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ABSTRACT: Gridded monthly rainfall estimates can be used for a number of research applications, including hydro-
logic modeling and weather forecasting. Automated interpolation algorithms, such as the “autoKrige” function in R,
can produce gridded rainfall estimates that validate well but produce unrealistic spatial patterns. In this work, an opti-
mized geostatistical kriging approach is used to interpolate relative rainfall anomalies, which are then combined with
long-term means to develop the gridded estimates. The optimization consists of the following: 1) determining the most
appropriate offset (constant) to use when log-transforming data; 2) eliminating poor quality data prior to interpolation;
3) detecting erroneous maps using a machine learning algorithm; and 4) selecting the most appropriate parameteriza-
tion scheme for fitting the model used in the interpolation. Results of this effort include a 30-yr (1990–2019), high-
resolution (250-m) gridded monthly rainfall time series for the state of Hawai‘i. Leave-one-out cross validation (LOOCV)
is performed using an extensive network of 622 observation stations. LOOCV results are in good agreement with observa-
tions (R2 = 0.78; MAE = 55 mm month21; 1.4%); however, predictions can underestimate high rainfall observations
(bias = 34 mm month21; 21%) due to a well-known smoothing effect that occurs with kriging. This research highlights the
fact that validation statistics should not be the sole source of error assessment and that default parameterizations for auto-
mated interpolation may need to be modified to produce realistic gridded rainfall surfaces. Data products can be accessed
through the Hawai‘i Data Climate Portal (HCDP; http://www.hawaii.edu/climate-data-portal).

SIGNIFICANCE STATEMENT: A new method is developed to map rainfall in Hawai‘i using an optimized geostat-
istical kriging approach. A machine learning technique is used to detect erroneous rainfall maps and several conditions
are implemented to select the optimal parameterization scheme for fitting the model used in the kriging interpolation.
A key finding is that optimization of the interpolation approach is necessary because maps may validate well but have
unrealistic spatial patterns. This approach demonstrates how, with a moderate amount of data, a low-level machine
learning algorithm can be trained to evaluate and classify an unrealistic map output.

KEYWORDS: Rainfall; Machine learning; Interpolation schemes

1. Introduction

Gridded rainfall datasets are essential for various applica-
tions in the geosciences, including climate and hydrologic
modeling, decision-making in environmental management,
water resource planning, and weather forecasting. In Hawai‘i,
a number of gridded rainfall products that cover a range of
temporal and spatial resolutions have been produced over the
past decade. Available gridded rainfall products include cli-
matological rainfall maps at 250-m spatial resolution, based
on the period encompassing 1978–2007 (Giambelluca et al.

2013), month-year rainfall maps for the period 1920–2012
(Frazier et al. 2016), daily rainfall maps for the period
1990–2014 (Longman et al. 2019), and a 100-member rainfall
ensemble at 1-km resolution (Newman et al. 2019b). While
these products have been utilized in many different ways,
their end dates are a limiting factor in examining rainfall
trends and phenomena that have emerged in recent years
(e.g., Lucas et al. 2020; Frazier et al. 2018; Frazier and
Giambelluca 2017; Krushelnycky et al. 2016; Mair et al. 2019;
Frauendorf et al. 2019).

In this work, available rainfall observations are used to
develop monthly gridded estimates of rainfall at 250-m spatial
resolution for the period 1990–2019 using an optimized ordi-
nary kriging approach. Kriging is commonly used for spatial
interpolation of rainfall at various spatial scales and temporal
resolutions (Hattermann et al. 2005; Buytaert et al. 2006;
Berezowski et al. 2016; Brinckmann et al. 2016; Frazier et al.
2016) but requires a significant amount of point data to

Supplemental information related to this paper is available at
the Journals Online website: https://doi.org/10.1175/JHM-D-21-
0171.s1.
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achieve accurate results. To quantify spatial autocorrelation
structure in the form of an empirical semivariogram, as required
in kriging, at least 100 measurement pairs (ideally 150)
are needed (Webster and Oliver 2001) for the interpo-
lation.

