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Diverse Marine T4-like Cyanophage Communities Are
Primarily Comprised of Low-Abundance Species Including
Species with Distinct Seasonal, Persistent, Occasional, or
Sporadic Dynamics
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1 Department of Biology, Clark University, Worcester, MA 01610, USA
2 Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
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Abstract: Cyanophages exert important top-down controls on their cyanobacteria hosts; however,
concurrent analysis of both phage and host populations is needed to better assess phage–host in-
teraction models. We analyzed picocyanobacteria Prochlorococcus and Synechococcus and T4-like
cyanophage communities in Pacific Ocean surface waters using five years of monthly viral and cellu-
lar fraction metagenomes. Cyanophage communities contained thousands of mostly low-abundance
(<2% relative abundance) species with varying temporal dynamics, categorized as seasonally re-
curring or non-seasonal and occurring persistently, occasionally, or sporadically (detected in ≥85%,
15-85%, or <15% of samples, respectively). Viromes contained mostly seasonal and persistent phages
(~40% each), while cellular fraction metagenomes had mostly sporadic species (~50%), reflecting that
these sample sets capture different steps of the infection cycle—virions from prior infections or within
currently infected cells, respectively. Two groups of seasonal phages correlated to Synechococcus or
Prochlorococcus were abundant in spring/summer or fall/winter, respectively. Cyanophages likely
have a strong influence on the host community structure, as their communities explained up to 32%
of host community variation. These results support how both seasonally recurrent and apparent
stochastic processes, likely determined by host availability and different host-range strategies among
phages, are critical to phage–host interactions and dynamics, consistent with both the Kill-the-Winner
and the Bank models.

Keywords: phage; cyanobacteria; viromics; phage–host interactions; microbial ecology; marine;
oceanography

1. Introduction

T4-like cyanophages represent one of the most abundant groups of viruses in the
oceans and have important impacts on the mortality, productivity, and evolution of their
globally significant host populations, Prochlorococcus and Synechococcus [1–3]. Interactions
between host and viral communities are complex, with viruses exerting top-down controls
on host populations while, in turn, having their own abundances influenced by the sea-
sonal and annual variation of bacterial host abundances [4,5]. Elucidating these complex
virus–host interactions is critical to our fundamental understanding of how viral and mi-
crobial diversity and community structure are maintained in natural ecosystems. T4-like
cyanophages represent one of the most extensively studied groups of marine viruses, and
here we carry out quantitative analyses of their community structure and dynamics in
combination with host community analysis.

Viral population dynamics are most frequently described using two non-mutually
exclusive models: the Kill-the-Winner model (KtW) and the Bank model. KtW posits
that due to density-dependent effects, as permissive bacterial hosts become abundant,
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viruses that are able to infect them will also rise in abundance and decimate permissive
host populations, thus allowing resistant hosts to increase in abundance [6,7]. This model
predicts dynamic cycling and maintenance of multiple host and virus variants. Studies
suggest that this cycling occurs more so at fine scales of diversity, e.g., at the level of
species or strains, while communities may remain relatively stable at higher taxonomic
levels, e.g., ecotypes [8–11]. The Bank model suggests that most viral variants remain at
low abundance, only becoming abundant in the presence of their preferred, susceptible
host(s) [5,12–15].

Because phage abundances are dynamic across seasons, the use of time series to study
natural phage communities has proven to be a valuable approach to studying phage–
host interactions [10,16,17]. T4-like cyanophages have been extensively studied using
several informative, although not entirely cyanophage-specific, marker genes, including
the major capsid protein, gp23, and the vertex portal protein, gp20. Marker gene analyses
show clear temporal variation in phage communities across a variety of locations, indi-
cating that cyanophage communities are driven by host presence and/or environmental
variables [13,18–22]. While whole T4-like phage communities show seasonality, multiple
studies have identified individual phage operational taxonomic units (OTUs) that show a
variety of annual and interannual dynamics, including OTUs that persist in environments
over multiple years and OTUs that appear only briefly in a system [21–23]. These different
patterns are interpretable under the KtW or Bank models and may reflect underlying
differences in phage–host range as observed from culture studies—some phages appear
to be specialists and infect a narrow range of hosts, while others are more generalists and
infect multiple hosts, even across genera [1,24,25].

Although T4-like cyanophage populations have been widely studied [10,13,16,18–24],
at present, there are relatively few studies that have tracked the dynamics of viral pop-
ulations with sustained regular sampling and with appropriate quantitative methods to
track fine-scale variants. In particular, the studies above are limited in that they used clone
libraries [23] or viral isolates [18,19,22,24] that are semi-quantitative and sampled a limited
number of phages; terminal restriction fragment length polymorphism (tRFLP) methods
that lack phylogenetic information about OTUs [10,20]; or, for studies using metagenomics
or high-depth amplicon sequencing, did not sample phage populations for more than two
years [13,16,21]. Phylogenetic context is particularly important for resolving biologically
relevant taxa, namely, species-like populations. Furthermore, most of the studies above
lack concurrent analysis of host community dynamics.

The majority of prior work that has concurrently studied both T4-like phage com-
munities and cyanobacteria communities has been carried out in the surface layer of the
coastal, temperate waters at the San Pedro Ocean time series (SPOT), located in the San
Pedro Channel, California, USA. Seasonal dynamics of cyanobacteria populations at SPOT
have been well studied. Broadly, Synechococcus are more abundant in warmer months,
peaking in April through June with a community dominated by a single ecotype, IV, and
seasonal succession seen in subclades of ecotype I and pulses of less abundant ecotypes [10].
Prochlorococcus, in contrast, increases in abundance during the winter months and is domi-
nated by a single ecotype, HLI [10]. These seasonal changes in the host community likely
impact changes within the viral community. Network analyses at SPOT using gp23 tRFLP
data show significant correlations between host and viral OTUs indicating that the seasonal
dynamics seen in phage communities are driven in part by the seasonal changes of preferred
hosts [10,11,26]. However, the most robust of these concurrent virus–host analyses [10]
could not reliably determine the identity or relatedness of phage populations, namely those
of cyanophages, due to the use of tRFLP methods rather than sequence-based methods and
the lack of resolution provided by the gp23 marker gene. In addition to missing fine-level
resolution of T4-like cyanophage dynamics, critical fundamental ecological descriptions
have not been performed for T4-like cyanophages, such as rank abundance analysis or
estimates of richness for biologically relevant taxonomic groups, namely species. Recent
work has shown that T4-like cyanophage communities form stable species-like populations
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that share roughly >95% average nucleotide identity (ANI) across shared genes [24,27]. We
refer to populations matching this threshold as species throughout this work.

