier tendencies in the SPI dataset compared to the USDM.

When the spatial patterns for a sample period are compared (September 2010 which experienced
D4 drought conditions, Figure 4), there is a greater land area shown in the D4 drought category in the
SPI map compared to the USDM map. From this comparison, it is also clear that the USDM drought
areas are shown as smooth polygons, while the higher-resolution SPI map can display greater detailed
drought conditions. These maps also show some conflicting results, such as on the island of Maui
where the USDM indicates D3 conditions in the western side and D0 on the eastern side, while the
SPI-3 map shows D3 conditions on the eastern side and D0 conditions on the western side.
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Figure 3. Validation statistics comparing USDM and SPI percent area for each drought category
(D0-D4) for six SPI periods (1-, 3-, 6-, 12-, 18-, and 24- month SPI) for the State of Hawai‘i (2000–2012).
(a) Pearson R2 correlation coefficient; (b) root mean square error (RMSE); (c) mean absolute error (MAE);
and (d) mean bias error (MBE).
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Figure 4. (a) USDM map from 28 September 2010, [12] https://droughtmonitor.unl.edu/; (b) September
2010 3-month SPI map with colors shown on the USDM scale.

4. Data Use and Application

This new dataset fills an important gap in the State of Hawai‘i, providing long-term high-spatial
resolution data to characterize drought regimes and changes through time. The complex spatial
patterns and steep gradients in climate found here require higher-spatial resolution products to quantify
changes at finer scales. Furthermore, given that Hawai‘i is not included in many national products and
the USDM product only became available in the year 2000, this new gridded SPI product will allow
analyses of long-term changes and how these trends can inform responses such as water infrastructure
improvements, fire risk reduction, and long-term forest management planning. One major limitation
of this gridded SPI dataset is that it ends in the year 2012, which happened to be during a very strong
drought (Figure 2). Until now, new input rainfall grids have not been available past 2012. However,
work is underway to update the monthly rainfall dataset to real time. Once these new products are
available, the gridded SPI dataset will be updated past 2012 and produced in real time, accessible at
the same location [15]. A real-time SPI product will result in additional tools available for drought
monitoring and analysis in Hawai‘i.
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