In Hawai‘i, previous work has demonstrated that ordinary
kriging is an effective way to map rainfall over complex
topography at the monthly time scale (Mair and Fares 2011;
Frazier et al. 2016). Frazier et al. (2016) compared three
kriging algorithms: ordinary kriging, ordinary cokriging,
and kriging with an external drift (also termed, “universal
kriging”; see Hengl et al. 2007), and found that ordinary
kriging produced the lowest errors. In their approach, these
authors applied a climatologically aided interpolation (CAI)
(Willmott and Robeson 1995) method, which combines long-
term climate information with monthly station data to
develop the monthly gridded estimates. This allows for infor-
mation propagation from the climatological patterns, based
on a denser climatological station network and the use of
ancillary information, through to the monthly fields. In
Hawai‘i, the climatological network is much denser than the
monthly observation network and more completely resolves
the steep rainfall gradients associated with orographic pro-
cesses (Giambelluca et al. 2013; Frazier et al. 2016). The
long-term climate mean maps (Giambelluca et al. 2013) used
a Bayesian data fusion method to combine rain gauge data
with radar rainfall estimates, mesoscale meteorological
model output (MM5), Parameter-Elevation Regressions on
Independent Slopes Model (PRISM) maps (Daly et al.
1994), and vegetation-based rainfall estimates to improve
the overall accuracy of the product. These methods, how-
ever, cannot be reproduced for month-year mapping because
the predictor variables (vegetation, PRISM, MM5, and radar
rainfall) are not available at a monthly temporal resolution.

In CAI, departures from the mean (relative anomalies) on
a given month are interpolated using ordinary kriging and
then combined with a mean map to produce the final monthly
map (Dawdy and Langbein 1960; Willmott and Robeson
1995; Frazier et al. 2016). This approach allows information
about complex rainfall patterns found in the long-term mean
map to be incorporated into the final product. The CAI
approach has also been shown to produce better results than
interpolating absolute rainfall values at the global scale (New
et al. 2000) and in Hawai‘i (Newman et al. 2019a).

Other methods such as universal kriging and linear regres-
sion that incorporate elevation-dependent covariates to map
rainfall at monthly and annual time steps have outperformed
ordinary kriging elsewhere (see Goovaerts 2000; Bostan et al.
2012). The fact that the ordinary kriging CAI approach has
been able to perform so well in Hawai‘i is explained by two
factors: 1) covariate information will only improve the preci-
sion of the interpolation if the primary variable is under-
sampled (i.e., sparse station network, which is not the case in
Hawai‘i), and 2) by interpolating anomalies instead of the raw
rainfall values, most of the information about the surface
(e.g., elevation-dependent features) are already incorporated
into the model.

The presented paper summarizes the data collection efforts
and the methods used to create a 30-yr gridded time series
(1990–2019) of monthly rainfall maps in Hawai‘i using a CAI-
ordinary kriging approach. This current endeavor builds on a
long history of mapping rainfall in Hawai‘i and improves on
previous products in its time period of coverage, the inclusion
of new observation stations and automated approach to opti-
mize the kriging model. Note that precipitation in Hawai‘i
consists of rainfall, different types of frozen precipitation
(e.g., snow, sleet, hail, and freezing rain), and fog drip
(Giambelluca et al. 2013). For consistency with previous
efforts (Giambelluca et al. 2013; Frazier et al. 2016; Longman
et al. 2018, 2019), the term “rainfall” is used throughout the
paper, as other types of precipitation (e.g., snow, fog drip) are
not explicitly measured by rain gauges in Hawai‘i.

2. Data

A 30-yr time series of daily rainfall data is compiled from sev-
eral sources, including a previously published dataset covering
the period 1990–2014 [see Longman et al. (2018) for a compre-
hensive description of the climate data networks in Hawai‘i].
Additional data, available between 1990 and 2019, are obtained
from several national online data repositories including the
Hydrometeorological Automated Data System (HADS; https://
hads.ncep.noaa.gov/), National Center for Environmental In-
formation (NCEI; https://www.ncei.noaa.gov/), and the Soil
Climate Analysis Network (SCAN; https://www.wcc.nrcs.usda.
gov/scan/). Data are also obtained through various local net-
works and repositories. In total, 622 unique measurement
points are identified in the dataset. A map of all the stations uti-
lized in the rainfall mapping effort is shown in Fig. 1.

3. Methods

a. Processing daily rainfall data

Rainfall station data are made available in many different
formats; therefore, after the data are acquired a first step is to
convert them into a consistent standard format that includes
SI units, time stamp, and time step. Next, data are screened
and subsequently flagged for extraneous outlying values fol-
lowing methods published by Longman et al. (2018). Rainfall
data are initially quality-controlled at the station’s native time
step (which can range from 5 min to 24 h) and are then aggre-
gated to a daily 24-h accumulated value. For days in which
.1 h of rainfall is unavailable, the day is set to missing. Next,
gaps in the daily record are partially filled using the normal
ratio method following the optimization criteria defined by
Longman et al. (2020). When gap-filling is not possible, the
day is considered missing. Finally, daily data are aggregated
to the monthly time step. Only monthly periods with com-
plete daily records (including observed or filled values) are
aggregated to the monthly time step. This dataset is refer-
enced as the Lucas et al. data here forward. Only monthly
periods that have complete daily records (observed or filled
values) are aggregated to the monthly time step. Months with
missing daily data are considered to be missing from the
record.
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In addition to the Lucas et al. data, a monthly rainfall data-
set (1990–2012) published by Frazier et al. (2016) is utilized
for method validation purposes (henceforth, Frazier et al.
data). The Frazier et al. data, includes 2012 rainfall stations,
811 of which are not included in the Lucas et al. data. Specific
uses of these data are described in section 3.