Focusing on just T4-like cyanophages, here we resolve species populations using a 98%
nucleotide identity threshold in the DNA polymerase gp43 amplicon region corresponding
to distinct populations as guided by ANI differences across shared genes in cultured
cyanophages as described in Gregory et al. 2016 [24]. We use gp43 cyanophage sequences
found in cellular and viral fraction metagenomes in combination with cyanobacterial ITS
amplicon data to study the dynamics of T4-like cyanophage species and their hosts at the
San Pedro Ocean Time-series across five years of monthly samples. These results reveal
highly diverse phage communities with complex dynamic patterns among phage species,
significant correlations to Prochlorococcus and Synechococcus communities, and distinct
patterns between cellular and viral fraction samples. Together these results refine our
understanding of phage community structure and dynamics, especially in the context of
current phage–host interaction models.

2. Materials and Methods
2.1. ANI-Informed Classification of Cyanophage Species

The map primer function in Geneious Prime (v.2019.2.3. Biomatters Ltd., Auckland,
New Zealand) was used to align the gp43For-5′GCWGGTGCWTATGTHAARGAACC-3′

and gp43REV-5′CCWGASARAGTAATKGCYTCWGC-3′ primers [28] to the 142 cyanophage
isolate genomes described in Gregory et al. 2016 [24] to identify the gp43 amplicon region.
Genomes from Group VI [24] have a large insertion of ~25–50 bases 3′ of the gp43For
primer, so this insertion region was removed to retain homologous comparisons of the
gp43 amplicon region to the other genomes. The nucleotide identity of corresponding
gp43 amplicon regions was calculated using the blastn function of BLAST (v. 2.2.29+). For
all pairwise combinations, gp43 nucleotide identity was compared to the ANI across the
shared core genes identified in Gregory et al. 2016 [24].

2.2. Sample Collection and Processing

Seawater for DNA samples, as well as measurements of biological and environ-
mental conditions, were collected monthly as part of the San Pedro Ocean Time-series
(https://dornsife.usc.edu/spot/ accessed on 10 January 2023). Here we use monthly sam-
ples collected between May 2009 and September 2014. Detailed methods describing the
collection and processing of environmental and biological parameters for these samples are
described Cram et al. 2015 [29]. Briefly, for the collection of DNA samples from cellular
and viral fractions, water was filtered sequentially through a 1.2 µm A/E filter (Pall, Port
Washington, NY, USA) and then a 0.2 µm Durapore filter (EMD Millipore, Billerica, MA,
USA) [30] to collect DNA primarily from microbial cells, referred to herein as the cellular
size fraction [10,29]. Viral fraction DNA was obtained by filtering water through a 0.22 µm
Sterivex cartridge (EMD Millipore, Billerica, MA, USA) and then onto a 25 mm 0.02 µm
Anotop filter cartridge (Cytiva, Marlborough, MA, USA) [10,11]. Sample dates and sample
type collected on each date are provided in Table S1.

Cellular metagenomes were prepared with 40 ng of genomic DNA from the cellular
fraction. DNA was sheared to 500 bp, library preparation was carried out using the Ovation
Ultralow V2 DNA-Seq kit (Tecan Group Ltd., Männedorf, Switzerland), and libraries were
sequenced on a HiSeq 2500 Rapid Run PE 100 or 250. Viral fraction metagenomes were
generated and sequenced at the Department of Energy (DOE) Joint Genome Institute
(JGI) as part of the Community Science Program on a grant to N.A.A. (proposal ID, 2799).
Libraries were prepared using 1 ng of viral fraction DNA per sample and according to the
manufacturer’s instructions (Swift 1S Plus or Nextera XT; details for individual samples
can be found under proposal 2799 at the JGI Genome Portal) [11].

The abundance of picocyanobacterial (Prochlorococcus and Synechococcus) amplicon
sequence variants (ASVs) was determined using ITS amplicon sequencing from the same
DNA samples as were used to produce the cellular metagenomes. ITS amplicon sequencing

https://dornsife.usc.edu/spot/
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details have been previously published and can be found in Ahlgren et al. 2019 [10]. Briefly,
ITS amplicon sequences were amplified from the cellular fraction DNA samples using
the 16S-1247f [31] and ITS-ar [32] primers. Unique amplicon sequence variants (ASVs)
were identified using minimum entropy decomposition [33] and are sequence variants that
differ by at least one nucleotide difference from any other variant. ASVs were assigned
to ecotypes using blastn to a database of full-length ITS sequences [10]. Ecotypes have
been previously well established as phylogenetically distinct groups that inhabit distinct
niches based on temperature and nutrient conditions and are distinguishable using ITS
sequencing [34–36].

2.3. Assembly and Identification of gp43 Sequences

Viral metagenomes were assembled by the Joint Genome Institute as described in
Ignacio-Espinoza et al. 2020 [11]. In brief, reads were trimmed and screened using
bbtools [37] before being error-corrected using bfc (v.r.181) [38]. Paired reads were as-
sembled using SPAdes (v.3.11.1) [39]. Raw and quality-controlled reads, as well as virome
assemblies, can be found on the DOE JGI Genome portal under proposal ID 2799. Cellular
metagenomes were assembled using MEGAHIT (v1.1.3) [40] using default parameters.
Contigs <1000 bps were discarded from both virome and cellular metagenome assemblies.
Viral contig prediction was carried out using both VirSorter (v1.0.5) [41] and VirFinder
(v1.1) [42]. VirSorter predictions were made using the virome database, and only contigs in
categories 1 and 2 were retained. Contigs with VirFinder scores greater than 0.80 were used
in subsequent analyses. To identify gp43 sequences on assembled contigs, gp43 sequences
from 318 myovirus cyanophage genomes and 200 amplicon sequences from environmental
isolates (Table S2) were used to compile a BLAST database. tBLASTn (v. 2.2.29+) [43] was
used to compare viral contigs to the gp43 database. Sequences sharing at least 60% amino
acid identity over 67% of the length of one of the reference sequences were categorized as
cyanophage gp43 sequences. Only the gp43 genes from contigs were used in subsequent
analyses.

Additionally, in order to capture a larger portion of the cyanophage diversity and
avoid the long contig biases of VirSorter and VirFinder [41,42], single-gene assembly of the
gp43 amplicon region was also performed using Xander [44] with the following changes
to the default settings: MIN_COUNT = 1 and MIN_LENGTH = 100. gp43 sequences from
reference cyanophage genomes and environmental amplicons were used to construct the
Xander gene seed and gene reference fasta files.

2.4. Clustering and Mapping

All assembled and reference gp43 sequences were de-replicated using the derep_fulllength
of Vsearch (v2.15.2) [45] with default parameters and clustered to 98% nucleotide sequence
identity using the cluster_fast function. BBmap (v38.08) [37] was used for mapping of
short reads from viral and cellular metagenomes to the gp43 sequences and requiring ≥98%
sequence identity. Only gp43 sequences with 100% base coverage and ≥2-fold depth in
at least one sample were used for future analyses. Throughout, the relative abundance of
species in a sample was calculated as reads mapped per kilobase per million reads (RPKM).

2.5. Cyanophage Community Analysis

Total estimated species richness using the Chao estimate was determined using the
function specpool in the R package vegan [46] using mapped read counts to gp43 sequences
from all samples as the input. Rarefaction curves of individual samples were generated
with the function rarecurve in the package vegan. Bray–Curtis dissimilarity scores were
calculated using the d_bray command from the R package phyloseq (v. 1.34.0) [47] for all
possible pairs of samples and results were binned by the number of months separating sam-
ples. Bray–Curtis dissimilarity values were subtracted from one to convert to a community
similarity value. Because samples separated by 1–2 months had average Bray–Curtis values
that were much greater than Bray–Curtis values for samples separated by ≥3 months, si-
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nusoidal curve fitting on Bray–Curtis values was performed for samples with 3–36 months
separating them using the lm function from the R Stats Package (v. 4.0.3) [48].

2.6. Seasonal Dynamics

Each gp43 sequence and host ASV was tested for interannual and seasonal vari-
ability using a generalized additive mixed-effects model (GAMM) using the R package
gamm4 [49–51]. gp43 sequences were tested for seasonality in both the cellular and viral
metagenomes separately. The data were fit using a seasonally cyclic spline and a spline
that fit the overall data as per Cram et al. 2015 [29]. The p-values for both spline functions
were used to determine whether phage OTU exhibited seasonality (i.e., those for which
the seasonal component had a p-value of <0.05 were categorized as seasonal phages). This
approach for determining seasonality detects non-sinusoidal seasonal patterns as well as
seasonal patterns that have strong interannual variation [49,52]. Raw p-values, excluding
those with a value of one, were adjusted with the R function qvalue to account for false
discovery rates [53].

To assess the potential impact of differences in library size and coverage between
size fractions on seasonal categorization, read counts to gp43 species in the viral fraction
metagenomes were divided by five (the mean fold difference in the percentage of reads
that mapped to gp43 in the viral vs. cellular fraction samples). Any resulting read counts
below 1 were reassigned as 0 values, and RPKM was recalculated. The model as described
above was rerun as above to assign dynamic types.

2.7. Network Analysis

Significant correlations were identified using extended local similarity analysis (eLSA
v1.0.2) [54] among environmental parameters (n = 45); gp43 species (n = 418) abundances
(RPKM) in both the viral and cellular fraction metagenomes; absolute cyanobacterial eco-
type abundances; and absolute cyanobacterial ASV abundances for those that comprised
over 0.5% of the host population in at least one sample (n = 300). eLSA was run with
the following parameters -d 3 -p theo -r 1 -s 32 -b 0. Sample dates for months between
December 2009 and December 2013 were used for this analysis (see Table S1 for months
in this range during which data were collected). Because eLSA can accommodate miss-
ing data, months for which no data were available or for which only host or viral data
were available were included with missing data input as NA. Environmental parameters
included the following: month, maximum air temperature, minimum air temperature,
average wind speed, precipitation, wind speed, prokaryotic abundance, average wave
period, Multivariate El-Niño Southern Oscillation Index (MEI), dominant wave period,
wave height, monthly estimated primary productivity, absorbance due to detritus and
gelbstoff, absolute phytoplankton abundance, satellite-based chlorophyll a, chlorophyll a
maximum depth, day length, elapsed days, leucine production, mixed layer depth, nitrite
concentration, nitrate concentration, oxygen concentration, oxygen saturation, PAR, phos-
phate concentration, particulate organic carbon, primary production, excess phosphate
concentration (P*), eight day average estimates for surface chlorophyll a concentration and
surface productivity, salinity, Sigma-theta, Pacific Fisheries and Environmental Laboratory
(PFEL) estimates of coastal upwelling and Sverdrup transport (SVD), temperature, thymine,
leucine turnover, thymine turnover, virus-to-prokaryotic ratio (VPR), total virus abundance,
and flow cytometer Synechococcus and Prochlorococcus concentrations (see Cram et al. 2015
for details [29]). Results were filtered to only include significant (p < 0.0015 and Q < 0.05)
and strong Spearman correlations (p ≥ 0.6). Network visualization was performed using
Cytoscape (v. 3.8.0) [55]. Small subnetworks containing fewer than five nodes were omitted.