b. Monthly rainfall data preprocessing

1) ANOMALY CALCULATION

Relative rainfall anomalies (RFAx) are calculated as the
ratio of observed monthly rainfall (RFOx) to the mean
monthly value (RFMx) at that same location [Eq. (1)]. Mean
monthly rainfall values corresponding to station locations are
extracted from a mean monthly map (Giambelluca et al.
2013). Given that most of the monthly station time series
have different record lengths, calculating anomalies relative
to the climatological (map) mean rather than the mean for
each individual station records, yields anomalies for a com-
mon base period:

RFAx 5
RFOx

RFMx
: (1)

Relative anomalies are preferred over absolute anomalies
(i.e., observed minus mean) because the ratio better preserves
the relationship between the mean and the variance (New
et al. 2000). In addition, relative anomaly interpolation can be
justified under the assumption of rainfall data following the
lognormal distribution (described below) or something similar
for transition.

2) ANOMALY TRANSFORMATION

The rainfall anomaly datasets typically have a nonnormal
distribution and although normality is not a prerequisite for
ordinary kriging, it is a desirable attribute (Moral 2010). To

address the issue of normality within the dataset, a log trans-
formation is performed on the monthly rainfall data. In fact,
if used in kriging, the rainfall anomaly RFAx in Eq. (1)
implicitly assumes a lognormal distribution since by defini-
tion the mean value is subtracted from the observed rainfall
values in the log space, i.e., log(RFAx) = log(RFOx/RFMx) =
log(RFOx) 2 log(RFMx). Given that log transformations can
only be used for nonzero values, challenges arise when a data-
set contains monthly rainfall anomaly values of zero. Several
alternatives have been suggested to deal with zero values in a
log transformation, including adding a positive offset (cons-
tant) to each value in the dataset (e.g., Ekwaru and Veugelers
2018) as in Eq. (2). The most commonly added constant values
(c) include very small values less than 1, half of the small-
est nonzero values, or 1 (Ekwaru and Veugelers 2018). In
this study, four c values (0.001, 0.01, 0.1, and 1) are exam-
ined to determine how each choice affects the quality of
the maps:

log(RFAx)5 log
RFOx

RFMx
1 c

( )
: (2)

First, rainfall anomalies are interpolated using the default
settings of the “autoKrige” function in the “automap” pack-
age (Hiemstra 2015) in R (version 3.6.1). Then, the interpo-
lated anomaly surfaces are back-transformed to the monthly
rainfall values (RFMonx) using Eq. (3):

RFMonx 5 exp log RFAx( )] 2 c
[ }

3 RFMx:
{

(3)

Finally, the rainfall maps are qualitatively evaluated to
identify unrealistic features or patterns including negative val-
ues, extremely high (unrealistic) values, spots or large anoma-
lous areas that do not follow typical rainfall gradients, or
maps that have unusual rainfall patterns. Of the four constant
values tested here, c = 1 produced the fewest unrealistic maps
therefore, this constant value is used in Eqs. (2) and (3).

FIG. 1. Rainfall stations used to create monthly gridded surfaces (n = 622).
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3) ELIMINATING COLLOCATED STATIONS

The autoKrige function is used to interpolate rainfall anom-
alies automatically removes collocated observation points
(stations within the same 250 m 3 250 m pixel). Given that
not all rainfall networks have the same quality standards, it is
important to control which stations are removed to ensure
that the highest-quality data are used in the interpolation. To
accomplish this, a pixel ID is assigned to all observation sta-
tions within a given month and stations are ranked according
to the quality of the observational network they belong to.
The order in which networks are ranked is determined based
on their comprehensive knowledge of historical rainfall moni-
toring in the state of Hawai‘i. In general, automated data
reporting networks with the highest temporal resolution data
are ranked first, and networks with manually read gauges are
ranked last. Other ranking criteria include network character-
istics such as type of instrumentation used, known quality con-
trol protocols and procedures, and overall data quality based
on past analyses (Giambelluca et al. 2013; Frazier et al. 2016;
Longman et al. 2018, 2019). Lower ranked station observa-
tions sharing the same pixel ID with higher ranked stations
are omitted prior to the interpolation.

c. Monthly rainfall data preprocessing

1) KRIGING PARAMETERS

An important aspect in kriging is the choice of a model and
corresponding geostatistical parameters used to fit the model
to an empirical semivariogram used in the interpolation
(Deutsch and Journel 1992; Kitanidis 1997). The autoKrige
function automatically chooses a model based on the charac-
teristics of the dataset. First, the function selects from among
five model types (spherical, exponential, Gaussian, Matern,
and Matern M. Stein’s parameterization) (Stein 1999). Next,
several parameters are estimated based the relationship
between interstation correlation and distance between sta-
tions. The related function considered in kriging is the semi-
variance g, describing half the variance between all pairs of
data points at a certain distance from each other:

g h( ) 5 1
2N h( )

[
Z xi( ) 2 Z xi 1 h

( )]2
, (4)

where Z(xi) = measurement at xi, h = distance between sta-
tions, and N(h) = number of data points with the separation
length h. The semivariogram parameters are the sill (the max-
imum semivariance observed in maximum distance from the
origin), nugget (minimum semivariance observed at the ori-
gin), and range (the distance at which the semivariance levels
off at the value of the sill for the stationary spatial fields)
shown in Fig. 2. Stations outside the range are not expected to
carry relevant information for a target point at the origin.
Nugget values can range between zero and the sill, and
defines the local uncertainty (noise) of the data at the origin.
Thus, the nugget sets the basic uncertainty of the final gridded
data in the considered region. The effect of the nugget can be
understood to represent measurement error and fluctuations
below the spatial scale resolved by the stations. In the

autoKrige function, the initial sill is estimated as the mean of
the maximum and median of the semivariance. The initial
range is defined as the 0.10 times the diagonal of the bounding
box of the data and the initial nugget is defined as the mini-
mum of the semivariance (Hiemstra 2015).

The autoKrige function is designed to optimize the kriging
model based on the characteristics of the data. However,
applying the default model parameter selection can result in
overfitting the semivariogram, resulting in maps with extreme
rainfall gradients occurring over short distances (e.g., ,1 km)
surrounding individual station locations (Fig. 3). These types
of errors are typically easy to identify manually at the monthly
time step where maps should have a much smoother transi-
tion between wet and dry areas. The identification and correc-
tion of these errors are a critical step in producing a quality
dataset.

2) IDENTIFYING UNREALISTIC RAINFALL MAPS

An initial run using the default kriging model and parame-
ter settings of the autoKrige function is performed on three
statewide monthly rainfall datasets. These datasets include
the Lucas et al. and the Frazier et al. monthly rainfall data
described in section 3a and a monthly dataset consisting of
2247 stations that combines the Lucas et al. dataset and the
Frazier et al. (2016) datasets with preference given to Lucas
et al. dataset in instances when the same stations appeared in
both datasets.

Rainfall maps are produced using all three datasets for a
23-yr overlapping period (1990–2012). For each dataset, a set
of monthly rainfall maps is generated for each of four counties
in Hawai‘i [Hawai‘i County, Maui County, Honolulu County
(O‘ahu), and Kaua‘i County].

The initial autoKrige default run produced 276 monthly
maps for each county and for all three datasets, thus providing
a total of 3312 maps (1104 for each dataset and 828 maps of
each individual county extent). For all of maps, a manual
qualitative inspection is performed to classify the maps into
one of three categories: “satisfactory” (acceptable likely rain-
fall pattern and value range), “poor” (unusual or unlikely

FIG. 2. Idealized semivariogram with parameters labeled (nugget,
sill, and range).
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rainfall pattern with an acceptable value range), and “unrealistic”
(improbable rainfall pattern and/or unfeasible value range).
Maps classified as unrealistic, were generally characterized as
such due to extremely high or low (or negative) rainfall values
that are not in agreement with nearby stations or due an overfit-
ting of the semivariogram parameters [section 3c(1)], typically
resulting in a “spotted” or blotchy map. The purpose of the
manual inspection is to establish a training dataset that can
be used to train a machine learning-based automatic screen-
ing algorithm.