2.8. Phylogenetic Analysis

gp43 sequences were aligned using transAlign (v. 1.2) [56]. Phylogenetic tree construc-
tion was carried out using RaxML v8 [57] with the GTRCAT substitution model using rapid
bootstrapping on CIPRES infrastructure [58]. A subset of eleven reference T4 cyanomy-
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ovirus gp43 sequences was included, and the tree was rooted using an Escherichia coli T4
phage sequence (NCBI accession MT984581).

2.9. Variance Partitioning

Variance partitioning analysis was performed using redundancy analysis (RDA) and
partial RDA [59] to assess how much variance in cyanobacterial community composition
can be explained by concurrent variance in environmental factors and cyanophage com-
munity composition and the relative, independent contribution of either. The analyses
followed those outlined in Ahlgren et al. 2019 [10] and are described in brief as follows.
All environmental parameters used previously in Ahlgren et al. 2019 [10] were used.
This includes: month, average wind speed, precipitation, prokaryotic abundance, average
wave period, dominant wave period, wave height, absolute phytoplankton abundance,
satellite-based chlorophyll a, chlorophyll a maximum depth, day length, elapsed days,
leucine production, mixed layer depth, nitrite concentration, nitrate concentration, phos-
phate concentration, excess phosphate concentration (P*), oxygen concentration, salinity,
temperature, leucine turnover, virus-to-prokaryotic ratio (VPR), total virus abundance,
Pacific Fisheries and Environmental Laboratory (PFEL) estimates of coastal upwelling and
Sverdrup transport (SVD) (see Cram et al. 2015 for details [29]). The function decostand
from the R package vegan was used to first standardize environmental data to zero mean
and unit variance, and Hellinger transformation was applied to the relative abundances
of cyanophage species and the absolute abundances of cyanobacterial ecotypes and ASVs.
Absolute cyanobacteria abundances were calculated by multiplying appropriate relative
abundances from ITS sequence data by total Prochlorococcus or Synechococcus concentra-
tions determined by flow cytometry [10]. Data were reduced using a forward selection
of principal component axes and the function ordistep for added axes where p < 0.1. The
function rda was used to perform RDA and partial RDA analyses, with the significance
of results assessed by ANOVA using 200 steps and up to 200 permutations. The function
varpart was used to determine the unique fraction of variance that cyanophage composition
and environmental parameters contributed to the variance in cyanobacterial community
composition. RDA and partial RDA were repeated for three different levels of diversity
for the cyanobacterial (host) communities: all host ecotypes, Prochlorococcus ecotypes only,
Synechococcus ecotypes only, all host ASVs, Prochlorococcus ASVs only, and Synechococcus
ASVs only.

3. Results
3.1. Classification of T4-like Cyanophage Species

gp43 is a core gene found in all T4-like cyanophage to date, and the PCR amplicon region
in this gene has previously been used to identify emergent, distinct populations—namely,
populations comprised of individuals that differ by <99% nucleotide identity [22]. To better
relate gp43 divergence to more recently proposed ANI-based methods for demarking T4-
like cyanophage populations [27], we identified and compared the nucleotide identity of the
gp43 amplicon region to core gene ANI for 142 isolate genomes from Gregory et al. 2016 [24],
representing six discrete lineages that can be considered distinct populations using a
proposed ANI threshold of 95% [27]. As in Gregory et al. 2016, we saw a conspicuous
gap in ANI between intra- and inter-species comparisons of >97% and <88%, respectively,
and a corresponding gap in gp43 identity at >99% and <90%, respectively (Figure S1).
Such gaps [22,24,27] have been proposed to reflect inherent boundaries in populations [24,
27] and informed the proposed 95% ANI threshold for classifying T4-like cyanophage
populations [27]. To delineate cyanophage species here using gp43, we likewise chose a
threshold of 98% that falls within the observed gap but is slightly lower than the previously
used threshold of 99% [22], noting that some within species comparisons approached 99%
gp43 identity (Figure S1). This benchmarked threshold of 98% gp43 nucleotide identity,
therefore, was used to classify T4-like cyanophage species in metagenomically assembled
gp43 sequences. We used analysis of gp43 cyanophage sequences in viral (<0.2 µm) and
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cellular fraction (0.2 to ~1.2 µm) metagenomes to elucidate the composition and dynamics
of T4-like cyanophage species in surface waters at SPOT. gp43 sequences were obtained
from the assembly of cellular metagenomes (n = 2905) and viral metagenomes (n = 5518)
using whole metagenome assembly (MEGAHIT and SPAdes, respectively) or focused
single-gene assembly (Xander) (n = 6680). All assembled gp43 sequences were clustered
with reference isolate sequences (n = 288) with a threshold of 98% nucleotide similarity. This
resulted in 3562 T4-like cyanophage species identified from both sets of the metagenomes.
Only species with 100% coverage over the length of the gp43 amplicon region and ≥2X
read depth in at least one sample (n = 354) were used in subsequent analyses unless noted
otherwise to eliminate low-coverage, spurious taxa. Of these species, only seven appeared
in the viral fraction and not in the cellular fraction; all others were represented in both
viral and cellular metagenomes. Notably, no reference cyanophage isolate gp43 sequences
clustered (i.e., had ≥98% nucleotide identity) with any metagenomic sequences, and no
isolate reference sequences met the coverage required to be included in our analyses.

3.2. T4-like Cyanophage Community Composition and Whole Community Dynamics

Total cyanophage species richness across all of the viral and cellular metagenomes
separately was estimated to be 2988 ± 49.8 and 1851 ± 52.7 (±standard error), respectively,
using the Chao1 estimator and read counts for all detected species (no coverage require-
ment). These estimated values were slightly higher than the total number of species found
in the viral and cellular fraction metagenomes, 2566 and 1410, respectively, indicating that
this approach appears to have sampled most of the cyanophage species present. Rarefaction
curves of individual samples likewise showed a high degree of saturation (Figure S2A,B).
Repeating these analyses when requiring the coverage and depth noted above yielded
similar looking rarefaction curves but with somewhat higher levels of saturation Figure
S2C,D). Chao1 estimates of total richness were 357 ± 3.4 and 357 ± 5.1, very similar to
the total number of species detected: 354 and 347, respectively. The T4-like cyanophage
community therefore likely contains thousands of species, most of which did not meet our
read recruitment requirement for tracking their abundance.

The total abundance of cyanophage gp43 species relative to the total numbers of reads
in viral metagenomes was markedly stable over the time series (Figure S3), which mirrors
the pattern that total virus-like particle counts from this location do not vary widely by
season [29]. However, analysis of Bray–Curtis community similarity values (1 – Bray-Curtis
dissimilarity scores) revealed that cyanophage community composition showed marked
seasonality, as seen from significant sine curve fitting of similarity values vs. the number of
months separating samples (Figure 1) and local maxima and minima in similarity values at
or near 12, 24, and 36 months and 6, 18, and 30 months, respectively. Cyanophages in the
viral fraction, however, had higher community similarity scores on average than those for
the cellular metagenomes for samples separated by one month and 12, 24, and 36 months
near local maxima (t-test, p < 0.001) (Figure 1).

3.3. Dynamic Patterns of Individual Cyanophage Species

Although the collective cyanophage community showed significant seasonality in both
cellular and viral fractions, individual viral species showed a variety of distinct dynamics.
Using a non-parametric regression model with seasonal and long-term splines, phage
species were classified into four classes: seasonal (seasonal spline p-value < 0.05), persistent
(the species was detected >85% of samples regardless of seasonal spline see Table S3),
sporadic (not seasonal and detected in <15% of samples), and occasional if they fit none of
the above classes (Figure 2).
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Figure 1. Seasonality of whole T4-like cyanophage community is evidenced by Bray–Curtis (BC)
similarity scores (gray points) of cyanophage communities as a function of months separating samples.
Black points show average BC similarity values. Errors bars are standard error. The black line is a
sine fit to average BC values. (A) T4-like cyanophages found in viral fraction metagenomes. p-value
for sine fit = 9.90 × 10−13. (B) T4-like cyanophages found in cellular fraction metagenomes. p-value
for sine fit = 2.20 × 10−5.
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Figure 2. T4-like cyanophages belong to one of several dynamic classes. Horizon plots (lower
plot in each panel) show select representative cyanophage species belonging to the (A) seasonal,
(B) persistent, (C) occasional, and (D) sporadic dynamic categories (see text for descriptions). The top
plot in each panel depicts idealized representations of the dynamics of each phage dynamic category.
For horizon plots, the relative abundance of each phage species (one species per row) is centered
around the mean abundance, with the intensity of color indicating changes in abundance by standard
deviations above or below the mean. Gray vertical bars indicate months with missing data.

The classifications above were determined for cellular and viral size fractions sepa-
rately. Phage species were accordingly given two classifications—one from the cellular
fraction and one from the viral fraction. The composition of species in each of these
classes differed significantly between the cellular and viral fraction metagenomes (p-value
< 0.05, chi-squared test). This difference was particularly marked for seasonal and sporadic
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species. About half of the species in the cellular metagenomes were classified as sporadic,
whereas about half of the phages in the viral metagenomes are seasonal (Figure 3, see also
Figure 4). While there were several persistent phages in the virome, notably, only two
phage species were categorized as persistent in the cellular metagenomes. The classification
of individual viral species correspondingly often differed between the viral and cellular
fraction metagenomes (Figure 3), and there were only seven species (three sporadic and
four occasional) that were detected in the viral fraction but not in the cellular fraction
samples. At any given time point, many species were detected in both the viral and cellular
fraction metagenomes: on average, 40% of species present in the viral fraction and 84% of
the species present in the cellular fraction were detected in the sample from the other size
fraction (Table S1). To assess whether differences in temporal categorization between size
fractions might be attributed to differences in library size, we simulated a 5-fold reduction
in the size of viral fraction metagenomes and reassigned dynamic classes. The resulting
composition of dynamic classes in the downsampled virome was quite similar to the origi-
nal categorization (Figure S4), and differences between dynamic classes in the cellular and
the downsampled viral metagenomes remained significant (p-value < 0.05, chi-squared
test) (Figure S4).

The cumulative relative abundance of species belonging to these categories was rel-
atively stable over time in both metagenome fractions (Figure 4A,B) but, similar to the
patterns above, differed between viral and cellular fraction metagenomes. Each dynamic
group again differed significantly between the two metagenome fractions (chi-squared
test, p < 0.001). Viral fraction metagenomes were composed mainly of persistent and sea-
sonal cyanophages (40% and 41% on average, respectively), while cyanophages in cellular
metagenomes instead were dominated mostly by occasional cyanophages (50% on average)
(Figure 4B). Sporadic cyanophages only comprised a very small proportion of species in
viral fraction metagenomes on average (1.6%) but were much more abundant in cellular
fraction genomes (10.4%) (Figure 4A,B).
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Figure 3. The number of species categorized to each dynamic class (seasonal, persistent, occasional,
and sporadic) in the viral and cellular fraction metagenomes (left and right bars, respectively) and an
accounting of how each species is categorized differently between each sample type (trapezoids in
the middle). Note that seven species detected in the viral fraction metagenomes were not detected in
the cellular fraction metagenomes.
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Figure 4. The contribution of species to the T4-like cyanophage community. (A,B) Cumulative abun-
dances of cyanophages in each dynamic class in viral (<0.2 µm) (A) and cellular fraction metagenomes
(0.2–1.2 µm) (B) as determined by read mapping (RPKM). Results are shown sequentially for each
month, with blank lines indicating no data for that month. (C,D) The average percent contribution
of each cyanophage species across all time points when present vs. the number of times that vi-
ral species was detected (“Months detected”) in (C) viral and (D) cellular fraction metagenomes.
(E,F) The maximum percent abundance of each species relative to total T4-like cyanophage abundance
across all viral (E) and cellular (F) fraction metagenomes. In (C–F), each point represents a distinct
cyanophage species.