The results of this manual classification revealed that over-
all, the default settings of the autoKrige function performed
well with only 3.9% (130 of 3312) of the maps manually classi-
fied as unrealistic. Even though the percentage of unrealistic
maps is low, the problem must still be addressed as these
types may have the potential to bias scientific analyses and
results. To resolve the issue, an automated approach is devel-
oped to flag unrealistic maps. First, the results of the qualita-
tive map assessment are used to assign a prediction class
variable, unrealistic or satisfactory, to each map. Note that
the maps previously classified as poor were not included in
either category therefore these maps were not used to train
the automated detection algorithm. Then the maps from each
of the two categories are used to train a random forest
machine classification algorithm (Breiman 2001) to identify
dubious maps. The input dataset to train and classify maps as
unrealistic or not used 85 spatially derived predictor variables
many of which are topographic index values such as slope,
curvature, roughness, topographic roughness index (TRI),
as well as statistical summaries, distance correlations, and sta-
tistical significance (Table S1 in the online supplemental

material). Random forest was fit and tuned for the mtry and
ntree parameters. The optimum mtry (number of variables
available for splitting at each tree node) and ntrees (the num-
ber of trees) of the random forest classifier was tuned using
a tenfold, three repeated cross validation with random
search to get best mtry of 51 and a manual grid search was
used to determine the optimum ntrees of 500. These tuned
parameter values were then used to fit, and evaluate the
final random forest classification model. The tunned random
forest machine learning algorithm produced an 87% classifi-
cation accuracy with a kappa statistic (comparison metric of
observed accuracy to random chance expected accuracy) of
0.77. The end result is an automated approach for detecting
unrealistic maps in terms of the probability of a map being
unrealistic.

3) AUTO-KRIGING AND VARIOGRAM PARAMETER

SCHEMES

Since unrealistic rainfall maps can occur using the autoKrige
function with default settings, fine-tuning of the parameters is
a critical next step to ensure that these unrealistic maps are
not included in the final dataset. The autoKrige default setting
selects one of the five statistical models and then determines
the parameters used to fit the model to the empirical semivar-
iogram. Both model type and fitting parameters can also be
chosen manually. The sensitivity of model selection and range
of the parameters used to fit the model are tested here to
determine the optimal geostatistical model and parameteriza-
tion. Using the output from the initial model run, model type
and fitting parameters are compared across the two qualitative
classes (unrealistic and satisfactory) for all of the maps pro-
duced with the three datasets. This can be viewed as prelimi-
nary model validation/screening since interpolated results
even with optimized parameters are not necessarily the “best”
maps due to the violation of geostatistical model assumptions
(e.g., nonstationarity and anisotropy of the datasets that are
not properly modeled in the current geostatistics model). For
maps classified as satisfactory, the model type used in the
interpolation is identified and counted. The model parameters
(range, sill, and nugget) used to define the semivariogram are
also extracted and separated by the two map classifications
(unrealistic and satisfactory). Following the extraction of these
parameters, a statistical analysis that utilizes a binomial gen-
eral linear model (GLM; R Core Team 2018) of the likelihood
of a map being unrealistic is conducted. The likelihood of a
map being unrealistic (as a binary) is tested as a function of
semivariogram model type (discrete), county (discrete), nug-
get (continuous), range (continuous), and sill (continuous),
with an interaction between county and all other variables as
predictor variable. This is done to determine which variables
are influencing the likelihood of a map being unrealistic. Over-
all the GLM model had an explained variance of 45%. Each
variable in the GLM model was then tested using ANOVA
with a chi-squared test. Results showed that semivariogram
model type, county, nugget, and range were significant
(p, 0.05) as individual variables that determine the likelihood

FIG. 3. Preliminary rainfall map of Hawai‘i Island for March
2012, demonstrating how overfitting of semivariogram parameters
can produce an unrealistic monthly rainfall surface.
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of an unrealistic map while the sill was determined not to be
significant.

Given the GLM results, a set of fixed values for both the
nugget and range is established based on the 25th percentile,
50th percentile, and 75th percentile of the distributions of
these parameters from all of satisfactory maps. These fixed
values are identified for each county to create a set of low,
medium, and high parameter values (see Table 1).

4) PARAMETER SCHEME SELECTION AND FINAL MAP

SELECTION

To guarantee the final map products are realistic with high-
est validation statistics, we provide a practical map selection
strategy using different criteria and rankings. The analysis of
model type revealed that 80% of the satisfactory maps use the
Matern with M. Steins parameterization (henceforth, repara-
metrized Matern) model to fit the variogram. Based on this
result, the reparametrized Matern model is held constant in
the autoKrige function for all subsequent iterations of the
maps. Beyond this sole fixed covariance model choice, the
creation of a month-year rainfall map is a dynamical and
tiered process. First tier rainfall maps are created using the
Lucas et al. dataset with four model parameterization
schemes: 1) “Free-All,” where all variogram parameters are
automatically chosen by the default autoKrige function;
2) “Fixed-Nugget,” where the nugget is fixed at a “low” (25th
percentile) value; 3) “Fixed-Range,” where the range is fixed
at a “low” (25th percentile) value; and 4) “Free-Sill,” where
the sill is selected automatically by the default autoKrige
function but the nugget and range are fixed at their low (25th
percentile) values. For each month, four versions of the map
are created using these different parameterization schemes
and each map is assigned, using the random forest machine
learning classification algorithm, to one of the two classifica-
tion categories (unrealistic or satisfactory). If only one of the
four maps is classified as satisfactory then this map is selected
as the final month year rainfall map. If more than one of the
four maps is classified as satisfactory, then the final month
year rainfall map is selected based on the quality of the map
as determined by four error metrics: 1) the percent probability
of a map being unrealistic (as determined by the machine
learning algorithm described above); 2) the coefficient of
determination (R2); 3) the mean absolute error (MAE); and
4) the root-mean-square error (RMSE), derived from cross-
validation results (which will be discussed in the next section).
First, all four metrics are normalized on a 0–100 scale, includ-
ing three significant digits. To accomplish this, R2 is converted

to a percent, and MAE and RMSE errors are divided by
mean rainfall for each respective month year and then con-
verted to an inverted percent (MAE and RMSE errors
greater than 100% are set to 0 in the inversion). The map
with the highest median value of the four normalized metrics
is selected as the final monthly rainfall map. In the event that
the median values are the same, the following criteria are
used to break ties in this order: lowest probability of being
unrealistic, highest R2, lowest MAE, lowest RMSE, and
finally random selection (if all other metrics are equal one of
the maps is randomly chosen).

If none of the four tier-1 maps have a satisfactory classifica-
tion, then a second-tier mapping process is executed where,
medium (50th percentile) values are fixed for the nugget and
the range and maps are created using the same four parame-
terization schemes. If tier-2 maps do not produce a map with
a satisfactory classification, then high (75th percentile) values
are fixed for the nugget and the range to create a set of tier-3
maps using the same four parameterization schemes. If a sat-
isfactory classification map is not obtained after the execution
of all three mapping tiers then the tier-3 map with the highest
median value of the four rescaled error metrics is selected as
the final rainfall map. Note that the Free-All method uses the
same default parameterization for all three tiers and is per-
formed only once.

TABLE 1. Fixed values for the nugget and range based on the 25th, 50th, and 75th percentile values from satisfactory maps for each
of the four counties.

Low (25th percentile) Med (50th percentile) High (75th percentile)

Nugget Range Nugget Range Nugget Range

Hawai‘i 0.004 0.163 0.012 0.312 0.023 1.134
Maui 0.008 0.075 0.017 0.102 0.036 0.16
Honolulu 0.011 0.076 0.02 0.132 0.032 0.311
Kaua‘i 0.003 0.076 0.011 0.171 0.021 1.078

FIG. 4. Workflow for parameter scheme selection and final
monthly map selection for each month. For each of the three tiers,
maps are created using unique parameter configurations including
1) Free-All, where all variogram parameters are automatically cho-
sen by the autoKrige function; 2) Fixed-Nugget, where the nugget
is fixed; 3) Fixed-Range, where the range is fixed; and 4) Free-Sill,
where the sill is selected automatically by the autoKrige function
but the nugget and range are fixed. Fixed variogram parameters
are set at the 25th, 50th, and 75th percentile for tiers 1–3, respec-
tively. Note that the Free-All map is the same for all three tiers.
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This tiered system ensures that a map with the most plausi-
ble rainfall pattern and the highest validation statistics is
selected as the final month-year map (Fig. 4).

d. Map validation

For each map, leave-one-out cross validation (LOOCV) sta-
tistics are generated for every station used in the interpolation.
LOOCV points are generated by sequentially leaving out one
measured data point and reproducing it based on the informa-
tion from the remaining station observations. LOOCV points
are then tested against station observations using several valida-
tion metrics such as R2, bias, MAE, and RMSE. Bias is calcu-
lated as the average difference between the predicted and
observed rainfall at each station location. Positive bias indicates
an underprediction of observed values. Relative (normalized),
percent errors are also calculated and used to access predictions.