The relative abundance of individual species revealed that T4-like cyanophage com-
munities are primarily composed of many low-abundance species with only one species
having a high mean relative abundance in both fractions at roughly ~12% (Figure 4C,D). A
few species in the cellular metagenomes had notably higher mean abundances at ≥5%, and
several species in the viral metagenomes had abundances ≥ 2% across all dynamic types
(Figure 4C,D). In terms of maximum abundance, some species ‘bloomed’ to substantial
levels at particular times, with several reaching > 10% and one species in each sample set
comprising ~ 50% of the total T4-like cyanophage abundance (Figure 4E,F). Each species
had similar abundance levels in the viral and cellular fraction metagenomes, as supported
by strong and significant correlations of RPKM or relative abundance between the virome
and cellular metagenomes (Figure S5, p < 0.001, R2 = 0.63 and 0.63, respectively). Mean and
maximum relative abundances of species similarity were strongly correlated between the vi-
ral and cellular fraction metagenomes (p < 0.001, R2 = 0.56 and 0.67, respectively, Figure S5).
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These results collectively show that cyanophage communities contain several somewhat
abundant species, but overall, the majority of the community is made up of species found
at low average relative abundance (typically 1–2% of the community) (Figure 4C,D) with
occasional higher maximum abundances (Figure 4E,F). This pattern is also reflected in a
steep rank abundance curve with a long ‘tail’ of low-abundance species, typical of diverse
marine bacteria, archaeal, and viral communities (Figure 5). Likewise, the richness esti-
mates above suggest that there are thousands of T4-like cyanophage species, most of which
were too rare to reasonably measure their abundance using this metagenomic approach.
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Figure 5. Rank abundance curve for all viral species across all viral fraction metagenomes. Insert
shows ranks between 1 and 100. Viral species abundance depicted on the y-axis is read coverage
(RPKM). The shape of this rank abundance curve is typical of microbial communities with a few very
abundant species in any given sample and numerous less abundant species.

3.4. Community Network Analysis

To assess interactions among viruses, hosts, and environmental conditions, we exam-
ined correlations among viral species abundances in both the viral and cellular fraction
metagenomes (RPKM), cyanobacterial ecotype and ASV abundances, and environmental
parameters. Extended local similarity analysis (eLSA), which accounts for time-delayed
relationships, was used to identify correlated viral species and host ASVs; only strong,
significant relationships (Q < 0.05, p ≥ 0.6, Spearman correlation) were examined. Such
correlation and network analysis can help investigate patterns of community dynamics
and interactions, including possible phage–host interactions. The network showed a high
level of interconnectedness between viral species in the virome and cellular metagenomes
(Figure 6), consistent with the fact that abundances of species in the virome and cellular
metagenomes were strongly correlated to each other (Figure S5). The number of virus–
virus and virus–host correlations between viral populations from the virome and cellular
metagenomes were significantly different from one another (p-value < 0.05 chi-squared test),
with the majority of virus–host correlations found in the cellular metagenome (Table 1).
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Figure 6. Network analysis of cyanophages and cyanobacteria. The network depicts correlations
among viral species in viral fraction and cellular fraction metagenomes, host ASVs, and ecotypes
as determined by eLSA with only strong and significant (Q < 0.05, ρ ≥ 0.6, Spearman correlation)
interactions shown. The fill color of phage species indicates the dynamic class to which they belong,
and if seasonal, the color indicates the month that they are predicted to be most abundant by the
GAMM. For other dynamic classes (sporadic, persistent, or occasional), the outline color indicates the
month at which they were most abundant.

Table 1. Number of significant host–virus and virus–virus relationships identified by eLSA time
series analysis.

Category Number of Connections

Host Ecotype—Viruses in Cellular Metagenomes 38
Host Ecotype—Viruses in Viral Fraction Metagenomes 11

Host ASV—Viruses in Cellular Metagenomes 223
Host ASV—Viruses in Viral Fraction Metagenomes 58

Host ASV—Host ASV 1524
Viruses in Viral Fraction Metagenomes—Viruses in Viral

Fraction Metagenomes 905

Viruses in Viral Fraction Metagenomes—Viruses in
Cellular Metagenomes 844

Viruses in Cellular Metagenomes—Viruses in Cellular
Metagenomes 936
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Network analysis also revealed two emergent subnetworks of viral species with
inverse seasonality that include connections to viruses based on their abundance in viral
and cellular metagenomes. One subnetwork contained species that were more abundant
from November to March (nodes predominantly filled with cool colors at the left of the
network), while the other contained species that were most abundant from May to August
(nodes mostly filled with warmer colors at the right of the network) (Figure 6). These two
subnetworks of viral species were most often correlated to Prochlorococcus and Synechococcus
ASVs, respectively, consistent with the fact that Prochlorococcus and Synechococcus at SPOT
peak in abundance in fall to winter and spring to early summer, respectively [10,60,61].
While the majority of correlations were either host–host or virus–virus connections, there
were subnetworks with many connections between phage and host ASVs, especially among
ASVs belonging to the Prochlorococcus HLI ecotype (Figure 6). Although environmental
parameters were included in the network analysis, day length was the only environmental
parameter significantly correlated with multiple viral species; all others had at most a single
significant correlation with a viral species.

3.5. Phylogenetic Relatedness of Cyanophage Dynamic Phenotypes

Phylogenetic analysis showed that while some closely related species were mono-
phyletic according to their dynamic class as determined by the virome time series, the larger
tree structure shows that the dynamic class phenotype was highly paraphyletic (Figure 7).
The time of year at which phage species peaked in abundance (i.e., warm vs. cool months)
had larger monophyletic groups than dynamic class but was likewise paraphyletic when
considering the broader structure of the tree.