4. Validation results

a. Error metrics all islands

An example of the mapping algorithm output for a single
month in Honolulu County is shown in Fig. 5. In this example

the final map is produced with the tier-2, Free-Sill parameteri-
zation scheme selected (Fig. 5d). Note that the final map had
the lowest percent unrealistic classification, highest R2, and
lowest RMSE of the four maps (overall lowest rescaled median
value) in this tier. In total, the 30-yr monthly (four county)
map dataset consists of 127 365 comparative point values
(Fig. 6). Overall, the optimized autoKrige approach produced
estimates of rainfall that had high correlation (R2 = 0.78) and
low bias (34 mm; 21%) when compared with observations
(Table 2). The overall positive bias (underprediction of obser-
vations) is driven primarily by the inability of the mapping
algorithm to accurately predict the highest rainfall values. This
underprediction is a result of a Gaussian distribution-based
smoothing that occurs with the predicted values, a well-known
problem with many interpolation techniques including kriging
(Biau et al. 1999). The MAE and RMSE for the entire dataset
are 55 mm (1.4%) and 101 mm (7.8%), respectively. The R2

values are calculated for all individual maps and the distribu-
tion of R2 values for the entire LOOCV is shown in Fig. 7. The
average R2 is 0.78, and 83.4% of the maps had an R2 of 0.65 or
better. Of the 1440 county maps, only a total of 14 maps
(,1.3%; 14/1440) fell below the R2 = 0.25 threshold.

FIG. 5. Tier-2 rainfall maps in January 2006 for Honolulu County created with four parameterization schemes:
(a) Free-All, (b) Fixed-Nugget, (c) Fixed-Range, and (d) Free-Sill. The tier-2 “medium” (50th percentile) values are
used as fixed model parameters; Class is either unrealistic or satisfactory; %Unrealistic is the percent probability of
the map being unrealistic. The R2 is the coefficient of determination, RMSE is the root-mean-square error (mm), and
MAE is the mean absolute error (mm). The best performing map (lowest median of rescaled errors) in this instance is
the Free-Sill parameterization scheme (i.e., Med 50th%tile Fixed-Nugget and Fixed-Range).
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b. Error metrics by county

LOOCV statistics are also evaluated for each county (Fig. 8).
In general, results were consistent across the four counties, with
mean absolute percent error (MAPE) ranging from 1.1% to
1.8%. Honolulu County had the lowest MAPE (1.1%), and
Maui County had the highest (1.8%). An overall underestima-
tion of rainfall (from 21% to 20.7%) occurs across the four
counties. LOOCV is commonly used for assessing the quality
of an interpolation method (Brinckmann et al. 2016; Longman
et al. 2019); however, it is not without its shortcomings for the
error prediction. LOOCV commonly overestimates errors at a
location on the map being evaluated due to the fact that pre-
dicted values are derived at a point where data actually exist. In

addition, the interpolated surface can be altered as a result of
removing a point at the location that is being cross validated,
especially when the data are sparse (Jeffrey et al. 2001). This
has the greatest impact in the areas with lowest station density
and results in higher LOOCV error values because climate
stations in Hawai‘i are irregularly spaced and sparse in many
regions.

LOOCV results are compared between the autoKrige
default parameter runs and the optimized parameter runs for
all counties. In general, optimization reduces the map error;
however, differences between the runs are not statistically sig-
nificant. This highlights a key finding, that error metrics
should not be the only source of information used to assess
the quality of the final map product. This example is clearly
illustrated in Fig. 5, where in general, error metrics are similar
for all four of the maps, but a visual inspection of the maps
leaves no doubt that the spatial pattern produced with the
default parameterization scheme (Fig. 5a) is not realistic. In
this figure, the Fixed-Range run (Fig. 5c) produced a slightly
lower MAE and RMSE than the Free-Sill run (Fig. 5d); how-
ever, the Free-Sill optimization was chosen because this map
was classified as satisfactory. The “% unrealistic” metric is
used here to select the map produced using the Free-Sill
parameterization scheme because this is the only map that
produced a satisfactory classification. This example highlights
how the machine learning classification is utilized to select the
map with the most realistic rainfall surface.

c. Temporal variations in map error metrics

To determine the consistency of the maps through time, all
R2 values are grouped by year and plotted over the 30-yr
period of record (Fig. 9). While some years had fewer outliers
than others, no apparent discontinuities are apparent in the

FIG. 6. Point density validation plot of LOOCV results for all
stations/months (n = 127365) with the magenta box in the LR of
the plot representing the 75% of the station observations and black
and white diagonal lines are the 1:1 line representing a perfect fit;
R2 is the coefficient of determination.

TABLE 2. LOOCV error metrics by county and for all
counties, where R2 is the coefficient of determination, Bias is the
mean bias error (mm; %), MAE is the mean absolute error
(mm; %), MED is the median absolute error (mm; %), and
RMSE (mm; %) is the root-mean-square error.