3.6. Variance Partitioning Analysis

To analyze the impact of viral communities and environmental factors on host com-
munity structure, variation partitioning analysis (redundancy analysis (RDA)) and partial
RDA was used [10,59]. We focused on the individual contribution of viral composition
(viral|env) and environmental factors (env|viral) in explaining host community compo-
sition at the whole community level (all ASVs), ecotype level, and within ecotype level
(ASVs within select ecotypes) in both Synechococcus and Prochlorococcus in separate analyses
using the viral species abundances for the viromes and cellular metagenomes (Figure 8,
Table S4). The viral community observed in the virome significantly explained variation for
each host community analyzed at different levels of diversity (i.e., all ASVs, all ecotypes,
or Prochlorococcus or Synechococcus ecotypes or ASVs). Interestingly, the viral community
found in the virome explains more of the variation in Synechococcus host communities than
in Prochlorococcus host communities, with environmental factors having a more profound
effect on the latter (Figure 8A). When the same analysis was performed but using the
viral species found in cellular metagenomes, the viral community explained more of the
variation seen in host communities at the ASV level than at the ecotype level (Figure 8B).
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Figure 7. Maximum likelihood tree showing assembled gp43 sequences and reference sequences. Tree
is rooted using the gp43 sequence for E. coli T4 phage. Colored blocks to the right of the tree indicate
to which dynamic class (left column, e.g., see Figure 2) or seasonal group (right column; based on
network analysis affiliation from Figure 6) each species belongs. Isolate gp43 reference sequences,
which were not detected in metagenomes, are indicated with dark gray blocks, and dashed lines
show the location of these reference sequences in the tree.
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Figure 8. R2 values from variation partitioning analysis resolving the portion of host community
variance explained by environmental variables or viral community structure alone in the (A) virome
and (B) cellular metagenome. Analyses were performed using host community data at various
taxonomic levels: all host ASVs together (Synechococcus and Prochlorococcus), all host ecotypes together,
and ecotypes or ASVs within Synechococcus (Syn.) or Prochlorococcus (Pro.) separately (see x-axis
labels). Asterisks over bars indicate significant (p < 0.05) R2 values (Table S4).

4. Discussion

Here we provide a robust analysis of species-level community structure and monthly
dynamics of T4-like cyanophages spanning five years at SPOT. Our analyses show that
these viral communities are diverse and dominated by many low-abundance species. At
the same time, we recovered several species that comprised a sizable portion, sometimes
>5% of the community on average, over the course of five years, and some occasionally
reached substantial levels (>10% and up to ~50%) for brief periods (Figure 4). The total
cyanophage species richness in the viral metagenomes was estimated to be ~3000 and was
similar to the total number of unique gp43 sequences assembled (~2500). This suggests
that diversity was well-sampled using our gp43 assembly approach; however, we consider
this a conservative estimate of actual total richness as low-abundance species may be
missed in our metagenomic assembly approaches, even for these relatively high-depth
metagenomes (>10 Gb per library). We also note that the gp43 identity threshold one
selects will impact the resulting number of defined species, but we have used the best
available data, including relating gp43 identity to core gene ANI, to select an appropriate
threshold for delineating relevant species populations. Regardless of these limitations,
our study provides a robust lower-bound estimate that T4-like cyanophage communities
are composed of at least thousands of distinct species, highlighting that their phage–host
interaction networks are highly diverse and complex.

Consistent with past work [11,23], we identify a significant seasonal pattern in the
entire T4-like cyanophage community (Figure 1). The results here importantly differ from
these prior studies by providing a specific and focused analysis of species-level community
dynamics of T4-like cyanophage, whereas Ignacio-Espinoza et al. 2020 [11] focused on
strain-level dynamics and tRFLP data from Chow and Fuhrman 2012 [23] (used in Ahlgren
et al. 2019 [10]), could not specifically resolve cyanophage taxa. Our analysis reveals
that the seasonal trend of the entire T4-like cyanophage community appears to be driven
by a subset of its members, while many other phage species had various types of non-
seasonal dynamics. The seasonal phages overwhelmingly belong to a cluster of ‘cool
weather’ phages that peak in abundance in the late fall and winter that are correlated with
Prochlorococcus ASVs and a ‘warm weather’ cluster of phages that peak in abundance in
spring and early summer that are correlated with Synechococcus ASVs (Figure 6). This
suggests that seasonal phages are specific to seasonal hosts.
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Roughly half of the cyanophage species were not seasonal and were categorized
as persistently, sporadically, or occasionally abundant. We suggest that sporadic and
occasional species types have rather narrow host ranges such that they peak in abundance
following a rise in the abundance of their respective particular hosts. The high abundance
of persistent phages in the virome (~40% of the community on average) suggests at least
two possible life histories. First, these phages may have broad and potentially cross-genera
host ranges. Second, because the host community is dominated by Synechococcus ecotype
IV and Prochlorococcus HLI, persistent phages may be those that specialize in infecting these
dominant taxa. Increased resistance to decay may also be an important component of how
and why these phages are persistent (see below). The T4-like cyanomyoviral community
thus appears to be composed of species with varied life strategies that we suggest are
primarily driven by differing host-range strategies, largely consistent with previous work
indicating nested patterns of phage–host interactions [62,63]. Furthermore, several species
from all identified categories contribute substantially (>10% and up to ~50% maximum
relative abundance) to the community for only brief periods, highlighting how highly
dynamic these communities are (Figure 4E,F).

Prior analysis of the whole phage community with these same virome samples using
assembled contigs identified viral contig populations (at ~98% nucleotide identity) that
were detected in nearly all samples [11]. That work, however, did not conduct a detailed
species-level analysis of cyanophage populations nor categorization of them as seasonal,
persistent, etc., as was performed here. Within those frequently detected and relatively
stable contig populations (including those of cyanophage), single nucleotide polymorphism
(SNP) analysis revealed a constant overturn of variants, potentially representing Red Queen
(RQH) dynamics due to continual phage–host co-evolution. This marked difference in
dynamics (relatively stable vs. constant overturn) between broader and finer scales of
diversity for both phages and hosts (i.e., ecotypes or species vs. variants) parallels patterns
seen in our prior analysis of host cyanobacterial populations at SPOT [10] as well as a
model suggested by Rodriguez-Brito et al. 2010 [8] where populations are more stable at
higher taxonomic levels but cycle rapidly at finer taxonomic scales. This model, however,
may require some revision, with our results here showing that cyanophage species have
more complex, variable dynamics likely driven by host availability and differing host-range
strategies. The previous SNP analysis of only persistent, longer contig populations in
Ignacio-Espinoza et al. 2020 [11] leaves unanswered questions about how strain-level
dynamics operate within the seasonal, occasional, and sporadic phages.

Phylogenetic analysis shows that the dynamic phenotypes in the viromes (seasonal,
persistent, sporadic, occasional) are monophyletic for closely related species, but these traits
are paraphyletic at broader phylogenetic scales. The time of year at which seasonal species
peak (warm or cool months) likewise shows the same phylogenetic patterns. Under the
paradigm that host range is a primary driver of viral dynamics, the fact that even relatively
closely related species have different dynamics is consistent with the fact that minor changes
in the genome, sometimes single nucleotide changes, can alter host range [9,64]. Complex
pleiotropic effects and combinations of mutations across multiple genes that determine
host range likewise may help explain how similar dynamic phenotypes may have arisen
multiple times in the evolution of T4-like cyanophage populations [64]. Dekel-Bird et al.
(2013) [65] saw similar phenotype-phylogenetic patterns, albeit for a different group of
phage, cyanopodoviruses, and with a different phenotype. Closely related podoviruses
often were monophyletic for the ecotype of the host on which they were isolated, but this
pattern did not hold at broader phylogenetic clades, suggesting that host range is connected
to phylogenetic relatedness of phages. It is worth noting, however, that our analysis of
phenotype and phylogenetic patterns is based on a much deeper sampling of phage
community diversity and with molecular methods free of potential culture-based biases.

The balance of viral species according to dynamic type differed significantly in the
cellular and viral size fraction metagenomes, indicating that these samples may be cap-
turing different processes in the life cycle of the phages. Viral metagenomes were domi-
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nated by seasonal types, while cellular metagenomes were dominated by sporadic types
(Figures 3 and 4). In addition, phage species were detected less frequently and at higher
average community contribution in cellular metagenomes than phages in the viromes
(Figures 3 and 4). Together this is consistent with the cellular fraction being enriched in
phages involved in an active infection. Through the lens of the KtW model, phages in
the cellular metagenome may represent the “winners” at the time of sampling, whereas
phages found in the virome represent a catalog of previously successful phages. Sizable
overlap of phages found in the cellular metagenome and viral metagenome (Table S1) and
strong correlations of species abundances between these size fractions (Figure S5) from
the same sample data support that the viral metagenome contains phages very recently
released by lysis. The fact that seasonal phages become undetectable for months at a time
before reemerging and the sudden and ephemeral appearance of sporadic phages in the
virome supports the Bank model in that many species of phages are present below our
limit of detection and only rise in abundance when their preferred host is present. We
suggest that these data support that both the KtW and Bank models are at play in this
environment—after a successful infection cycle, phages may fall to low abundance and per-
sist as virions until susceptible hosts are present again. Because myoviruses are generally
not lysogenic and there is no evidence that cyanomyoviruses utilize this life strategy, we
consider phages found in the cellular metagenome to only be involved in the lytic cycle. We
also expect that the KtW and Bank models of phage–host interactions work in conjunction
with RQH dynamics in complex ways, potentially operating at different levels of diversity,
as noted above.

It is important to recognize that the viral metagenome likely contains a complex
collection of recently released phages and those that have persisted over a range of time.
As noted above, it is possible that persistent phages are observed as such in part because
they are particularly resistant to degradation. Phage decay rates vary with season and
location, owing to exposure in particular to damaging UV light [66–69], but how decay
rates vary between cyanophage isolates or populations is not well studied. There are few
studies of decay rates among marine phage isolates [67]. However, a recent study found
that strains within two major lineages of cyanopodoviruses (clade A and B) did not differ
significantly in their decay rates, despite these clades having clear differences in host range
and lifestyle strategies [70]. Because phage decay is an important factor in the dynamics
of community composition, more analysis of decay rate variation within a phylogenetic
framework, especially for cyanomyoviruses, is warranted.

Consistent with viral metagenomes being enriched in previously successful phages,
variation partitioning shows that the viral community in viral metagenomes explains more
of the variation in host community structure across all ecotypes than the viral community
captured in the cellular metagenome. However, the fact that viruses in both the virome
and cellular metagenomes explained at least a portion of the variation in host community
structure at both the ecotype and ASV level and with differences between Prochlorococcus
and Synechococcus indicates that virus, host, and environment interactions are complex.
Indeed large portions of host community variation were still unexplained by either viral
or environmental factors (Table S4). There are clearly multiple additional factors not
measured here that contribute to this unexplained variation, such as organic nutrients
(bottom-up controls) [71–73], interactions with cellular predators (i.e., grazers) (top-down
controls) [74–76], allopathic interactions between cyanobacteria (‘lateral’ controls) [77],
and predation by non-T4 cyanophages such as T7 cyanophages [65]. Indeed S-TIM5-
like cyanophages, a lineage of non-T4 cyanomyoviruses, exhibit variation over time [78].
However, there are fewer genomes available for non-T4 cyanophages, which makes it
difficult to determine relevant ANI levels (and corresponding marker gene divergence) at
which species-like populations are delineated, and this is, in part, why we have focused on
T4-like cyanophage populations here.
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5. Conclusions

In summary, this study provides a comprehensive view of phage species-level com-
munity composition and dynamics. To our knowledge, this is the first such quantitative
analysis of marine T4-like cyanophage population structure and dynamics that utilizes
a robust, genome-informed grouping of phage into species-like units. Our results show
a diverse cyanophage community with two major groups of seasonal species that are
broadly associated with Prochlorococcus or Synechococcus host ASVs. We show that while
the cyanophage community as whole changes seasonally, individual cyanophage species
have diverse phenotypes in terms of dynamics, and these phenotypes probably reflect
that cyanophages possess an underlying diversity of host-range strategies. Phylogenetic
analysis likewise indicates that these dynamic phenotype classes have emerged multiple
times, likely reflecting a range of evolutionary pathways that determine host range and
these phenotypes. By analyzing both cellular and viral cell fractions, we provide unique
snapshots of two distinct points in the phage life cycle, those in active infection and those
currently filling the bank of virions available for future infection cycles.
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