Metric Hawai‘i Maui Honolulu Kaua‘i All

R2 0.77 0.80 0.73 0.79 0.78
Bias (mm) 46.6 20.8 28.9 35.2 32.8
Bias (%) 21.1 21.5 20.7 20.8 21.0
MAE (mm) 75.7 38.9 48.3 54.8 54.8
MAPE (%) 1.4 1.8 1.1 1.1 1.4
MED (mm) 38.1 16.9 26.3 28.2 26.3
MED (%) 0.4 0.4 0.3 0.3 0.4
RMSE (mm) 129.7 81.7 80.6 99.9 100.5
RMSE (%) 7.5 10.3 7.0 6.1 8.1
N 38 785 34 670 39 046 14 864 127 365

FIG. 7. Histogram of R2 values calculated from LOOCV results
for all counties and month-years. The red dashed line represents
the mean r-squared value (0.771), and blue dotted lines represent
61 standard deviation (0.158).
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time series. The 30-yr median and mean R2 values across all
month year county maps are 0.815 and 0.775, respectively.

Validation metrics as well as metadata on the number of
stations used and final variogram selection information is con-
tained in each month-year map text-based metadata file.
Examples of a final rainfall maps for each county are shown
in Fig. 10.

5. Summary and usage

The purpose of this research effort is to optimize an auto-
mated kriging algorithm to interpolate monthly rainfall in a
way that produces realistic rainfall patterns over the complex
topography of Hawai‘i. The optimization techniques utilized
in this study include methods for identifying the most appro-
priate constant value to use when log-transforming data,
choosing the highest quality station data to use in the interpo-
lation, detecting erroneous maps using a machine learning

approach, and establishing the most appropriate parameteri-
zation scheme for the interpolation model. While the default
parameters in the autoKrige function may produce gridded
estimates that validate well, this does necessarily mean that a
realistic rainfall surface will be produced. The incorporation
of a low-level machine learning algorithm trained to evaluate
and classify an unrealistic map output is therefore a critical
step in generating a realistic pattern of rainfall. The tiered
process allows for the flexibility of selecting a map that does
not have unrealistic features that would have otherwise been
produced using autoKrige default parameterization scheme.

From a technical standpoint, this optimized kriging approach
can reproduce monthly estimates of rainfall in a realistic man-
ner but underestimates the highest rainfall observations due to
well-known smoothing effects associated with this interpolation
technique. In addition, areas with sparse station density and
complex topographical features that are not considered in the
geostatistical modeling introduce errors into the final data

FIG. 8. As in Fig. 6, but for individual counties: (a) Hawai‘i County (n = 38 785), (b) Maui County (n = 34670),
(c) Honolulu County (n = 39046), and (d) Kaua‘i County (n = 14 864).
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product. The integration of long-term mean climate maps
with point observations helps to improve the accuracy of the
monthly maps, as the climatologies capture general geo-
graphical features that influence rainfall such as the varied
terrain, proximity to the coast, exposure to the prevailing
winds, and the influence of the trade wind inversion. While

the automated approach described here does not explicitly use
elevation as a covariate, consistent, and elevation-dependent
orographic rainfall patterns are captured when interpolated
anomalies are combined with long-term estimates. The tiered
parameterization approach used here for variogram parameter
selection is effective at eliminating the occurrence of unrealistic

FIG. 10. Final county rainfall maps for a sample month-year (August 2018) (a) Kaua‘i County, (b) Honolulu, (c) Maui
County, and (d) Hawai‘i County.

FIG. 9. Box plots of annual R2 values over time (1990–2019) for all county maps (each box con-
tains results from 48 maps and black bar in each box is the median). The blue dashed line repre-
sents overall R2 value from all stations and month-years (0.771).
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rainfall surfaces produced when using default parameterization
in the autoKrige algorithm. Given the known best practices for
mapping rainfall in Hawai‘i, the authors are confident in the
selection of this approach and pleased with the quality of the
results.

This dataset will serve as a valuable resource to the many
researchers that use gridded rainfall estimates for analyses of
spatial trends and patterns, over time (e.g., Frazier and
Giambelluca 2017; Lucas et al. 2020) and during extreme
weather events (e.g., Nugent et al. 2020; Longman et al.
2021). Finally, data are being compiled and infrastructure is
being developed to update this gridded dataset to present day
and produce near-real-time monthly rainfall maps of Hawai‘i
using these same methods. This approach demonstrates how,
with a moderate amount of data, a low-level machine learning
algorithm can be trained to identify unrealistic interpolated
rainfall patterns.
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